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Abstract—A critical component of System-on-Chip (SoC) de-
sign entails specification of security requirements for trustwor-
thy system operation. In this paper, we address this problem
through the design of a new Security Specification Language
(SSEL) to standardize the definition and implementation of SoC
security requirements. We demonstrate that a viable path to
the development of such a language is to build it on top of
an existing programming language, extending a subset of the
underlying language constructs and introducing new security-
specific constructs as APIs. SSEL realizes this idea by building
on top of a subset of C. We show how SSEL constructs can
be used to develop executable specifications of a diverse set of
usecases in modern SoC platforms. We show the application of
SSEL in designing specifications for unlocking Logic Locked
(LL)IPs, Authentication, and Secure Boot.

I. INTRODUCTION

Modern System-on-Chip (SoC) designs include a variety of
security-sensitive events, e.g., distribution and disbursement of
a variety of cryptographic keys, locking and unlocking IPs,
authenticating inter-IP communications, etc. It is obviously
crucial to ensure that such activities are implemented as in-
tended by the security architects. Unfortunately, infrastructures
for SoC security specification are lacking. In current industrial
practice, SoC security specifications are defined in an ad hoc
manner by different players at different stages in the SoC
design life cycle, e.g., it is common for security architects
to provide high-level security assessment and architecture
which is refined and modified by system integrators during
various stages of design and implementation. To exacerbate the
situation, security specifications in practice are still primarily
captured in ambiguous English, together with informal charts,
diagrams, and tables, and many requirements remain undoc-
umented [1]. Unsurprisingly, “innocent” optimizations made
with an inaccurate mental picture can result in subtle vulner-
abilities that can compromise the entire system. Furthermore,
if a vulnerability is detected late, e.g., at post-silicon or in-
field stages, then it can be expensive to fix and often results
in brittle patches and point fixes often with cascading security
effects.

In this paper, we develop a language, SSEL, for defining
security specifications of modern SoC designs. The key idea
of SSEL is to provide constructs for intuitive definition of
inter-IP communications and usage scenarios targeting secu-
rity protection against hardware attacks e.g., logic locking,
authentication, IP watermarking, etc. A key target of SSEL

is to enable specifications providing protection mechanisms in
SoC designs against a variety of supply chain adversaries and
enabling systematic comprehension of security implications of
different system-level communications. We demonstrate SSEL
in the specification of several illustrative case studies inspired
from the realistic SoC designs in the open-source community.

There has been recent work on designing a variety of
specification languages to capture security requirements for
microarchitectures and SoCs [2], [3], [4]. However, there has
been little adoption of formal security specification languages
in current industrial practice. A key reason for the lack
of adoption of formal specification frameworks is the need
for security architects to (1) learn unfamiliar specification
paradigms and formalisms, and (2) define system behaviors
that account for low-level implementation details [5]. SSEL
addresses this problem by taking a fundamentally different
approach to the specification paradigm. Most related specifi-
cation languages target a succinct formalism for the language
semantics typically based on some flavor of Temporal Logic.1

The focus of SSEL, on the other hand, is usability by
architects who may not have previous expertise in Temporal
Logics. The key insight is that architects, albeit unfamiliar with
formal logic and program semantics are indeed familiar with
executable specifications and programming languages, e.g.,
many architectural performance models use SystemC-TLM.
Consequently, a language that extends a subset of a known
programming language with specific constructs for intuitively
capturing security-specific events is a viable approach for
developing executable security specifications.

Fig. 1 represents the SoC lifecycle along with various
security assessments during each life cycle and how we
plan to integrate SSEL in the modern SoC design flow. In
the current state of development, SSEL supports generating
specifications using its formalized grammar. SSEL exploits
the above insight as follows. Rather than developing a new
formal grammar from scratch, the language is constructed by
developing security constructs on top of a small but usable
subset of the C language. An architect can simply treat the
additional SSEL constructs as Security APIs. As we show in
our case studies, an architect writing a specification in SSEL

1Since many security specifications focus on information flow, security
languages generally support some form of hyperproperties that involve mul-
tiple copies of the state machines. However, the language semantics are still
primarily influenced by Temporal Logics.



Figure 1. SoC System Life Cycle with Security Assessment using SSEL

Figure 2. An illustrative SoC platform with architectural support for state-
of-the-art security features

can essentially transcribe the security events from the diagrams
and flows that they normally develop in current practice. In
addition to providing a familiar environment for developing
scenarios, the advantage of this approach is extensibility: in
order to support a new security event, we simply need to
develop an “implementation” of the event in C and provide the
interface to the implementation as API. Finally, this approach
requires no new tools to synthesis paradigms to develop
an executable specification or exploration: one can simply
leverage the existing C-based tools.

II. BACKGROUND: AN SOC DESIGN WITH ILLUSTRATIVE
SECURITY COUNTERMEASURES

Fig. 2 shows an illustrative SoC design with some state-of-
the-art security countermeasures for supply chain adversaries.
While this specific model is influenced by (and a simplified,
sanitized version of) realistic SoCs, the basic features are avail-
able in many commercial SoC designs as well. In particular,
a key aspect of the SoC is the use of a centralized Security

Engine that controls the security aspects of the whole system,
which communicates with the IPs in the SoC through a variety
of Security Wrappers. We discuss these features briefly here,
to provide the flavor of security events that must be captured
by a security specification language.

Security Engine: The Security Engine (SE) is responsible
for the security events in the SoC. From an integration
perspective, the SE is simply a subsystem that coordinates
through a communication fabric. Internally, the SE includes a
microcontroller running firmware which enforces the computa-
tion and communication required for the security coordination.
The functionality implemented in the microcontroller depend
on the security policies that need to be enforced in the SoC
[6]. For the purpose of this paper, we assume that the security
policies include specific boot policies that require IPs procured
from an untrusted source to be unlocked and authenticated
before they become functional.

Security Wrapper: Distributed security wrappers are de-
ployed at IPs to enable the trusted microcontroller to perform
security specific operations via assertion of security critical
signals. The security wrappers are typically augmented im-
plementation of IEEE P1500 test wrappers and standardized
debug wrappers (e.g., ARM®Coresight™) which come stan-
dard with most modern IPs to facilitate SoC debugging.

Physically Unclonable Function (PUF) based Authentica-
tion: The PUFs are implemented as distributed units in the
security wrappers at IPs and the response extracted from the
distributed PUF units are compared with golden reference
signature to verify the authenticity of the IP. The typical au-
thentication flow includes initiating the authentication process
by sending challenge vectors to IPs, receiving the responses,
comparing obtained CRPs with golden values, and updating
IP status after authentication successes and failures, etc.

Logic Locking (LL): Additional hardware is inserted in the
form of finite state machines (FSMs) or key gates to obfuscate
the original functionality of the design. A design is “unlocked”
(i.e., operates normally) only after applying appropriate keys
to the I/O ports of IPs. A common use cases of unlocking is
system start-up as part of secure boot.

III. OVERVIEW OF SSEL

A. The C Foundation and Extensions

In SSEL, we used a set of existing constructs from C and
loops, functions, structures, and data types are used to define
the constructs. We augmented SSEL with new data types to
account for the binary and hexadecimal nature of the data
transferred during on-chip transactions. Since SSEL is de-
signed to provide abstraction of system-level communication,
the technical details of various bus protocol implementations
are encapsulated into APIs “baked” into the language abstrac-
tion. All inter-IP interactions are oblivious to existing bus
implementations to enable reusability of SSEL specifications
across platforms and interconnect protocols.

Using C as the baseline language for SSEL has it’s own
sets of limitations. Though it is convenient to bridge the gap
between RTL designs and firmware code using C compared



Table I
DATA TYPES IN SSEL

Type Storage Size Value Range
bool 1-bit 0 (false) or 1 (true)
char 1-byte -128 to 127
int 4-bytes -2,147,483,648 to 2,147,483,647
long 8-bytes -9223372036854775808 to 9223372036854775807
float 4-bytes 3.4E +/- 38 (7 digits)

to other high-level languages, there are some essential fea-
tures required in security specification that cannot be directly
supported in C. One main feature we added in SSEL is the
usage of a function within a function for a set of built-in
functions. Table 1 illustrates the primary data types supported
by SSEL. We updated certain aspects of functions, structures,
and data types in SSEL. Furthermore, we created several built-
in functions for the ease of specifying generic use cases in SoC
models, e.g., SSEL supports two new data types nodes and
subnodes.

B. SSEL Constructs

In addition to the existing C constructs, we developed a
set of new constructs to facilitate inter IP communication
for security enforcement in the SoC. These constructs are
tailored to succinctly express IP-to-IP transactions and exploit
the aforementioned C features to execute diverse security func-
tions. Majority of the use cases requirements of standardized
security measures can be specified via our constructs, some of
which are enlisted in Table II.

Remark 1: The use of an off-the-shelf programming lan-
guage as a foundation for SSEL means that it is relatively
straightforward to develop a “compiler” that synthesizes an
SoC security specification written in SSEL into executable
code. Augmenting SSEL with a new construct simply entails
providing an implementation template (in C) of new SSEL
constructs, and integrate that implementation into the compiler.
This enables us to re-purpose the compiler tool-chain already
available for C to create executable code for SSEL. One up-
shot of this flow is a straightforward path to obtain executable
specification of SoC security. These specifications can be used
as golden reference models for the security implementation.

IV. SSEL CASE STUDIES

In this section, we demonstrate the usefulness of SSEL
constructs to define representative security use cases. The case
studies below are motivated by the SoC discussed in Section
II. However, the SSEL specifications themselves are obviously
independent of the SoC target. Note that although each case
study can be implemented compactly with SSEL they are not
trivial; indeed, RTL implementation of these features even on
a simplistic SoC took several person months.

A. Unlocking A Logic Locked IP

Fig. 5 illustrates the message flow operations of unlocking
a logic locked IP. Here, we describe the use case using the
constructs in SSEL.

Figure 3. Node and Subnode Definition

Figure 4. Message Flow using SSEL Constructs

• We identify the nodes in the use case, viz., the Security
Engine and the IP security wrapper. The metadata for
nodes for unlocking are the appropriate keys, which are
encapsulated into subnodes. We convert the subnode into
a message that can be only accessed by the Security
Engine as the owner. Fig. 3 shows the relevant SSEL
constructs.

• Note that the send function creates a copy of the message:
the ownership of the original message belongs to the node
that created the message. Fig. 4 shows how the message
flow of keys and metadata from source to destination are
achieved using SSEL constructs.

• The ownership of the copied message gets transferred
from the source to destination node through the receive
function. Once the unlocking key is received as the
message data, it is stored in a stack of requests using



Table II
MAJOR SSEL CONSTRUCTS

Construct Description

Node The address of the IP is defined within the Node(binary variable) and the IP Name is used to identify the node. A node can
be locked or unlocked, but an unlocked IP can only be accessed by the trusted master IP.

SubNode Subnode contains the data that an IP needs to transfer. The data stored in the subnode cannot be accessed directly. It can
only be accessed via a message construct.

Message Message maps the data from the Subnode to the address of the Node. Nodes with correct address can access the data in the
message as the owner. A message can be created using the create function.

Target Target node helps to identify the sender and receiver. It is used in tandem with check function to see if the message data is
being sent to the right address.

Check Check helps to verify the addresses while facilitating the transfer of message data. It takes two nodes and a target node as
input and checks if the address in these nodes are correct or not.

Create Create is used to create messages using a node and a subnode. The names of the message varies according to the parameter
names.

Send Send is used to send messages from one IP to another. The result of the check function helps verify the send function and
the validity of the IPs involved in the transfer. A copy of it is created after checking the address. Transfer address is equated
to the address of the receiver IP after appropriate checks.

Store Store saves message variables in a stack until its called upon. It uses a top function that points to the last data element in
the stack. Whenever the stack is updated, the top variable is updated.

Remove Remove is used to delete message variables from the stack once they are executed. The top variable is decremented with
remove function but it is ensured that the stack is not empty.

Receive Receive takes the output of the send function and checks if the address is valid. When the condition is true, the IP address
of the message is changed to that of the receiver.

Receive Boot This variant of Receive used to send data during boot phase. The main difference in logic here is that it ignores the unlock
variable in the node.

Unlock Unlock is used to unlock an IP once the correct key is provided.

Init Val This construct has the definition of all memory-mapped registers, their offset, and their initialization values at reset.

Eth Frame The Ethernet frame construct enables packet formation in accordance with the IEEE 802.3 standard to send asset provisioning
requests to the AMI.

the store function and consequently, the destination IP is
unlocked using the unlock function.

B. Case Study on PUF-based Authentication

PUF-based authentication uses a challenge-response
paradigm to authenticate an IP. Although functionally
the mechanism is very different from unlocking, from a
perspective of system-level coordination they are very similar.
Correspondingly we can use the same definition “template”
as follows. We use the same node and subnode definitions
as unlocking locked IPs including the steps of initial address
check. The critical component of the authentication is the
communication and manipulation of the PUF response. Once
the PUF challenge from the Security Engine reaches the
destination IP, it follows the subsequent steps i.e., defining
the new target nodes, creating messages, and using the send
and receive functions to complete transactions.

C. Secure Boot Flow

In the third case study, we consider a more elaborate
feature, secure boot. The secure boot we show below has
three phases. The specific activities are depicted in Fig. 7.
This case study also showcases an important requirement
for security specifications: the ability to compose lower-level

flows into more complex scenarios, e.g., secure boot uses
logic locking and authentication as components. We note that
composibility is a non-trivial feature for formal languages in
general; however, in our case, we get it for free as a by-product
of function composition in standard procedural programming.

Initialization Phase: Here, all associated peripherals with
their initial state at power on. First, we identify the nodes to
be utilized. The memory map registers use a SSEL construct
called init val, which defines the registers, the corresponding
offset of the register, and their initialization values at reset.

Asset Provisioning Phase: This stage involves the Secu-
rity Engine provisioning assets from the cloud. These assets
include the golden vectors for PUF authentication and logic
locking keys. The nodes of interest here are the Ethernet
controller of the Security Engine and the Asset Management
Infrastructure(AMI). SSEL has a dedicated construct for cre-
ating packets according to the Ethernet IEEE 802.3 frame,
which is sent to the AMI to provision assets. The Ethernet
packet has standard fields like Preamble/SFD, Destination and
source address, Length, Data, and CRC. The Destination and
Source Address is the AMI Cloud and the Security Engine
Ethernet address. The data in the frame consists of the unique
identifiers for IPs for which the asset is fetched. Based on the
IDs, the AMI provisions assets to the Security Engine.



Figure 5. Message flow diagram of Unlocking a locked IP

Security Operations Phase: Depending on the trust level of
the vendor and manufacturer, each IP may be configured with
a Security Wrapper to perform either authentication or logic
locking, both, or neither. Based on the configuration, the Secu-
rity Engine will orchestrate the specified security operations,
including PUF-based authentication and IP unlocking. Once
the sequence of operations is completed, the SoC can initiate
normal operation.

V. RELATED WORK

Design-for-Security (DFS) is commonly adopted in current
industrial and academic practices to develop defense mecha-
nisms against various attack surfaces. Prior research on DFS
and SoC security architectures demonstrates methodologies for
systematic implementation of security specifications [7]. The
architectural approaches to cope with the challenges posed by
heterogeneity and complexity of modern SoC designs include
integration of dedicated infrastructure IPs and augmentation
of standardized on-chip components such as test and debug
wrappers for systematic implementation of security specifica-
tions [8]. However, the potency of such security architectures
significantly relies on efficient definition of security specifi-
cations and standardized communication between the security
components in the SoC design without interrupting it’s regular
operation. A formal, analyzable language such as SSEL can
address such limitations and streamline the process of security
feature integration via disciplined specification.

Figure 6. Message flow diagram of Authentication via integrated PUF

There has been significant research on methodologies for
assuring secure RTL transactions and verification of SoC spec-
ification [9], [10], [11], [3], [4]. Some of these works include
augmentation of existing languages with tailored expressions
to define security use cases. Core Test Language (CTL)
breaks event level transactions into digestible macros[10] to
facilitate the implementation of security use cases. However,
the application of CTL is design specific and dependent on
certain test patterns. A methodology to formalize of language
for SoC security specification is shown in [9]. The technical
complexity of the approach, however, makes it difficult to
execute. It is critical that the process of security specification
definition is in complete compliance with original design flow
for the ease of implementation [11], [12]. The challenges
of modeling and verifying the behavior of heterogeneous
SoCs have been alleviated in [3], [4] by formalizing the
notion of Instruction Level Abstraction (ILA). These works
provide a modular and uniform abstraction methodology to
model the behavior of diverse of hardware accelerators and
general purpose processors. The behavioral specifications of
the SoC components is verified via equivalence checking. An
approach to define the security features as hardware level
policies and translating them to actionable design constraints
is demonstrated in [6], [13]. These works develop security
architectures for systematic implementation and verification of
SoC security policies. Our work on SSEL is compliant with



Figure 7. Secure Boot Flow

such systematic design flow and it works in tandem with the
standardized security architectures.

VI. CONCLUSION

We develop a formal, analyzable language, namely SSEL,
to define SoC security specifications in a systematic and
standardized way. SSEL can be used to define a diverse set of
security use cases in present-day SoC designs. The language
is developed with constructs of an off-the-shelf programming
language i.e., C, to facilitate the implementation process and
reduce design complexity. SSEL addresses the limitations of
existing approaches of security specification by providing a
generic and scalable methodology that is compatible with
state-of-the-art security architectures. The language features
of SSEL were carefully thought out to enable succinct but
intuitive specification of security features. Moreover, SSEL
is oblivious to the architectural differences of SoC designs
and applicable to the specification of a variety of security
requirements targeting diverse SoC platforms. We demonstrate
SSEL in the specification of two standard security features i.e.,
unlocking and authenticating a logic locked IP, as well as an
SoC-level case study of secure boot.

The use of a subset of a full-featured programming language
rather than a grammar defined from scratch as the formal
basis for security specification language induces interesting
challenges. We explained how SSEL addresses some of these
challenges. An interesting feature of SSEL is extensibility.
The programming language baseline enables the language to
be easily augmented with additional constructs to support
novel security use cases and concurrent design behaviors.

In future work, we plan to develop a streamlined CAD
framework with tool chain to synthesize firmware binaries
directly from SSEL specifications. Furthermore, SSEL in
current incarnation primarily supports security policies involv-
ing communications among IPs in SoC; we will consider
extensions to account for other security policies, including

access control and information flow. We will also explore
design verification solutions based on SSEL.
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