A Generalized Solution for the While Challenge
(Extended Abstract)

Sandip Ray
Department of Computer Sciences
The University of Texas at Austin
Austin, TX 78712. USA

sandip@cs.utexas.edu

In a recent communication to the acl2-help mailing list,
Young provided the following challenge:*

Define an ACL2 function to operationally for-
malize a programming language with constructs
for unbounded while loops.

In particular, Young’s challenge called for the semantics of
the imperative language given by the following grammar.
The language is used in the context of reasoning about in-
formation flow properties [5].

stmt = x:=¢]
skip |
if e then ¢; else ¢ |
while e do ¢ |
C1;C2

Defining a language semantics in ACL2 is tantamount to
introducing a function run such that (run stmt st) returns
the value of the machine state after executing stmt from
state st. The challenge then is to define a function run that
formalizes execution of statements in the above language.
Young’s expected axiom for run was as follows (where op,
argl, arg2, arg3, run-skip, etc. are suitably defined):

(equal
(run stmt st)
(case (op stmt)

(skip (run-skip stmt st))
(assign (run-assignment stmt st))
(if (if (zerop (evaluate (argl stmt) st))

(run (arg3 stmt) st)
(run (arg3 stmt) st)))
(if (zerop (evaluate (argl stmt) st))
st
(run stmt
(run (arg2 stmt) st))))
(sequence (run (arg2 stmt)
(run (argl stmt) st)))
(otherwise st)))

(while

Note that the equation is potentially nonterminating, and
hence cannot be introduced through the definitional prin-
ciple. Furthermore, the equation is reflexive. ACL2 has
a macro called defpun that makes use of encapsulation to

'The email address for the acl2-help mailing list is
acl2-help@lists.cc.utexas.edu. Young’s challenge was
submitted on June 22, 2007.

introduce certain nonterminating definitions [3]; however,
defpun cannot handle reflexive definitional equations.
Young’s challenge has been answered (in slightly different
forms) independently by Cowles and Greve, whose solutions
are documented in a companion paper [1]. The general so-
lution requires the additional assumption that there is some
“bottom value” such that run is strict in that value; Cowles’
solution used the bottom value of NIL.2 However, discussions
associated with the problem led to the following two some-
what more general challenges.?

1. Implement a macro (perhaps extending defpun) for
defining operational semantics for languages contain-
ing unbounded while loops.

2. Admit run with the following defining equation

(defthm run-satisfies-equation

(equal

(run x st)

(cond ((equal st (btm)) (btm))
((testl x st) (finish x st))
((test2 x st)
(run (dstl x st) (stp x st)))
(t (let ((st2 (run (dstl x st)

(stp x st))))
(run (dst2 x st st2) st2)))))

where btm testl, test2, dstl, and dst2 are encapsu-
lated functions with the following constraints:

(implies (not (equal st (btm)))
(not (equal (finish x st) (btm))))

It is easy to see that Young’s required equation, with the
additional restriction that run is strict in (btm), follows from
this equation; Cowles [private communication] has shown
this fact in ACL2 using functional instantiation.

In this talk, we present our progress on these two generalized
challenges. In summary, we have successfully solved the

2Greve’s solution did not assume a bottom value, but proved
that his definition of run satisfies the equation only under
the assumption that the while loop terminates.

3Kaufmann issued the first challenge in the ac12-help mail-
ing list on June 23, 2007, in course of initial discussions on
approaches to attack Young’s problem. His second chal-
lenge, issued to some participants in the discussion thread
on July 25, 2007, is a simpler version of the generalized sec-
ond challenge shown here. Cowles refined this challenge a
bit more, bringing it to its current form.

second challenge, and made progress towards solving the
first. We now provide some details on our approach.

We start with our answer to the second challenge. The key
intuitions are taken from Cowles’ solution to Young’s prob-
lem; our only contribution is to formalize his arguments in
an abstract context.

The key idea is to define a function run-clk, which is like
run but has an additional “time limit” parameter clk. The
function is defined below and is easily admissible in ACL2.

(defun run-clk (x st clk)
(declare (xargs :measure (nfix clk)))
(cond ((zp clk) (btm))
((equal st (btm)) st)
((testl x st) (finish x st))
((test2 x st)
(run-clk (dstl x st)

(stp x st)
(1- c1k)))
(t (let ((st2 (run-clk (dstl x st)
(stp x st)
(1- c1k))))
(if (equal st2 (btm))
(btm)
(run-clk (dst2 x st st2)
st2

(1- c1k))IIII)

Then run is defined by “eliminating” clk via quantification
as follows. We provide run-clk a large enough clk if such
a clk exists; otherwise run returns (btm).

(defun-sk exists-enough (x st)
(exists clk
(and (natp clk)
(not (equal (run-clk x st clk)
(btm))))))

(defun run (x st)
(if (exists-enough x st)
(run-clk x st (exists-enough-witness x st))

(btm)))

The key technical lemma is the following.

(defthm run-clk-divergence
(implies (and (not (equal (run-clk x st ci)
(btm)))
(natp c1)
(natp c2)
(<= c1 ¢c2))
(equal (run-clk x st c2)
(run-clk x st c1))))

That is, if there is some c1 such that (run-clk x st cl)
is not (btm) then the value of (run-clk x st cl) is un-
affected by replacing c1 with c2 (where c2 is at least as
large as c1). It follows that if such a cl exists (that is,
if (exists-enough x st) holds) then (run-clk x st c1)
must be equal to (run-clk x st (exists-enough x st)).
This allows us to connect (run x st) with (run-clk x st
clk) for any value of clk larger than the Skolem witness
for exist-enough. The proof of run-satisfies-equation
is completed by a case-split for the different cases in the RHS
(namely, (equal st (btm)), (and (not (equal st (btm))

(testl x st))), etc.) and performing the following steps
for each case involved in the split:

e Show that the RHS does not return (btm) if and only
if the LHS does not return (btm).

e Use run-clk-divergence to show that the expansion
of the LHS matches the RHS.

We now turn to our approach to the first generalized chal-
lenge. Progress on this front is in its early stages. In particu-
lar, we are developing two macros named defreflexive and
definterpreter. The defreflexive macro takes a function
symbol (that is, a concrete version of run above) and a body
written in a certain stylized form; it produces a :definition
rule stating that the function satisfies the equation. Under
the hood, it performs functional instantiation of the theorem
run-satisfies-equation above. Finally, definterpreter
customizes defreflexive to the particular application of
programming languages with while loops.

As of this writing, defreflexive can introduce function
symbols with arity 2 or less. This is sufficient to imple-
ment definterpreter. However, Cowles [private commu-
nication] has used functional instantiation of the theorem
run-satisfies-equation in other ways, for instance to in-
troduce a version of the Ackermann’s function, McCarthy’s
91 function, and functions with defining equations that in-
volve nests of reflexive recursions of depth 3 or more; the
defreflexive macro does not handle these applications but
we hope to extend the macro to handle them (and arbi-
trary arity of functions) in the near future. Finally, we be-
lieve that by using ACL2’s recent mbe feature [2] we can
make functions introduced via defreflexive (and hence,
definterpreter) executable (though, obviously, not termi-
nating for all inputs), in the same manner in which the au-
thor has previously made defpun executable [4]. This work
remains to be done.

1. REFERENCES

[1] J. Cowles, D. A. Greve, and W. D. Young. The While
Language Challenge: First Progress. In J. Cowles,
R. Gamboa, and J. Sawada, editors, Proceedings of the
Tth International Workshop on the ACL2 Theorem
Prover and Its Applications (ACL2 2007), ACM
International Conference Series, Austin, TX, Nov.
2007. ACM.

[2] D. A. Greve, M. Kaufmann, , P. Manolios, J. S. Moore,
S. Ray, J. L. Ruiz-Reina, R. Sumners, D. Vroon, and
M. Wilding. Efficient Execution in an Automated
Reasoning Environment. Journal of Functional
Programming, To Appear.

[3] P. Manolios and J. S. Moore. Partial Functions in
ACL2. Journal of Automated Reasoning, 31(2):107-127,
2003.

[4] S. Ray. Attaching Efficient Executability to Partial
Functions in ACL2. In M. Kaufmann and J. S. Moore,
editors, 5th International Workshop on the ACL2
Theorem Prover and Its Applications (ACL2 2004),
Austin, TX, Nov. 2004.

[5] G. Smith. Principles of Secure Information Flow
Analysis. In M. Christodorescu, , S. Jha, D. Maughan,
D. Song, and C. Wang, editors, Malware Detection,
pages 297-307. Springer-Verlag, 2007.

