
Attaching Efficient Executability to Partial Functions in ACL2

Sandip Ray

Department of Computer Sciences,
The University of Texas at Austin,

Austin, TX 78712
sandip@cs.utexas.edu

Abstract

We describe a macro called defpun-exec to attach executable bodies to partial functions in ACL2.
The macro makes use of two features mbe and defexec introduced in ACL2 from version 2.8, that afford
a clean separation of execution efficiency from logical elegance.

1 Introduction

Manolios and Moore [5, 6] show how to introduce certain classes of partial functions in ACL2. For example,
a tail-recursive factorial function can be “defined” by the following form:

(defpun trfact (n a)
(if (= n 0) a
(trfact (- n 1) (* n a))))

The effect of this form is to add an axiom equating the term (trfact n a) to the body. Notice that the
equation does not specify the value of the function for negative or non-integer values of n.

Partial functions are introduced in ACL2 using encapsulation; the function symbol is constrained to
satisfy the appropriate defining equation. A consequence of using encapsulation is that partial functions
cannot be efficiently evaluated, even on inputs for which the defining equation uniquely specifies the value;
for example (trfact 3 1) cannot be efficiently evaluated, though the value is (and can be proved to be) 6.

The goal of this paper is to add executability to partial functions. We describe a macro that allows the
user to write the following form:

(defpun-exec trfact (n a)
(if (= n 0) a
(trfact (- n 1) (* n a)))

:guard (and (natp n) (natp a)))

Logically, the effect of this form is the same as the defpun form above, namely, addition of a new axiom
equating (trfact n a) to the corresponding body. However, defpun-exec also specifies an executable
counterpart which can be used to efficiently execute the function in the underlying Lisp when the guards
are verified; hence, (trfact 3 1) is now evaluated to obtain 6. This is achieved by two features added to
ACL2 version 2.8, namely defexec and mbe.

The remainder of this paper is organized as follows. In Section 2, we briefly review the work by Manolios
and Moore on introducing partial functions in ACL2. In Section 3, we provide a brief overview of defexec
and mbe features. In Section 4, we show how executability can be added to partial functions using defexec
and mbe. In Section 5, we discuss some issues on executability of partial functions whose arguments are
single-threaded objects. In Section 6, we provide some concluding remarks.

1



2 Partial Functions

ACL2 is logic of total recursive functions. By a partial function in ACL2, we mean one whose defining
equation does not specify the value for all inputs. Such functions are introduced in ACL2 as encapsulated
functions; the constraint specifies that the function satisfies its defining equation. For example the defpun
form shown in Section 1 is merely a macro that expands into the following form:

(encapsulate
(((trfact * *) => *))
(local (defun trfact (n a) ...))
(defthm trfact-def
(equal (trfact n a)

(if (= n 0) a (trfact (- n 1) (* n a))))))

For soundness, one needs to provide a local witness that satisfies the constraints, here the defining equation
above. The principal contribution in [6, 5] for implementing the defpun macro is the observation that it is
possible to mechanically produce witnesses for certain classes of defining equations. For the example function
trfact above, the relevant observation is that it is possible to define a witness satisfying any tail-recursive
equation.

On the other hand, a downside to using encapsulation is that a partial function cannot be executed
(other than via repeated expansion of its defining equation). However, in certain cases, we do need to
execute these functions. For example, Moore [7] shows how to define inductive invariants in the presence of
an operational semantics to derive partial correctness proofs of sequential programs in ACL2, incurring the
same proof obligations as the inductive assertions method [3, 4, 2]. The inductive invariant is specified as
a tail-recursive equation, and hence can be introduced in ACL2 via defpun. However, one important proof
obligation for an inductive invariant is that it holds for the initial state of the system. Often, the initial
state is defined as a constant *init*, and thus the formula (inv *init*) ought to be shown to hold by
simple evaluation. As it stood before the work of this paper, however, if inv were defined using defpun as
suggested in [7], then ascertaining the truth value for the initial state would require repeated expansion of
the equation along with simplification via rewriting. With the macro defpun-exec described here, we can
define the inductive invariant as a partial function and yet evaluate it on concrete arguments, as long as the
arguments satisfy certain guards. This is made possible by two features in ACL2 version 2.8, namely mbe
and defexec.

3 MBE and DEFEXEC

Strating from version 2.8, ACL2 provides a feature called mbe to allow clean separation of logical connections
with execution efficiency for functions in ACL2. ACL2 now allows the user to write the form:

(defun f (x)
(declare (xargs :guard (natp x)))
(mbe :logic (if (zp x) 1 (* x (f (- x 1))))

:exec (if (= x 0) 1 (* x (f (- x 1))))))

Logically, this is the same as applying the :logic argument of mbe:

(defun f (x) (if (zp x) 1 (* x (f (- x 1)))))

However, the effect of mbe is that when the guard holds, (and has been verified in ACL2), the :exec argument
is used to evaluate f on concrete values, as though f were defined in raw lisp as:

(defun f (x) (if (= x 0) 1 (* x (f (- x 1)))))

The guard for mbe involves a proof obligation showing that the :logic and :exec versions are equal under the
guard conditions. This cleanly separates concerns about execution efficiency from logical elegance, allowing
the user to define a logically elegant definition for reasoning, while using the efficient definition for execution
purposes.

2



The use of mbe does not guarantee that the function terminates on all inputs satisfying the guard. Indeed,
consider the following function.

(defun foo (x)
(declare (xargs :guard T))
(mbe :logic x :exec (foo x)))

The guard on mbe, namely that the :exec argument is equal to the :logic argument, is trivial in this case.
However, execution of foo using the :exec argument does not terminate. ACL2 rectifies this by providing
another feature called defexec. The defexec feature allows the user to write the following form in ACL2:

(defexec f (x)
(declare (xargs :guard (guard x)))
(mbe :logic (logic-body x) :exec (exec-body x)))

The effect, in addition to the guard obligations for mbe is to induce a further proof obligation showing that
the evaluation using the :exec component eventually terminates if the guards hold.

4 Executability in Partial Functions

We illustrate the use of our macro defpun-exec with an example. Consider the following form that we
presented in Section 1.

(defpun-exec trfact (n a)
(if (= n 0) a (trfact (- n 1) (* n a)))
:guard (and (natp n) (natp a))

Expansion of this form first causes the introduction of the following defpun:

(defpun trfact-logic (n a) (if (= n 0) a (trfact-logic (- n 1) (* n a))))

Then we introduce the function trfact using mbe and defexec.

(defexec trfact (n a)
(declare (xargs :guard (and (natp n) (natp a))))
(mbe :logic (trfact-logic n a)

:exec (if (= n 0) a (trfact (- n 1) (* n a)))))

Thus, logically, (trfact n a) is merely (trfact-logic n a), while the :exec component of mbe is used
for evaluation purposes. The guard for mbe, then, imposes the following proof obligation:

(thm
(implies (and (natp n) (natp a))

(equal (trfact-logic n a)
(if (= n 0) a (trfact (- n 1) (* n a))))))

But this is trivial to prove, since logically (trfact n a) is (trfact-logic n a), and (trfact-logic n
a) is constrained to satisfy exactly the same defining equation using defpun. The same observation allows
us to trivially prove the following theorem justifying that trfact satisfies its equation.

(defthm trfact-def
(equal (trfact n a) (if (= n 0) a (trfact (- n 1) (* n a))))
:rule-classes :definition)

The principal “job” of defpun-exec is to introduce the defexec form, verify the guards, and introduce
the definition rule above. The macro actually provides some more facilities, for example allowing different
terms for :logic and :exec arguments, and setting up appropriate theories, so that the ACL2 rewriter can
effectively use the :definition rule above.

We note here, that the use of defexec in the macro is merely for aesthetic purposes. We might as well
have used the following defun form:

3



(defun trfact (n a)
(declare (xargs :guard (and (natp n) (natp a))))
(mbe :logic (trfact-logic x)

:exec (if (= n 0) a (trfact (- n 1) (* n a)))))

Since the guards guarantee that the :logic and :exec arguments of mbe are equal, use of defun here is
logically consistent; indeed, ACL2 accepts the above form if presented after the introduction of the defpun
for trfact-logic. Nevertheless we considered it distasteful to introduce non-terminating computations
(illustrated in Section 3) using the macro, as is possible if defun is used above. The use of defexec guards
against that possibility introducing a proof obligation that execution with the :exec argument terminates
under the guard.

5 Partial Functions and Single-threaded Objects

The approach described in Section 4 “works” as long as the arguments of the partial function are ordinary
ACL2 objects, that is built out of integers and conses. However, starting from version 2.4, ACL2 has a
notion of a single-threaded object (stobj). While a stobj is logically no different from any other ACL2
object, syntactic restrictions are imposed on its manipulation so that any update to the object can be
implemented destructively while still preserving the applicative semantics of the logic.

The complication in dealing with partial functions manipulating stobjs arises from the ACL2’s signature
mechanism. For any function introduced in the logic, the signature specifies the following (among others):

• the arity of the function,

• number of return values, and

• whether any argument (or return value) is a stobj

For example, the signature for the function trfact discussed before is as follows:

((trfact * *) => *)

This indicates that trfact takes two arguments and has one return value; the symbol * indicates that the
corresponding argument (or return-value) position is an ordinary (non-single-threaded) ACL2 object. If
stor is a stobj, and foo is a unary function that manipulates (and returns) stor, then the signature of foo
is:

((foo stor) => stor)

Consider the situation in which foo is to be introduced as a partial function. Recall that partial functions
are introduced using encapsulate, and the symbol is constrained to satisfy the corresponding equation. For
soundness, a local witness must be exhibited that satisfies the desired constraint. Since ACL2 requires that
the signature of the constrained function symbol must match its local witness, the local witness must also be
a unary function manipulating and returning stor. However, the witnesses generated by defpun involve a
special form, called defchoose, which imposes the restriction that its return values must be ordinary objects.

The discussion above should make clear that partial functions can only be introduced as long as they
do not manipulate stobjs. The macro defpun overcomes this obstacle by declaring the local witness to be
:non-executable.1 When a function is declared :non-executable, ACL2 treats its definition purely as an
equation in the logic; as a result, syntactic restrictions on stobjs are not enforced. More importantly, signa-
tures for arguments and return values for such a function only involve ordinary ACL2 objects, since logically,
there is no distinction between ordinary objects and stobjs. The price, however, is that :non-executable
functions cannot be evaluated. Since executability was not the principal concern for defpun, this solution

1The original version of defpun [5] did not support stobjs. Our discussion in this section is based on enhancements to defpun

by Matt kaufmann to support stobjs.

4



enabled the possibility of introducing partial defining equations that involve calls to functions manipulating
stobjs.

In the current work, however, we do want executability! But as we described in Section 4, we merely used
a function introduced by defpun as the :logic argument of mbe. Since this function has a signature that
does not involve a stobj, we cannot use a stobj in the :exec argument. We now discuss two solutions out of
this impasse. The first solution is relatively simple, but achieves executability only at the cost of sacrificing
the efficiency provided by stobjs. The second solution, which is work in progress, is more elaborate and is
anticipated to achieve the desired efficient executability.

5.1 A Naive Approach

The naive approach to encorporate executability in functions is to merely “ignore” the special status of
stobjs and functions manipulating them. Let us illustrate this with an example. Assume that we introduce
a stobj stor with a single field fld.

(defstobj stor (fld))

The form above causes ACL2 to introduce two functions (fld stor) and (update-fld i stor). Logically,
we think of stor as merely a list of length 1, and fld and update-fld are merely nth and update-nth for
the 0-th position of the list. However, under the hood, the functions are implemented to cause destructive
updates, and syntactic restrictions on the use of these functions guarantee that such destructive updates
are sound [1]. For example, the stobj stor are fld and update-fld only by functions invoking fld and
update-fld and any function using update-fld is required to also return the updated stor. In the imple-
mentation of defpun-exec if some of the arguments (and return values) are stobjs, we go the “other way”;
that is, we replace every call to fld and update-fld to a corresponding call to nth and update-nth. Since
the signatures of functions nth and update-nth involve only *, this allows us to execute functions involving
stobjs by treating the corresponding stobjs as strictly logical ACL2 objects. However, this also implies that
the functions are executed via the usual applicative “copy-on-update” semantics, and destructive updates to
stobjs during execution is not possible, even if the syntactic restrictions guaranteeing single-threadedness are
respected by the executable bodies. Partial functions, thus, cannot be used to manipulate very large stobjs
efficiently, and the facility merely provides a way of evaluation for testing the execution on small examples.

5.2 A More Elaborate Approach

The implementation of executability on partial functions with stobjs that we discussed above, has an air of
paradox; we started with the goal of adding efficient executability, but for stobjs we are giving it up and
merely allowing slow executions with nth and update-nth. We considered several possibilities for introducing
more efficient executability; the following two are merely examples.

1. Change the implementation of defchoose so as to permit single-threaded objects as arguments and
return values. This would also require suitably changing the defpun macro so that it recognizes stobjs.

2. Change the way ACL2 handles :non-executable functions. We would want to specify a function
foo to be :non-executable indicating that the logical definition is never executed. However, if mbe
is used with such a definition, we would want the :exec argument to be indeed executable, and
single-threadedness checked (for any stobj parameter) only on the :exec argument. The current im-
plementation of :non-executable does not allow this. Indeed, if mbe is used with a :non-executable
definition, then such a definition is accepted by ACL2, but the :exec argument merely ignored.

To our knowledge, neither suggestion has any logical impediment; however, because of the way ACL2 is
implemented, both the suggestions above would involve substantial modifications in the ACL2 source code.
Short of sufficient justification regarding applicability of partial functions on single-threaded objects, we
considered it premature to embark on such “sweeping” changes.

5



However, even without changes to the ACL2 code, there are possible ways to add efficient executability
to partial functions manipulating stobjs. In this section, we discuss one such approach.2

To understand the approach, consider defining a partial function foo that updates and returns a stobj
stor. Then we can define a function foo-intermediate that mimics exactly the actions of foo, with
the difference that foo-intermediate is specified using nth and update-nth instead of the corresponding
stobj-based functions. Thus, the signature of foo-intermediate will be merely given by:

(foo-intermediate *) => *)

In addition, we can define two functions copy-from-stor and copy-to-stor with the following associated
signatures.

((copy-from-stor stor) => *)
((copy-to-stor * stor) => stor)

Function copy-from-stor merely creates a list by reading the stobj stor; that is, if fld is the i-th entry
of stor, then (fld stor) is equal to (nth i (copy-from-stor stor)). Correspondingly, copy-to-stor
writes back the list passed as its first argument to stor; that is, (fld (copy-to-stor lst stor)) is equal
to (nth i lst). Then we can define the executable function foo manipulating stobjs as follows:

(defexec foo (stor)
(declare (xargs :stobjs stor))
(mbe :logic (let* ((lst (copy-from-stor stor))

(lst (foo-intermediate lst))
(stor (copy-to-stor lst stor)))

stor)
:exec <body for foo>))

With appropriate guards specified and verified, foo can have efficient executability with stobjs, while function
foo-intermediate can be defined using defpun. While this does not add executability to partial functions
with stobjs (since foo-intermediate does not involve stobjs, nor is it necessary to make it executable), the
approach has certain advantages. Notice that contrary to our naive solution above, this approach does not
have any performance penalty.

We are developing a macro called defcoerce that implements the above idea. In particular, given a
stobj name stor, a call to (defcoerce stor) introduces two functions copy-from-stor and copy-to-stor
along with the following theorems.

(defthm copy-from-stor-identity
(implies (storp stor)

(equal (copy-from-stor stor) stor)))
(defthm copy-to-stor-odentity

(implies (storp l)
(equal (copy-from-stor l stor) l)))

In order to introduce an executable partial function foo manipulating the stobj stor, it is then simply
required to introduce the non-executable defpun introducing some function foo-intermediate and prove
the following theorem:

(defthm foo-intermediate-retains-stor
(implies (storp stor)

(storp (foo-intermediate stor))))

Our implementation of defcoerce is not complete; for example, this macro can only handle partial functions
that involve a single stobj argument. The expansion and development of the macro is an area of future work,
depending on practical applications of partial functions on stobjs.

2This approach was suggested by John Matthews (matthews@galois.com) in an email to the acl2-help mailing list on July
21, 2004, as a means of supporting fast executability on stobj-based functions using mbe.

6



6 Conclusion and Future Work

We have extended the defpun macro by adding executability to partial functions. This allows partial
functions to be evaluated on the domains on which their defining equation specifies a unique value for
the function. Until the introduction of mbe into the ACL2 system, it was not possible to compute the
values of any constrained functions (except by symbolic deduction). Executable counterparts can now be
provided for partial tail-recursive functions. This is an important class of functions: most operational
models of state machines, microprocessors, and low-level procedural programming languages are given by
an iterated state-transition system that can naturally be expressed tail-recursively and whose termination is
not guaranteed. We anticipate that the provisioning of partial functions with executable counterparts will
hasten their adoption by the ACL2 community and will simplify system modeling in ACL2.

As we mentioned in Section 5.2, our implementation cannot currently introduce efficiently executable
bodies for partial functions involving more than one stobj. We plan to rectify this in future. Even so, we
believe that since mbe is the main tool provided by ACL2 to separate execution issues from logical concerns,
it should allow also to separate the logical aspects of stobjs from their execution aspects. The necessity
of this separation is demonstrated by the two approaches we described for adding executability to partial
functions involving stobjs. In the approach using slow executions, we have lost execution efficiency but
retained the logical elegance of definition. In the defcoerce approach, we have attained execution efficiency,
but the logical elegance, and hence effective use of the definition for theorem proving purposes, has been
lost. There has been some discussion in the ACL2 group about a feature called non-exec so that (non-exec
x) is simply x in the logic, but it has the side effect of defeating execution and turning off signature checking
so as to allow stobjs to be treated as ordinary objects. We believe that the implementation of such an idea
would be more elegant than our intermediate implementations for affording execution on stobj-based partial
functions.

Acknowledgments

The author thanks Matt Kaufmann for suggesting the idea of adding efficient executability to partial func-
tions, and providing constructive feedback in the course of development of this macro. We also thank John
Matthews for suggesting the idea of coercing stobjs to ordinary objects as discussed in Section 5.2, and the
anonymous referees for encouraging us to implement this idea.

References

[1] R. S. Boyer and J S. Moore. Single-threaded Objects in ACL2. In S. Krishnamurthi and C. R. Ramakrish-
nan, editors, Practical Aspects of Declarative Languages (PADL), volume 2257 of LNCS. Springer-Verlag,
2002.

[2] E. W. Dijkstra. Guarded Commands, Non-determinacy and a Calculus for Derivation of Programs.
Language Hierarchies and Interfaces, pages 111–124, 1975.

[3] R. Floyd. Assigning Meanings to Programs. In Mathematical Aspects of Computer Science, Proceedings of
Symposia in Applied Mathematcs, volume XIX, pages 19–32, Providence, Rhode Island, 1967. American
Mathematical Society.

[4] C. A. R. Hoare. An Axiomatic Basis for Computer Programming. Communications of the ACM,
12(10):576–583, 1969.

[5] P. Manolios and J S. Moore. Partial Functions in ACL2. In M. Kaufmann and J S. Moore, editors,
Second International Workshop on ACL2 Theorem Prover and Its Applications, Austin, TX, October
2000.

7



[6] P. Manolios and J S. Moore. Partial Functions in ACL2. Journal of Automated Reasoning, 31(2):107–127,
2003.

[7] J S. Moore. Inductive Assertions and Operational Semantics. In D. Geist, editor, 12th International
Conference on Correct Hardware Design and Verification Methods (CHARME), volume 2860 of LNCS,
pages 289–303. Springer-Verlag, October 2003.

8


