Quantification in Tail-recursive Function Definitions

Sandip Ray
Department of Computer Sciences
The University of Texas at Austin
Austin, TX 78712. USA

sandip@cs.utexas.edu

ABSTRACT

We investigate the logical issues behind axiomatizing equa-
tions that contain both recursive calls and quantifiers in
ACL2. We identify a class of such equations, named ex-
tended tail-recursive equations, that can be uniformly intro-
duced in the logic. We point out some potential benefits
of this axiomatization, and discuss the logical impediments
behind introducing more general quantified formulas.

Categories and Subject Descriptors

F.3.1 [Logics and Meanings of Programs]: Specifying
and Verifying and Reasoning about Programs—Assertions,
Invariants, Mechanical Verification; F.4.1 [Mathematical
Logic and Formal Languages|: Mathematical Logic—
Computational Logic, Mechanical Theorem Proving

General Terms
Theory, Verification

Keywords
Formal methods, Logic, ACL2, Skolemization, Conservativ-
ity

1. INTRODUCTION

In this paper, we explore ways to introduce “quantified re-
cursive predicates” in ACL2. In particular, consider intro-
ducing the predicate true with the following equation:*

(= (true x)
(if (done x) T (forall i (true (st x i)))))

Here we assume that the function symbols done and st have
been introduced in the current ACL2 theory. Function sym-
bols are introduced using three extension principles, namely

The syntax of ACL2 allows quantified formulas only via
Skolemization. In this paper we will often write formulas
with explicit quantification for pedagogical reasons.

definition, encapsulation, and defchoose. Since the recur-
sive call of true is enclosed within a quantifier, the extension
principles cannot be directly used to introduce true axiom-
atized to satisfy the above equation. However, the equation,
if introduced as an axiom, preserves the consistency of the
resulting theory. In fact, true can be introduced via encap-
sulation by exhibiting a witness as follows:
(encapsulate (((true *) => %))

(local (defun true (x) T))

(defthm true-satisfies-defining-equation

(= (true x)
(if (done x) T (forall i (true (st x i)))))))

It is often useful to introduce axioms containing both recur-
sive calls and quantifiers. For example, the natural definition
of the semantics of LTL constitutes a quantified predicate
that recurs down a path through a Kripke Structure [8];
therefore, this definition cannot be introduced in ACL2.
While the restriction can sometimes be circumvented by al-
ternative definitions — in the case of LTL by defining its
semantics with eventually periodic paths — such alterna-
tives are typically more complicated to reason about [10].

In this paper, we explore the logical issues behind introduc-
ing axioms containing both recursion and quantification in
ACL2. We identify a class of equations, named ezxtended
tail-recursive equations, which involve both recursive calls
and quantifiers but which can nevertheless can be axioma-
tized in the logic. The equations form a natural extension
of tail-recursive equations. We discuss some of the potential
practical consequences of this observation, and the logical
limitations behind further extending the class.

2. QUANTIFICATION IN ACL2

The syntax of ACL2 is quantifier-free. However, ACL2 has a
construct called defchoose for introducing quantified pred-
icates. We start with a brief overview of defchoose. For a
more thorough treatment, the reader is referred to the topics
defchoose and defun-sk in the ACL2 user’s manual [4].

Assume that foo is a binary function and we wish to define a
predicate E-foo so that (E-foo x) holds if and only if there
exists some y such that (foo x y) holds. To do so, we first
introduce the function E-foo-witness as follows:

(defchoose E-foo-witness (y) (x) (foo x y))

The effect of the above form is to extend the current theory
with the following axiom.



(implies (foo x y) (foo x (E-foo-witness x)))

Thus, if there exists some y such that (foo x y) holds, then
(E-foo-witness x) returns such a y; the return value is
unspecified if no such y exists. We can now define E-foo.

(defun E-foo (x) (foo x (E-foo-witness x)))

(E-foo x) holds if and only if there is some y such that (foo
x y) holds, as desired, and E-foo-witness can be viewed
as a Skolem function supplying a witness y when (E-foo
x) holds. Universal quantifications can be introduced by
reducing them to existential quantifications. Thus, a predi-
cate F-foo such that (F-foo x) holds if and only if (foo x
y) holds for all y, can be introduced as follows:

(defchoose F-foo-witness (y) (x) (not (foo x y)))
(defun F-foo (x) (foo x (F-foo-witness x)))

ACL2 provides a macro called defun-sk to conveniently in-
troduce quantified predicates: the following two forms in-
troduce E-foo and F-foo by expanding to the events above.

(defun-sk E-foo (x) (exists y (foo x y)))
(defun-sk F-foo (x) (forall y (foo x y)))

The defchoose construct essentially provides a way of intro-
ducing first-order quantified predicates in ACL2 by Skolem-
ization. The ability to specify arbitrary quantified pred-
icates is a powerful feature of the logic; recent research
has made use of quantification to formalize many generic
functions proof strategies and investigate relations between
them [6, 9, 11]. However, there are restrictions on the form
of quantified predicates that can be introduced directly as
above. For instance, defchoose can only introduce non-
recursive quantified formulas: to extend an ACL2 theory
with E-foo or F-foo, the function foo must have been al-
ready introduced in the current theory. This disallows the
definition of true we saw in Section 1. Furthermore, ACL2
disallows the use of defchoose in a mutual recursion clique.

3. RECURSION AND QUANTIFICATION

Although the defchoose construct cannot introduce axioms
involving both recursion and quantification, we saw in Sec-
tion 1 that such they can be introduced by encapsulation if
we can exhibit an appropriate witness. The witness for the
predicate true is the constant function that always returns
T. In this section, we show how to uniformly define witnesses
for more general equations by encapsulation.

Consider the predicate F-iv1l with the following axiom:

(= (F-iv1l x)
(if (done x) (base x) (forall i (F-ivl (stl x i)))))

Here done, base, and st1 are functions in the current theory.
The axiom then can be introduced by encapsulation with the
following witness.

(defun sn1 (x ch)
(if (endp ch) x (snl (stl x (car ch)) (cdr ch))))
(defun n-done (x ch)

(if (endp ch) (not (domne x))
(and (not (dome x))
(n-done (stl x (car ch)) (cdr ch)))))
(defun rm-1st (ch)
(if (endp ch) nil
(if (endp (cdr ch)) nil
(cons (car ch) (rm-1st (cdr ch))))))
(defun done-chl (x ch)
(and (done (f-snl x ch))
(implies (consp ch) (n-done x (rm-1st ch)))))
(defun-sk F-ivl (x)
(forall ch
(implies (done-chl x ch) (base (f-snl x ch)))))

We now explain the intuition behind the definition of this
witness. Given an i, call (st x i) a successor of x selected
by i. We think of i as a non-deterministic selector that
chooses a successor for x, and st as transforming x to its
successor given the choice i. Our desired axiom thus pos-
tulates an invariant over this transformation: if x satisfies
done then the invariant holds if and only if base holds; oth-
erwise it holds for x if and only if it holds for each successor.
Introducing F-iv1 amounts to exhibiting such an invariant.

With this view, snl is an iterated transformation function
for x based on a selector sequence ch. The definition of the
witness F-iv1l thus says that for all sequences ch, the first
descendant of x that satisfies done must also satisfy base.
If this condition holds for some x which does not satisfy
done then it also holds each successor of x and vice-versa,
justifying our equation. The key observation is that the
(universal) quantification in the equation can be transferred
to a (universal) quantification over the sequence ch.

We now explore some variations of the equation above. Con-
sider defining a predicate E-iv1 as follows:

(= (E-ivl x)
(if (done x) (base x) (exists i (E-ivl (st x i)))))

E-iv1 can be introduced using the same approach as F-iv1.
The corresponding witness, defined below assuming appro-
priate definitions of the auxiliary functions as above, now
posits that there exists a selector sequence such that the
first done descendant of x satisfies base. Thus the desired
quantification is transferred to the selector choice.

(defun-sk E-ivl (x)
(exists ch (and (done-chl x ch) (base (f-snl x ch)))))

It is instructive to consider the relationship between the
above equations tail-recursive ones. Tail-recursive equations
have the following general form (where ivO0 is the new func-
tion symbol being introduced):

(= (iv0 x) (if (done x) (base x) (iv0O (stO x))))

Manolios and Moore [6] show how to introduce ivO by en-
capsulation. We can view this axiom as a special case of in-
variant over transformations, where the transformation st0
takes x to a unique successor. Thus, a witness for the equa-
tion is the formula that says that if a descendant of x satisfies
done then the first such descendant must satisfy base; this is
essentially the witness constructed by Manolios and Moore.



We now briefly discuss alternating quantifiers. Consider in-
troducing the predicate EF-iv2 with the axiom below:

(= (EF-iv2 x)
(if (done x) (base x)
(exists i (forall j (EF-iv2 (st2 x i j))))))

Viewing st2 as a transformation function on x — this time
with two selectors i, and j — the equation can be satis-
fied by the predicate that says that for each sequence of
i-choices there exists a sequence of j-choices such that the
first descendant of x that satisfies done also satisfies base.
As above, since the quantification is necessary over the se-
lector sequences, we can introduce EF-iv2 with definitions
analogous to E-ivl and F-iv1.

Generalizing our observations so far, we now characterize
the class of extended tail-recursive equations. The equation
introducing a predicate Q-iv extended tail-recursive if it sat-
isfies the following conditions:

1. There is exactly one recursive branch.

2. The outermost function symbol in the recursive branch is
Q-iv, possibly enclosed within a sequence of quantifiers.

It is easy to see that any extended tail-recursive equation
can be introduced in ACL2 by introducing the corresponding
selector sequences to be quantified over.

4. LOGICAL IMPEDIMENTS

The conditions for extended tail-recursive equations might
appear unduly restrictive. In particular, note that the first
condition restricts the number of recursive branches in the
defining axiom to be exactly one. We now discuss logical
reasons behind these restrictions.

ACL2 restricts the use of quantification in order to prevent
the extended theory from violating conservativity. Roughly,
conservativity implies that if foo is a function symbol intro-
duced to extend an ACL2 theory 7, then every formula ¢
that does not involve the symbol foo is provable in the ex-
tended theory if and only if there exists a (first-order) proof
of ¢ in 7. Conservativity is maintained by each extension
principle [5] and is key to the proof of consistency of ACL2
theories: since the formula nil does not involve the intro-
duced function symbol, nil is provable after extension if and
only if it is provable before, reducing the consistency of the
extended theory to that of the initial “ground-zero” theory.

We provide a sketch of an argument showing that recur-
sion and quantification in concert can violate conservativ-
ity.? From Géodel’s Incompleteness Theorem [2], it is known
that a truth predicate over Peano Arithmetic formulas is
not a conservative extension of Peano Arithmetic. However,
with the ability to axiomatize arbitrary quantified predicates
we can define such a predicate as follows. First, we define a
function (prenex phi) that turns a quantified formula phi
over Peano functions to the prenex form; this function op-
erates purely on the syntactic structure of the formula and

2The argument has been adapted by the author from an
example provided by Kaufmann.

can be easily defined in ACL2 as a recursive function. Con-
sider then the following “definition” of true-formula below,
which would be admissible if arbitrary quantified recursive
definitions were allowed.

(defun true-formula-aux (phi sigma)
(cond
((exists-p phi) ;; formula is (E x phi’)
(exists val
(true-formula-aux (gbody phi)
(acons (qvar phi) val sigma))))
((forall-p phi) ;; formula is (A x phi’)
(forall val
(true-formula-aux (qbody phi)
(acons (qvar phi) val sigma))))
(t ;; formula is quantifier-free
(term-value phi sigma))))
(defun true-formula (phi sigma)
(true-formula-aux (prenex phi) sigma))

Here sigma is an association list binding the free variables
of phi to values. The function term-value defines an evalu-
ator of quantifier-free terms composed of the function sym-
bols in phi; such an evaluator is definable for a previously
fixed collection of function symbols. We can now prove by
induction that true-formula holds for every formula that
is provable. Therefore, the formulation of this definition
in Peano Arithmetic is not conservative. Finally, since any
ACL2 theory can be viewed as a first order theory formed by
a conservative extension of Peano arithmetic together with
eo-induction, we conclude that the definition is not conser-
vative with respect to ACL2 theories.

The axiom for true-formula-aux is tail-recursive (apart
from quantifiers) with two recursive branches. Thus restrict-
ing the number of recursive branches to one in extended
tail-recursive equations is critical. Note however, that in
the trivial case where base is a constant, as for true in
Section 1, we can have an arbitrary number of quantified
tail-recursive branches. Furthermore, an arbitrary number
of branches is possible if there is no quantifier (as in case of
iv0) since they can be reduced to one by if-lifting.

5. PRACTICAL BENEFITS

In spite of the restrictive nature of extended tail-recursive
equations, they are useful in some interesting cases. A triv-
ial but entertaining consequence of their admissibility is the
possibility of using the inductive assertions method [1] to
reason about non-deterministic computing systems. In this
method, the user annotates a program by attaching asser-
tions on certain cutpoints, and the goal is to prove that
whenever program control reaches a cutpoint, the corre-
sponding assertions hold. Moore [7] shows how to use sym-
bolic simulation to derive such proofs from an operational
model of the system. An operational model is given by a
function next that can be treated as a state transformation
function: (next s) gives the state of the machine after one
transition from s. Moore’s method involves the definition of
a predicate inv0O with the following equation:

(= (inv0 s) (if (cut s) (assert s) (inv0 (next s))))

Here cut is a predicate recognizing the cutpoints. Attempt-
ing to prove the formula (implies (invO s) (invO0 (next



s))) causes symbolic simulation of the machine from each
cutpoint s that satisfies assert until the next subsequent
cutpoint s’ is reached. However, the method could pre-
viously be used only for deterministic systems, that is, in
which the next state of the machine is uniquely determined
by the current state. A non-deterministic system can transit
from a state s to one of a number of possible next states and
is modeled in ACL2 by defining next as a binary function
such that for a state s and an external input i, (next s
i) returns the corresponding next state. The analogue of
Moore’s predicate for non-deterministic systems is the fol-
lowing, which is extended tail-recursive.

(= (invl s)
(if (cut s) (assert s) (forall i (invl (nmext s i)))))

As with Moore’s approach, the proof of (implies (invl s)
(invl (mext s 1i))) would cause symbolic simulation from
each cutpoint, this time for every possible input sequence.
Note that actually configuring the ACL2 simplifier to per-
form the symbolic simulation might be non-trivial, because
of its limited support in rewriting quantified expressions.
Nevertheless, it is gratifying that there is no logical limi-
tation in applying inductive assertions to non-deterministic
systems. Indeed, exploring the logical issues behind this
applicability provided the key motivation for this work.

Another potential application involves formalizing program-
ming language metatheories. In a posting to the ac12-help
mailing list on March 28, 2006, Swords wanted to use recur-
sion and quantification in order to formalize a certain nor-
malization property of simply-typed A-calculus. A version of
this property turned out to be definable with extended tail-
recursive equations. Swords feels [private communication]
that such equations can be used for formalizing many sim-
ilar properties, although they might be insufficient in some
cases.

6. CONCLUSION

We have identified a class of equations, called extended tail-
recursive equations, which involve recursion and quantifiers
but can nevertheless be axiomatized in ACL2. We have also
discussed some logical impediments to generalizing the class.

It is important to underline the significance of the last re-
mark. Although some interesting predicates can be defined
with extended tail-recursive equations, a majority of oth-
ers cannot be. For instance the semantics of LTL we men-
tioned in Section 1 cannot be represented as an extended
tail-recursive equation. We believe it is important to extend
the expressive power of ACL2 to facilitate the use of recur-
sion and quantification. Recent research by Gordon et al
integrating HOL with ACL2 [3] might provide a long-term
solution; with this integration it could be possible to ax-
iomatize such formulas in the more expressive logic of HOL,
and export their first-order consequences to ACL2. Since
the method is currently is under development, it is not clear
how complex it would be to reason about such formulas via
the integrated environment. In the mean time, we believe
that extended tail-recursive equations provides some facility
for axiomatizing rich quantified formulas in ACL2.

Finally, it may be possible to use a similar approach to in-

tegrate a richer class of formulas with recursion and quan-
tification, by restricting only to well-founded recursions. In
this work we did not impose such restriction. Of course,
even if the recursive calls are well-founded, one cannot allow
arbitrary recursion with quantification in ACL2: note that
in the “definition” of true-formula-aux, the size of the for-
mula structure decreases in each recursive call. Nevertheless
it will be interesting to explore the forms of equations that
can be introduced by quantified well-founded recursions.

7. ACKNOWLEDGEMENTS

J Strother Moore provided the initial impetus for this work
by challenging the author to extend inductive assertions to
work with non-determinstic systems. We also thank Matt
Kaufmann for numerous conversations on conservativity in
ACL2, and John Matthews for helpful discussions. This ma-
terial is based upon work supported by DARPA and the Na-
tional Science Foundation under Grant No. CNS-0429591.

8. REFERENCES

[1] R. Floyd. Assigning Meanings to Programs. In
Mathematical Aspects of Computer Science, Proceedings of
Symposia in Applied Mathematcs, volume XIX, pages
19-32, Providence, Rhode Island, 1967. American
Mathematical Society.

[2] K. Gédel. Uber formal unentscheidbare Sitze der Principia
Mathematica und verwandter Systeme I. Monatshefte fir
Mathematic und Physik, 38:173-198, 1931.

[3] M. J. C. Gordon, W. A. Hunt, Jr., M. Kaufmann, and
J. Reynolds. An Embedding of the ACL2 Logic in HOL. In
P. Manolios and M. Wilding, editors, Proceedings of the 6th
International Workshop on the ACL2 Theorem Prover and
Its Applications (ACL2 2006), Seattle, WA, 2006.

[4] M. Kaufmann and J. S. Moore. ACL2 home page. See URL
http://www.cs.utexas.edu/users/moore/acl2.

[5] M. Kaufmann and J. S. Moore. Structured Theory
Development for a Mechanized Logic. Journal of
Automated Reasoning, 26(2):161-203, 2001.

[6] P. Manolios and J. S. Moore. Partial Functions in ACL2.
Journal of Automated Reasoning, 31(2):107-127, 2003.

[7] J. S. Moore. Inductive Assertions and Operational
Semantics. In D. Geist, editor, Proceedings of the 12th
International Conference on Correct Hardware Design and
Verification Methods, volume 2860 of LNCS, pages
289-303. Springer-Verlag, Oct. 2003.

A. Pnueli. Linear and Branching Structures in the
Semantics and Logics of Reactive Systems. In W. Brauer,
editor, Proceedings of the 12th International Colloguium on
Automata, Languages, and Programming (ICALP 1985),
volume 194 of LNCS, pages 15-32. Springer-Verlag, 1985.

[9] S. Ray and W. A. Hunt, Jr. Deductive Verification of
Pipelined Machines Using First-Order Quantification. In
R. Alur and D. A. Peled, editors, Proceedings of the 16th
International Conference on Computer-Aided Verification
(CAV 2004), volume 3114 of LNCS, pages 31-43, Boston,
MA, July 2004. Springer-Verlag.

[10] S. Ray, J. Matthews, and M. Tuttle. Certifying
Compositional Model Checking Algorithms in ACL2. In
W. A. Hunt, Jr., M. Kaufmann, and J. S. Moore, editors,
4th International Workshop on the ACL2 Theorem Prover
and Its Applications (ACL2 20083), Boulder, CO, July 2003.

[11] S. Ray and J. S. Moore. Proof Styles in Operational
Semantics. In A. J. Hu and A. K. Martin, editors,
Proceedings of the 5th International Conference on Formal
Methods in Computer-Aided Design (FMCAD 2004),
volume 3312 of LNCS, pages 67-81, Austin, TX, Nov. 2004.
Springer-Verlag.

8



