Verification of an In-place Quicksort in ACL2

Sandip Ray Rob Sumners
sandip@cs.utexas.edu robert.sumners@amd.com

Department of Computer Science

The University of Texas at Austin
Austin, Texas, USA

Abstract

We present a proof of an efficient, in-place Quicksort implementation [1] using single-threaded objects
(stobjs) in ACL2 [3, 4]. We demonstrate that the Quicksort implementation is equivalent to a simple
insertion-sort function that is shown to produce an ordered permutation of its input. For ease of rea-
soning, the demonstration is carried out by verifying a series of ”intermediate” sorting functions. The
intermediate functions are equivalent to the efficient Quicksort implementation, but written in a more
applicative style, and hence easier to reason about. We then decompose the proof into a verification
of the equivalence of the efficient implementation with an intermediate implementation, and a proof of
correctness of the intermediate implementation. We show how this decomposition allows us to simplify
our reasoning about stobjs and obtain a cleaner proof of the implementation.

1 Introduction

In ACL2 version 2.4, support for efficient array manipulation via the use of single-threaded objects (stobjs)
was introduced. The syntactic restrictions ACL2 enforces on the use of stobjs ensures that the underlying
efficient destructive implementation of arrays coincides with the applicative semantics of ACL2 functions. In
this paper, we show how to implement and verify an efficient, in-place Quicksort function which uses ACL2
stobjs. Unfortunately, the efficient Quicksort function is difficult to reason about directly in ACL2. We show
how to decompose the verification task into two tractable pieces. In one piece, we prove the equivalence
of the efficient Quicksort with a stobj-free function which mimics its effects. In the second piece, we prove
correctness of the latter function. We observe that constraining the amount of reasoning required about
recursive functions containing single-threaded objects makes the proof much simpler. To this end, we design
the stobj-free versions of Quicksort by looking at the induction schemes suggested by the efficient recursive
functions.

The remainder of the paper is organized as follows: in section 2, we provide an overview of the efficient
Quicksort implementation that we verify. In section 3, we give an overview of the correctness proof and
motivation for the auxiliary functions we define for this proof. Finally, we provide some concluding remarks
in section 4.

2 Quicksort Implementation and Specification

Our Quicksort implementation sorts its input according to the total order << on all ACL2 objects [5] defined
in the book “books/misc/total-order”. While the choice of this order is not critical for our implementation
of Quicksort, the fact that the total order applies to all ACL2 objects does enable us to design a function
that can be proved to sort arbitrary ACL2 objects without any assumption about their types.

The implementation uses the stobj gstor as a temporary store in which to sort the input list. The stobj
gstor has a resizable array called objs, providing random-access to its elements. We define functions which



load the input into this array, and extract an output list from the sorted array. The main in-place sorting
operations for the array objs occurs in two functions, namely, split-qs and sort-qs. Their definitions are
provided in Figures 1 and 2.

(defun natp (x)
(and (integerp x) (>= x 0)))

(defun ndx< (x y)
(implies (and (natp x) (natp y))
< xy)))

(defstobj gstor
(objs :type (array T (0))
:resizable t))

(defun split-gs (lo hi splitter gstor)
(declare (xargs :stobjs gstor))
(if (ndx< hi lo) (mv lo gstor)
(let* ((swap-lo (<<= splitter (objsi lo gstor)))
(swap-hi (<< (objsi hi gstor) splitter))
(gstor (if (and swap-lo swap-hi)
(swap lo hi gstor)
gstor)))
(split-qs (if (implies swap-lo swap-hi)
(1+ lo)
lo
(if (implies swap-hi swap-lo)
(1- hi)
hi)
splitter gstor))))

Figure 1: ACL2 function for splitting the array, given a pivot element, splitter.

The function split-gs implements the main partitioning task for Quicksort. Specifically, it takes two
indices lo, and hi, and an array element called the splitter, rearranges (permutes) the array objs, and
returns the rearranged store and an index. Informally, the rearranged array has the property that elements
in the sub-array from lo to (1- index) (if such elements exist) must be smaller (according to <<) than
splitter, and elements in the sub-array from index to hi must be at least as large (according to <<) as
splitter.

The function sort-gs sorts the array objs between the indices 1o and hi. We call split-gs with
splitter as the element of the array in position 1o. Then we recursively sort the rearranged array returned
by split-gs by sequentially sorting the sub-array from lo to (1- index) and the sub-array from index to
hi.

The main sorting function gsort (Figure 3) maps any given list of objects to the corresponding sorted list
of objects. gsort performs this operation efficiently by creating a local stobj using the form with-local-stobj
which was added in ACL2 version 2.6. This local stobj gstor is first initialized by the function alloc-gs
which resizes the objs array in gstor to allocate enough room to store the elements in x. The objs array
is then loaded with the input list x by the function load-gs. This local stobj gstor is sorted in place by
the function sort-gs and finally, the sorted list is then extracted from gstor by the function extract-gs.
After the resulting list is extracted, the scope of the gstor object is terminated by with-local-stobj. This
allows the function gsort to use the local stobj gstor as an efficient workspace without introducing the



(defun sort-gs (lo hi gstor)
(declare (xargs :stobjs gstor))
(if (ndx<= hi lo)
gstor
(mv-let (index gstor)
(split-gs lo hi (objsi lo gstor) gstor)
(if (ndx<= index 1lo)
(sort-gs (1+ lo) hi gstor)
(let ((gstor (sort-gs index hi gstor)))
(sort-qs lo (1- index) gstor))))))

Figure 2: Function for sorting the stobj gstor in the index range from lo to hi.

(defun gsort (x)
(with-local-stobj gstor
(mv-let (rslt gstor)
(let* ((size (length x))
(gstor (alloc-gs size gstor))
(gstor (load-gs x O size gstor))
(gstor (sort-gqs O (1- size) gstor)))
(mv (extract-qs O (1- size) gstor)
gstor))
rslt)))

Figure 3: The main gsort function

stobj into the signature of the function (i.e. gsort will have the same signature as our insertion-sort function
isort and thus, we can safely replace any call of isort with a call of gsort, assuming we prove they are
equivalent functions).

The verification task is then to prove that gsort is correct. A sorting function is usually deemed correct
if it returns an ordered permutation of its input. We prove this fact about gsort by first proving that gqsort
is equivalent to a simple insertion-sort function isort (see figure 4) and then proving that isort returns an
ordered permutation. The latter is a standard ACL2 exercise, so we turn our focus instead to the following
main theorem in our verification task!:

(DEFTHM gsort-is-correct
(implies (true-listp x)
(equal (gsort x) (isort x)))

3 Overview of The Proof

At a high level, we reason as follows. Both functions gsort and isort produce an ordered permutation of
the input, and the ordered permutation of a list is unique. Hence gsort and isort must be equal. However,
while it is a simple exercise to prove that isort produces an ordered permutation, it is not so clear that
gsort does the same. For reasoning about gsort we need to reason about two different aspects of the
function. We need to be able to prove that the function sort-qs permutes (rearranges) the portion of the

I The main theorem could have simply been (equal (gsort x) (isort x)), but includes the hypothesis of (true-listp x)
to allow certain reductions during the proof to be performed. While we believe the (true-listp x) is ultimately unnecessary,
we also believe it is an uncontroversial assumption to make.



(defun insert (e x)
(if (or (endp x)
(<< e (first x)))
(cons e x)
(cons (first x)
(insert e (rest x)))))

(defun isort (x)
(if (endp x) O
(insert (first x)
(isort (rest x)))))

Figure 4: The Specification Function for Quicksort

(defun gsort-fn (1st)
(if (endp 1lst) nil
(if (endp (rest 1lst))
(1ist (first 1lst))
(let ((lower (lower-part lst (first 1st)))
(upper (upper-part 1lst (first 1lst))))
(if (endp lower)
(cons (first lst)
(gsort-fn (rest 1lst)))
(append (gsort-fn lower)
(gsort-fn upper)))))))

Figure 5: Intermediate Applicative-style Quicksort function gsort-fn

array between hi and lo respecting the ACL2 total order <<, and further, that the list extracted out of the
array (using the function extract-qs) preserves the relative ordering of the elements in the array.

To insulate the reasoning about permutations from the arguments about extract-qs, we write a simple,
stobj-free version of gsort, called gsort-fn. Logically, gsort-fn is equivalent to gsort. However, the
function is written in an applicative style, and the reasoning is simplified by a much simpler partitioning
step. The partitioning step, instead of returning a rearranged list and an index, will now return two different
lists, called lower-part and upper-part, modeling the portions of the array from lo to (1- index) and
from index to hi respectively. We call gsort-fn recursively on the two lists and append the results to get
the final sorted list. We provide the definition of gsort-fn in figure 5. It is easy to prove that qsort-fn
produces an ordered permutation of its input, and hence is equivalent to isort.

The proof that gsort is equivalent to gsort-fn is still complicated, however. Informally, the problem is
that gsort-fn does not utilize a single function that is equivalent to split-gs. In fact, the configuration
of the array after a call to split-gs is given (roughly) by the append of the two lists lower-part and
upper-part. To rectify this situation, we define another applicative-style function that has an even closer
correspondence to the state of affairs in the efficient gsort function. To achieve this, we need to define
functions that closely simulate the function split-gs. The functions merge-func and walk in figure 6
define this correspondence. The theorems connecting split-qs and the two functions merge-func and walk
that we prove are as follows:

(defthm walk-split-gs-equal
(implies (and (natp lo)
(natp hi))



(equal (mv-nth O (split-gs lo hi splitter gs))
(+ lo (walk (extract-gs lo hi gs) splitter)))))

(defthm merge-func-split-gs-equal
(implies (and (natp lo)
(natp hi))
(equal (extract-gs lo hi (mv-nth 1 (split-gqs lo hi splitter gs)))
(merge-func (extract-qs lo hi gs) splitter))))

Using the definitions of merge-func and walk, we define a function in-situ-gsort-fn which is similar
to sort-gs. The definition of this function is given in figure 7. We discuss how we arrived at this definition
in a moment, but for now, notice that the function almost exactly mimics the operations of sort-qs. Further
note that the proof of equivalence of in-situ-qsort-fn and gsort-fn is a simple matter in ACL2, after the
following theorem connecting merge-func with the functions lower-part and upper-part has been proven.

(defthm merge-func-lower-upper-reduction
(equal (merge-func x splitter)
(append (lower-part x splitter)
(upper-part x splitter))))

With the proof of equivalence of in-situ-qsort-fn with gsort-fn and the proofs of correspondence
of gsort-fn with isort, the only remaining piece of proof is the correspondence of in-situ-qsort-fn
with gsort. The main theorem in the proof of this correspondence is the theorem below on equivalence of
in-situ-qsort-fn and sort-gs.

(defthm sort-gs-equal-in-situ-gqsort-fn
(implies (and (natp lo)
(natp hi)
(<= 1lo hi))
(equal (extract-gs lo hi (sort-gs lo hi gs))
(in-situ-gsort-fn (extract-qs lo hi gs)))))

To understand the approach for the proof of this theorem, it is instructive to observe the induction scheme
suggested by sort-gs. The definition of the function sort-gs has a recursive call of the form (sort-gs
lo (1- index) (sort-gs index hi gs)). Thus, an effective way of using this function as the induction
scheme would be to come up with an auxiliary function where, in the induction step, we have a recursive
call to a function that matches this term. This is the motivation behind the definition of in-situ-gqsort-fn
as it is. In the definition of in-situ-gsort-fn, we have a recursive call of the form (in-situ-gsort-fn
(first-n ndx merge)), which, informally, “matches up” with the recursive step of sort-qgs. Indeed, with
the in-situ-gsort-£fn as defined, we can easily match up the induction scheme with sort-gs and the result
is proved in a rather simple manner.

It is legitimate at this point, to ask whether two distinct intermediate-level functions namely gsort-fn
and in-situ-gsort-fn were really necessary for the proof, or whether the proof would have been simpli-
fied by using a single intermediate-level applicative-style quicksort function. While it would certainly be
interesting to see a simpler proof using one intermediate-level function instead of two, coming up with such
a function does not appear to be easy. Informally, the two functions serve two different purposes. The
function in-situ-gsort-fn has been specifically designed specifically so keep the proof of correspondence
with sort-gs simple. In other words, such a proof now only requires an induction based on the scheme
suggested by sort-gs, and the proof does not need to do any reasoning based on permutations or ordering.
However, gsort-fn has been designed so that the fact that it produces an ordered permutation is simple to
prove. At a higher level, the proof that the array is ordered depends on the property that the elements in
one part of the array are “less” (according to jj) than each element in the other part. The formal statement
is the theorem below.



(defun snoc (x a) (append x (list a)))
(defun last-val (x) (first (last x))

(defun del-last (x)
(if (endp (rest x)) nil
(cons (first x) (del-last (rest x)))))

(defun merge-func (x splitter)
(if (endp x) nil
(if (and (<<= splitter (first x))
(<< (last-val x) splitter))
(cons (last-val x)
(snoc (merge-func (del-last (rest x)) splitter)
(first x)))
(if (and (<<= splitter (first x))
(<<= splitter (last-val x)))
(snoc (merge-func (del-last x) splitter)
(last-val x))
(if (and (<< (first x) splitter)
(<< (last-val x) splitter))
(cons (first x)
(merge-func (rest x) splitter))
(cons (first x)
(snoc (merge-func (del-last (rest x)) splitter)
(last-val x))))))))

(defun walk (x splitter)
(if (endp x) O
(if (and (<<= splitter (first x))
(<< (last-val x) splitter))
(1+ (walk (del-last (rest x)) splitter))
(if (and (<<= splitter (first x))
(<<= splitter (last-val x)))
(walk (del-last x) splitter)
(if (and (<< (first x) splitter)
(<< (last-val x) splitter))
(1+ (walk (rest x) splitter))
(1+ (walk (del-last (rest x)) splitter)))))))

Figure 6: Applicative Functions Equivalent to split-qs



(defun in-situ-gsort-fn (1lst)
(if (endp 1st) nil
(if (endp (rest 1lst))
(list (first 1st))
(let ((merge (merge-func 1lst (first 1lst)))
(ndx (walk 1lst (first 1st))))
(if (zp ndx)
(cons (first merge)
(in-situ-gsort-fn (rest merge)))
(let ((upper (in-situ-gsort-fn (last-n ndx merge)))
(lower (in-situ-gsort-fn (first-n ndx merge))))
(append lower upper)))))))

Figure 7: Quicksort Function Corresponding to sort-qs

(defthm ordp-lessp-not-lessp-reduction-1
(implies (and (ordp x)
(ordp y)
(lessp e x)
(not-lessp e y))
(ordp (append x y))))

However, the function merge-func, used by in-situ-gsort-fn, returns a list in which the “less” and
“not-less” portions are appended together. The proof that in-situ-qsort-£fn returns an ordered list neces-
sarily needs to be able to decompose the list returned by merge-func into two parts such that the first part is
“less” and the second part is “not-less” than the splitter element. The simplest way of achieving that goal is
to define an explicit function that has the lists explicitly split into two parts, and derive the correspondence
of that function with in-situ-gsort-fn. Thus, a single intermediate applicative function that achieves all
the goals does not seem plausible without complicating the proof by a large factor. However, it would be
interesting to investigate a simpler proof of quicksort using a less number of intermediate functions.

4 Conclusion

The efficient in-place implementation of Quicksort using arrays is usually covered in a first course on algo-
rithms at the undergraduate level (if not sooner). While the higher-level intuition behind the algorithm is
easy to grasp, it is surprising how subtle a proof of correctness of the algorithm turns out to be. Indeed,
the stubbornness of ACL2 in refusing to accept the correctness of conjectures it was asked to prove led to a
much clearer understanding of the implementation. We decided to carry out this proof and report on it to
illustrate the difficulties in proving efficient implementations correct. There are numerous details forced upon
us in a formal proof which are blissfully ignored in the informal analysis of correctness. Sometimes these
details point to possible bugs in the function definitions or to misunderstandings in their interpretations;
and sometimes these details are simply nuisances of formal reasoning. In either case, the details cannot be
ignored in the formal proof. The proof was carried out in a top-down style using the approach outlined in
Kaufmann’s case study in [4]. The use of “skip-proofs” turns out to be of invaluable help in modularizing
the proof.

This work also arose as a by-product of our attempts to define a multi-threaded model of stobjs (i.e. when
is it acceptable to logically break the single-thread while maintaining correspondence with the destructive
operations under-the-hood). Notice that the cumbersome induction scheme produced by sort-gs is chiefly
due to the sequential updating of the single-threaded object gstor, requiring the let binding. However, in
Quicksort, since the recursive calls sort different portions of the array, it should be possible for the calls to



use the same stobj in a multi-threaded environment, and sort the different portions of the stobj array objs
in parallel. Determining an effective model for this multi-threaded use of stobjs is a future area of work.

It is also a goal of this paper to motivate continued efforts to improve the efficacy of ACL2 in the
verification of efficient implementations of algorithms using stobjs. Functions manipulating stobjs are akin
to functions defining state machines, and proofs about the former share a lot of structure with proofs of
the latter. In particular, we had to define an invariant of the stobj gstor and prove that this invariant
held throughout the various updates of the stobj. Our approach in this verification effort is analogous to
refinement proofs between state machines, especially proofs verifying concurrent shared-memory protocols.
The main difference is that we are dealing with terminating functions which affords functional decomposition,
where in the case of refinement proofs between state machines often require the definition of a refinement
map which demonstrates that the desired correspondence holds over infinite runs.

Finally, one interesting point is to compare our proof with the proof of Quicksort carried out in the
theorem prover Coq in [2]. They prove Quicksort correct in a more direct Hoare-style logic with preconditions,
postconditions, and loop invariants. The proof follows a clearer decomposition and does not introduce
intermediate functions to show the correctness of Quicksort, but some of the conditions and invariants are
involved. Use of Intermediate functions is a well-established technique for decomposing complicated proofs
in ACL2, and shows promise in simplifying proofs of stobj-based functions [6]. Nevertheless, it would be
worthwhile to investigate a more direct ACL2 proof of gsort and then compare the proof to ours.

Acknowledgments

The authors gained insight from discussions with the ACL2 community at UT. The first author especially
acknowledges discussions with Jeff Golden, that helped to give shape to the proof.

References

[1] T. H. Cormen, C. E. Leiserson, and R. E. Rivest: Introduction to Algorithms, MIT Press, Cambridge,
Massachusetts London, England.

[2] J. C. Filliatre: “Proof of the Quicksort Algorithm”,
URL - http://paulliac.inria.fr/coq/contribs/quicksort.html.

[3] M. Kaufmann, P. Manolios, J Moore: Computer-Aided Reasoning: An Approach, Kluwer Academic
Publishers, June 2000.

[4] M. Kaufmann, P. Manolios, J Moore: Computer-Aided Reasoning: ACL2 Case Studies, Kluwer Aca-
demic Publishers, June 2000.

[5] P. Manolios, M. Kaufmann: “Adding a Total Order to ACL2” submitted to ACL2 Workshop 2002.

[6] R. Sumners: “Correctness Proof of a BDD Manager in the Context of Satisfiability Checking”, in ACL2
Workshop 2000,
URL - http://www.cs.utexas.edu/users/moore/acl2/workshop-2000//.



