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Abstract— Field Programmable Gate Arrays (FPGAs) are
being increasingly deployed in diverse applications including the
emerging Internet of Things (IoT), biomedical, and automotive
systems. However, security of the FPGA configuration file (i.e.
bitstream), especially during in-field reconfiguration, as well as
effective safeguards against unauthorized tampering and piracy
during operation, are notably lacking. The current practice
of bitstreram encryption is only available in high-end FPGAs,
incurs unacceptably high overhead for area/energy-constrained
devices, and is susceptible to side channel attacks. In this paper,
we present a fundamentally different and novel approach to
FPGA security that can protect against all major attacks on
FPGA, namely, unauthorized in-field reprogramming, piracy of
FPGA intellectual property (IP) blocks, and targeted malicious
modification of the bitstream. Our approach employs the security
through diversity principle to FPGA, which is often used in the
software domain. We make each device architecturally different
from the others using both physical (static) and logical (time-
varying) configuration keys, ensuring that attackers cannot use a
priori knowledge about one device to mount an attack on another.
It therefore mitigates the economic motivation for attackers
to reverse engineering the bitstream and IP. The approach
is compatible with modern remote upgrade techniques, and
requires only small modifications to existing FPGA tool flows,
making it an attractive addition to the FPGA security suite. OQur
experimental results show that the proposed approach achieves
provably high security against tampering and piracy with worst-
case 14% latency overhead and 13% area overhead.

I. INTRODUCTION

Recent years have seen a rapid proliferation in the use of
Field Programmable Gate Arrays (FPGAs) in diverse domains,
including automotive, defense, networking, health care, and
consumer electronics. For many devices, a key requirement
is the need for in-field hardware reconfigurability to adapt
to changing requirements in functionality, energy-efficiency,
and security. FPGAs have emerged as a popular electronic
component for addressing this reconfigurability demand [1],
as they provide high flexibility compared to custom ASICs,
while entailing significantly higher energy-efficiency and per-
formance than designs based on firmware/software running
in processors. FPGAs often provide significant benefits in
real-time performance, making them attractive as hardware
accelerators. Furthermore, FPGA-based designs are known to
be more secure than both ASIC and processor against supply-
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chain attacks, since design details are not exposed to untrusted
foundries or design houses.

However, the FPGA configuration file, also called the
bitstream, is susceptible to a variety of attacks, which can
potentially lead to unauthorized reprogramming, reverse-
engineering, and/or piracy of the intellectual property (IP).
Modern high-end FPGA devices often include on-board de-
cryption hardware, allowing for some measure of security;
however, encrypted bitstreams are generally transmitted along
with the decryption key, which creates a significant vul-
nerability. Furthermore, even dedicated decryption hardware
can incur significant hardware overhead for area and energy-
constrained systems, e.g. Internet-of-Things (IoT) edge de-
vices. Mathematically, encryption algorithms are known to be
highly secure against brute-force attacks. However, in many
cases, attackers can have physical access, and most on-board
encryption techniques are susceptible to side-channel attacks,
e.g. by key extraction through power profile signatures [1]—[3].

Unless additional countermeasures are in place, an adver-
sary can convert the bitstream to a netlist [4], enabling targeted
malicious modifications (e.g. Trojan insertion) as well as IP
piracy. The conversion step may not be necessary for Trojan
insertion; techniques such as Unused Resource Utilization [5],
which inserts Trojans in empty spaces in the configuration file,
and Mapping Rule Extraction [6], a type of known design
attack, can be mounted on a bitstream. Alternatively, if the
hardware itself is cloned [7], a pirated bitstream could be used
with a counterfeit hardware.

Such attacks are made possible by the fact that all FPGAs
of a given family have physically identical architectures. In
other words, the decrypted bitstream taken from one specific
product can just as easily be mapped as a blackbox to
another (identical) product. Similarly, a maliciously modified
bitstream that is successfully deployed on one system can be
mapped to another. This is analogous to a computer virus
(the maliciously-modified bitstream) which infects a particular
version of an operating system (the FPGA), and can propagate
to other computers with the same OS (FPGA) because program
execution (the architecture) is identical. For products which
are intended to remain in the field for long time (10-30 years),
such as automotive systems, an attacker could feasibly modify
the configuration of a safety-critical FPGA, and deploy this to
other vehicles of the same year, make, and model. Therefore,
though encryption offers a security layer, when used alone, it
is not sufficient to protect devices with long in-field lifetime,
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Overview of the time-varying FPGA Architecture, from left to right: a two part (logical and physical) key is used to perform a device-specific

obfuscation transform. The secure bitstream is mapped to appropriate FPGA. Resources are augmented with logic which implements the inverse transform.
This ensures that bitstreams mapped to unauthorized devices will be nonfunctional. Because the logical key is time-varying, the architecture is mutable and

thus prevents known design attacks.

TABLE I
PROPERTIES AND QUALITATIVE COMPARISON OF PHYSICAL AND LOGICAL KEYS

Key Type Time Var. Storage Area Ovhd. In-field Upgrades Known Design Destructive RE
Physical (P) No Fuses Low Not Secure Weak Strong
Logical (L) Yes Runtime Mod Secure Strong ‘Weak
Combined Yes Mixed High Secure Strong Strong

especially those with network connectivity. TABLE 11

In this paper, we propose MUTARCH, a novel architecture
with associated CAD technology for FPGA security which
provides provably robust protection against in-field bitstream
reprogramming and IP piracy. Figure 1 illustrates the overall
approach. MUTARCH permits wireless reconfiguration that
does not rely on encryption, though it can still be used in con-
junction as an extra layer of defense when available. The pro-
posed approach presents a fundamental departure from existing
protection approaches that rely on cryptographic techniques.
It is rooted in the idea of “security through diversity”, where
each FPGA device will have a unique architecture, despite
being manufactured with existing processes and techniques,
that can additionally mutate over time. This supplies robust
protection against brute force attack, as well as security against
known design attacks through a moving target defense. This
also results in a unique bitstream-to-device mapping which has
several major benefits: (1) device identification is an intrinsic
requirement, which ensures that only valid devices receive
upgrades; (2) upgrades sent to unauthorized or counterfeit de-
vices will not function because the bitstream cannot be mapped
correctly, mitigating an attacker’s economic motivation for
device cloning, and preventing reverse engineering of valuable
IP blocks; and (3) maliciously modified bitstreams cannot be
mapped to another device, so that breaking one device does not
put others at risk. It is distinct from existing logic encryption
or hardware metering techniques [8] because: (1) it applies to
FPGA bitstreams rather than an ASIC design; (2) it allows
changing the architecture over time; (3) it is integrated into
the FPGA’s reconfigurable fabric and the application mapping
tool flow; and (4) it does not require any expensive on-chip

KEY ALLOCATION FOR VARIOUS FPGA RESOURCES

Arch. Level Configuration Pchgrfg?l Ié?)ilggl
Output Inversion No Yes
LUT Input Reordering Yes Yes
LUT Content Inversion No Yes
Switch Box Config. Bits Yes Yes
Mux Selection Bits No Yes

resource, e.g. support for public key cryptography.

In particular, the paper makes the following major con-
tributions: (1) it investigates the concept of mutable FPGA
architectural fabric for the purposes of device and IP security,
including efficient hardware modifications to enable unique
and time-variant mappings, as well as the communication
protocol for remote in-field upgrades; (2) it presents a detailed
security analysis for the proposed approach, considering all
possible attack models; and (3) it demonstrates the viability
of this approach using a complete CAD framework that we
have developed based on a widely-used open-source FPGA
mapping tool called VTR [9] and evaluates bitstream security
as well as overhead for a set of common benchmark circuits.

II. FPGA HARDWARE SECURITY

In this section, we describe the proposed mutable FPGA
architecture in details, including the static and time-variant
architecture configuration layers. Next we present the secure
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FPGA mapping tool, which guarantees functional correctness
when mapping a design.

A. Mutable FPGA Architecture

The security of the MUTARCH architecture arises from
two separate “layers” — one physical, and the other logical —
with one configuration key for each layer. Qualitatively, these
keys differ in terms of time variance, storage, overhead, and
resilience to various attacks, as shown in Table I. Together,
these keys can also be considered as the FPGAs unique
architectural configuration (Fig. 1), because they are used
as input to the secure bitstream transform process. Hence,
prior to upgrading, the device must be identified to ensure
that the correct bitstream is sent to a system. The actual
bitstream transformation can therefore occur towards the back-
end of a vendor’s tool flow (e.g. after place & route, but
before bitstream generation), reducing overall compilation
time. Because of the unique bitstream-to-device association,
device authentication is necessary for the process. The design
flow for MUTARCH is illustrated in Fig. 2.

A typical mapping function F (S (K, B),I (K, B)) oper-
ates on disjoint subsets of the key K and bitstream B to
modify the bitstream in such a way that, when mapped to
the target FPGA, the internal logic implements an appropriate
inverse transform, resulting in a functionally correct mapping.
This is appropriate for modern FPGAs, in which bitstreams
are generated such that they implement the desired function-
ality for a given device architecture. However, rather than
a bitstream functioning on all devices of a given family, it
will only work on one specific device. Therefore, it creates a
unique bitstream-to-device association to prevent piracy of the
IP mapped to the FPGA.

Given the highly flexible nature of FPGAs, there are many
internal components which can be subject to physical con-
figuration that, when changed from device to device, would
represent a unique device architecture. A subset of these com-
ponents is listed in Table II. It gives a designer the flexibility
to balance overhead with the required level of security by
implementing changes in as few or as many separate structures
as needed. Additional related details are given in the case study
(Section I'V. Note that the physical key should not be allocated
to the output inversion or the multiplexer select lines, which
will induce static change to a bitstream and therefore, can be
exploited by an attacker to gain knowledge of the architecture.
Conversely, the logical key can be applied to any of the listed
resources because it changes each reprogram cycle.

1) Physical Layer: The first of two security layers is
based on physical architectural modifications to the underlying
FPGA fabric. This layer is comprised of a network of fuses
judiciously placed on different configurable components and
programmed after fabrication using techniques commonly ap-
plied for defect and fault tolerance. This programming should
be performed by the manufacturer and not at the fabrication
facility, rendering it less susceptible to supply chain attacks. In
addition, because each FPGA must eventually be programmed
with its vendor’s specific toolset, the physical modification
prevents the fabrication facility from overproduction or cloning
attacks at foundry.
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Fig. 2. Overall design flow for MUTARCH: (a) device identification enables
the system designer to obtain device configuration keys; (b) the unique
bitstream for a specific device is used in the upgrade process.

As a concrete example of the physical security layer,
consider the inputs to a given lookup table (LUT). Inputs
can come from other LUTSs in the design, and both the value
of the input, as well as their order, is crucial to proper
functionality. By inserting a switch network whose inputs can
be programmed by a fuse, the order of inputs to a given
LUT can be permanently modified (Fig. 1, right). This must
be factored in during bitstream generation, so that proper
functionality is preserved.

2) Logical Layer: The second security layer is based on in-
field architectural modifications rather than physical changes.
This enables the underlying FPGA fabric to effectively change
with time, making it a mutable during its life-time. This
property of time-variance is essential to security against known
design attacks. This layer is realized through the run-time
configuration of permutation and inversion networks which
modify the functions mapped to the FPGA (e.g. the lookup
table contents) and how the LUTs are connected together.
This layer takes as input a subset of the bitstream, as well
as a key that is generated internally using, for example,
a cryptographically secure pseudorandom number generator
(CSPRNG) such as PUFKY [10]. PUFKY is attractive be-
cause it leverages Physical Unclonable Functions (PUFs) for
challenge/response-based seeding of the CSPRNG, which fits
well with the desired properties for a remotely reconfigurable
and upgradeable system (i.e. enables device identification
through unique signatures).

Just like in the physical layer, the logical network requires
that the bitstream be modified during the vendor tool flow,
applying the transform to various structures, such as the LUT
content, connection and switch boxes, and other supported
FPGA resources. Because known design attacks require a large
number of mappings of designs to a device, changing the
logical key during each reprogramming cycle presents a robust
moving target defense.

B. Secure FPGA Mapper

To evaluate MUTARCH comprehensively, we have imple-
mented a complete secure FPGA mapping tool based on
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VTR [9], a popular academic tool for FPGA architecture
research. An architecture description file implementing a vari-
able number of 4-input LUTs is used for mapping a series
of benchmarks. The VTR tool takes as input a file in Verilog
HDL, parses and decomposes the circuit into appropriately
sized LUTs (as defined by the architecture description file),
and then with the Versatile Place and Route (VPR) tool [9],
performs packing, placement, and routing.

We modified VPR as shown in Fig. 3 to perform the function
described in the Algorithm 1. This function takes as input a
design, a pre-determined physical key, and the seed for the
logical key. The number of inputs (num_inputs) and the
original truth table (tt) are calculated. Next, a number of
bits equal to the LUT size are obtained from the CSPRNG,
after which the ¢t undergoes addition with the key modulo
2, followed by a bitwise permutation as defined by first the
physical key, then the logical key. Next, the current LUTSs
output inversion status (OI_Status) is set based on the logical
key, and the status of the output inversion for all fan in
nodes are checked. This affects the permutation of the current
LUTSs content, and the current ¢¢ must undergo one last output
inversion transform (oi_x form) defined by the fan in output
inversion status (F'1OIS).

This function results in two bitstreams defined by their LUT
content bits. It allows us to determine the level of security, as
determined by the Hamming Distance between the original
and secure bitstream, and the difference in pairwise intra-
bitstream distance. The mapping tool additionally modifies
the existing Verilog writing functionality in VTR to enable
functional simulation. The existing LUT primitives, defined
in Verilog, are modified to support the bitstream transforms
through the addition of LUT input switch networks, and
XOR gates on the LUT content bits and output bit. The top
level module generation code, which instantiates the CLBs
and interconnects, is modified as well, to support input of
the physical and logical key networks. A test bench is also
generated by the tool which instantiates both the original and
secure FPGA mapping, generates the test patterns from known
input patterns for the benchmark circuits, and finally compares
the output of both the original and secure mappings.

C. Correctness of Mapped Design

An important aspect of the FPGA synthesis process is to
ensure that the mapped design is functionally correct. In the
proposed scenario, correctness is guaranteed by construction.
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Algorithm 1 Secure Bitstream Transform

Input: Circuit C, Physical Key K, Logical Key Seed K
Output: Original Bitstream B,, Secure Bitstream B
InitCSPRNG(Ks)
for each Blocks B in C do
for each Primitives P in B do
if P is type LUT then
FIOIS «+- 0
numlInputs < get LUTinputs(P)
tt < getTruthTable(num_inputs, P)
B, < append(B,, tt)
subKey + getNextKey(l << numlInputs)
tt < physical X form(tt, K_p)
tt < logical X form(tt, sub_key)
OI_Status < 0t X form(P, sub_key)
for each Fan In fi in P do
FIOIS < FIOIS | getStatus(fi)
end for
tt < 0iX form(tt, FIOILS)
Bs < append(Bs, tt)
end if
end for
end for

The mapper tool is cognizant of the architecture (both physical
and logical) of the target device as defined by the configuration
key. Device-specific modifications in the bitstream are done by
the mapper tool in such a way that correspond to the specific
architectural mutations. For example, if the order of LUT
inputs is changed, the interconnect bits in the bitstream are
correspondingly reordered for a functionally correct mapping.

III. RESULTS

In this section, we provide a thorough security analysis
considering brute force, side channel, destructive reverse en-
gineering, as well as known design attacks. Using the secure
FPGA mapping tool described in Section II-B, we generate
results for a set of 10 benchmark circuits.

A. Security Analysis

We provide a security analysis for four possible attack
scenarios, namely 1) brute force, 2) known design, 3) side
channel, and 4) destructive reverse engineering. We assume
that the attacker has knowledge of the bitstream format, and
has access to the obfuscated bitstream.

1) Brute Force Attack: A brute force attack represents the
most challenging and time consuming attack on the system.
For a given design, there can be thousands of feasible in-
terconnected LUTs. Modern FPGAs typically support up to
6-7 input functions for each LUT. Thus, there are a huge
number of possible combinations, which can be represented
by even a small number of LUTs and which grows rapidly as
the number of LUTs increases. When factoring in the potential
content bit inversion, the programmable interconnect network
inversion, and other architectural modifications, both static and
time variant, the process of modifying some LUT bits, their
input ordering, and the connections between them, mapping
to FPGA, and testing for proper functionality becomes in-
tractable. For example, consider a small design with 128 LUTs
with 6 inputs (64 content bits). Each content bit may or may
not be inverted, and the correct ordering of bits is unknown.
This can be represented as the number of permutations (64!)
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TABLE III
MAPPING RESULTS AND QUANTITATIVE COMPARISON BETWEEN ORIGINAL AND SECURE BITSTREAMS

Benchmark Crit. Path Bitstream Do

Name # CLBs Nodes Size (Bytes) Dy (Original) D5 (Secured)  x Latency (sec.)
alu4d 430 4 6878 8.00 1.68 8.00 1.14
apex2 520 13 8316 7.99 1.70 8.00 1.12
apex4 249 8 3974 8105 1.32 8.00 1.14
des 973 12 15558 7.95 1.69 8.00 1.12
ex5p 159 4 2540 8.01 1.00 8.00 1.13

ex1010 387 9 6192 8.05 1.02 8.00 1.14

misex3 384 9 5554 8.01 1.61 8.00 1.14
pdc 996 6 15922 7.99 1.48 8.00 1.10
seq 506 8 8096 7.95 1.68 8.00 1.15
spla 894 12 14296 8.05 1.42 8.00 1.11

multiplied by the number of ways in which the LUTs can be
connected (128Cj). Hence, even with known input and output
pairs, mounting such a brute force attack is not feasible in a
reasonable time frame with current technology.

2) Known Design Attack and Bitstream Tampering: Known
design attacks utilize small benchmark circuits (e.g. a single
AND gate) mapped to the target FPGA, which enables an
attacker to observe how the resulting bitstream changes. By
launching this attack repeatedly, it is possible to reverse
engineer the bitstream format — as well as the IP — in
modern devices. It is also possible to tamper with the design
for targeted malicious modifications. However, our approach
can protect against known design attacks because it provides
a moving target defense, whereby the architecture’s logical
security layer changes each time the bitstream is recompiled.
Therefore, even if a small benchmark is repeatedly mapped to
the target device, no new information about the architectural
configuration is leaked.

3) Side Channel Attack (SCA): Compared with brute force
attacks, SCA is a more refined and powerful attack. We
first assume the attacker has used power analysis to discover
the key to the logical security layer, which is generated
at runtime. However, because the key generation uses non-
linear functions, and so is not susceptible to machine learning
attacks, the next key will not be known, and therefore the
moving target defense due to the time-varying architecture will
prevent deobfuscation of the bitstream. Furthermore, even in
the unlikely case that the next key can be guessed correctly,
the ability to deobfuscate one bitstream does not enable the
attacker to maliciously modify the design so that they can
map it to another device, because all other devices will have
their own unique physical and time-varying security keys. This
effectively eliminates the economic motivation for an attacker.

4) Destructive Reverse Engineering (DRE): DRE is an
expensive and time consuming process, but it can reveal the
inner workings of the device. We present two scenarios of
using DRE attacks. In the first case, DRE is used to reveal the
structure of the physical security layer by identifying which
fuses have been programmed. This alone would not compro-

mise bitstream security, since the logical key is generated
at runtime, and different keys are generated during each re-
programming. Furthermore, this will only reveal the physical
key network for one specific device, and therefore is not
economical, given the high cost of DRE. In the second case,
DRE is used to reveal the CSPRNG structure. However, this
too would not be sufficient, because every device still has a
different physical key network.

B. Secure Mapping Results

We used the modified VTR mapper tool to investigate the
effect of the secure bitstream transform on a set of common
benchmarks from the MCNC benchmark suite [11]. With
the VTR mapping flow, Verilog files were parsed into their
BLIF representation using an architecture description file that
defines a CLB as consisting of a 4-input LUT, a flip flop, and
interconnect logic. Therefore, all benchmarks were mapped
into a series of interconnected CLBs, with 16 content bits
per LUT. These LUT content bits were taken as the bitstream
for this particular FPGA. Unlike commercial FPGAs, which
have a fixed size bitstream for each device, the bitstream sizes
vary among benchmarks, since the number of available CLBs
is a function of the resources required at run time by the
tool. We present results in terms of inter- and intra- bitstream
Hamming Distance. Inter-bitstream distance (D) )is defined as
the average distance between LUTs in the original bitstream
(Bo) and the secured bitstream (Bg), as shown in Eqn 1. The
intra-bitstream distance (D3) is defined as the average pairwise
distance between LUTs in a given bitstream.

N
> HD(Bo,, Bs,)
1=0

D, = I (1)
N N
20 > lHD(Bi,Bj)
Dy = 2207 ¥ 2)

While a high quality CSPRNG - especially one that is
amenable to efficient hardware implementation — should be
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used in the final design, we have used the standard m#/9937
generator for evaluation purposes. The average D; value was
found to be normally distributed, with a mean and standard
deviation of 8.0040.03 for the 16 bit LUTs. The value for D,
for the original bitstream was found to be 1.5 £ 0.3, whereas
the transformed bitstream D5 result was nearly equivalent to
D, . This implies that, even with designs where the pairwise
intra-bitstream LUT content only differs by 1 or 2 bits, the
functionality can be effectively obscured. The addition of
LUT content and output inversion logic will also affect the
critical path delay. We assume the additional interconnect
delay within the ALM is not significant compared to the XOR
gate delay of 1.02 ns [12], This gives us an increase of around
2 ns per ALM. This yields moderate latency overhead for
all benchmarks, with an average reduction of 1.14x in the
maximum operating frequency.

IV. CoST ANALYSIS BASED ON A CASE STUDY

There is an inherent trade-off between the area/power/delay
overhead and the level of security provided by the architectural
modifications. The results presented in Section III-B represent
a very high level of security, where every content bit in
every LUT can be selectively inverted through an additional
XOR gate, the LUT output can be selectively inverted, and
when the select inputs to the LUT are permuted using a
switching network. We can estimate the area overhead from
such architectural modifications by adding the approximate
area of the additional XOR gates, plus one switching network,
to the area of a given ALUT. For the 65 nm Altera Stratix III
FPGA, the area of one Logic Array Block (LAB) is estimated
to be 0.0211 mm?, and the core of the largest Stratix III
(EP3LS340) has 13,500 LABs, comprising 72.4% of the total
die area [13]. Thus, for a 4 ym? XOR gate implementation
[12], additional XOR gates result in an overall 8.5% increase
in die area (411 mm? to 447 mm?). For SRAM FPGAs, this
could potentially be reduced with a custom design leveraging
the existing Q and () signals and using pass transistors to
select between them. Using Synopsys Design Compiler, and
90 nm cell library (with results scaled to 65 nm), we estimate
the area of the switch network for the LUT select inputs to be
roughly 135.5 pm?, increasing the total die area to 465 pm?.
This does not consider the area of the programmable fuses
used in physical key storage. As reported in Table II, physical
key storage for the LUT select input ordering is appropriate;
therefore, with a 6-input LUT, at most [log2(6) = 3 fuses can
be used. Assuming an area of 15 um? per fuse [14], the total
area would increase to 466 mm?2, or 13% area overhead. In
practice, programming every LUT content switch with a static
value may not provide the highest level of security, since the
content ordering will not vary with time. Instead, a smaller
number of fuses (e.g. 128 or 256) can be used on certain inputs
(with remaining inputs connected to the logical key network).
This will help reduce overhead from fuse area and increase
security against known design attacks.

V. CONCLUSION

We have presented MUTARCH, a distinctive approach to
FPGA security that enables secure wireless reprogramming
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and protects diverse FPGA-based systems against piracy and
tampering attacks in the field. The central idea of MUTARCH
is to create architecturally unique devices so that adversaries
cannot interpret a bitstream, or use knowledge about one
device architecture to break into another device. MUTARCH
provides a low-cost, low-overhead, and scalable protection
mechanism against field attacks on FPGA-based systems.
Furthermore, it can be used in conjunction with existing
encryption techniques for additional security, and as a means
to lock a specific bitstream to a specific FPGA instance,
preventing potential economic gains from IP piracy. Although
MUTARCH requires minor architectural change and device
programming during manufacturing test, it does not impact
the functional behavior of a mapped design. It also does
not impact routing and FPGA resource utilization during
application mapping, reducing compile-time overhead during
firmware upgrades.

With increasing usage of FPGA devices in diverse appli-
cation domains, including the emerging IoT space, effective
protection of FPGA-based systems, and the IPs mapped in
them, is paramount. MUTARCH is particularly attractive for
the emerging IoT regime, which involves a large number of
identical, connected devices, where using knowledge of one
device architecture to attack another device is more feasible.
Although we focus on bitstream tampering and piracy in this
work, the proposed approach is promising in preventing side-
channel attacks. This is because architectural mutation can
effectively obfuscate the correlation between secret key and the
side-channel signature. Finally, the overhead of the proposed
approach, although modest, can be further reduced through
enhanced security versus hardware overhead trade-off analysis.
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