
System-on-Chip Security Architecture and CAD Framework for Hardware Patch

Atul Prasad Deb Nath1, Sandip Ray2, Abhishek Basak3 and Swarup Bhunia1

1Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, USA
2NXP Semiconductor, Austin, TX, USA
3Intel Corporation, Hillsboro, OR, USA

Abstract—System-on-Chip (SoC) security architectures tar-
geted towards diverse applications including Internet of Things
(IoT) and automotive systems enforce two critical design require-
ments: in-field configurability and low overhead. To simultane-
ously address these constraints, in this paper, we present a novel,
flexible, and adaptable SoC security architecture that efficiently
implements diverse security policies. The architecture and associ-
ated CAD flow enable “hardware patching” i.e.hardware security
policy engine that can be seamlessly and securely upgraded in
field to address unanticipated attacks or new security require-
ments. We implement (1) a centralized Reconfigurable Security
Policy Engine (RSPE), (2) smart security wrappers, and (3)
Design-for-Debug (DfD) infrastructure interface as the building
blocks of the architecture. The proposed framework provides a
systematic approach to represent and synthesize diverse security
policies. Through extensive analysis using representative SoC
models, we show, for the first time to our knowledge, that the
proposed framework provides high level of patchability with
minimal energy and performance overhead.

I. INTRODUCTION

With the rapid growth of Internet of Things (IoT) [1],

the edge devices are given access to a tremendous amount

of security assets everyday which must be protected from

unauthorized or malicious access. The security assets can be

broadly categorized into two groups: personalized end-user

information (e.g., contacts, location, browsing pattern, health

information) and confidential collateral from architecture,

design, and manufacturing, (e.g., cryptographic and digital

rights management (DRM) keys, fuses, debug instrumentation,

defeature bits). With increased accessibility of IoT end-point

devices to sensitive information, it is obligatory to protect these

security assets from malicious and unauthorized access by

developing security architectures and mechanisms in System-

on-Chip (SoC) designs targeted towards emerging applications

including IoT and automotive systems.

Over the past years, significant progress has been made on

developing and implementing robust SoC security architec-

tures [2], [4]. However, the application of these architectures

are limited and it is quite difficult to adapt these in diverse

IoT devices. In particular, most IoT applications impose two

critical constraints: (1) in-field configurability to adapt to

changing security requirements; and (2) operation under a

tight boundary of energy and performance profiles. In this

paper, we present a novel SoC security architecture designed

to address the IoT application constraints, together with a

complete methodology for implementing security policies.

The proposed architecture includes the following three crit-

ical components: (1) a plug-and-play, flexible infrastructure
IP called Reconfigurable Security Policy Engine (RSPE) to

implement SoC security policies; (2) a standardized security
wrapper architecture that enables communication of security-

relevant events between various IPs in the SoC design and

RSPE; and (3) a seamless interface between security wrappers

and the on-chip SoC debug interface to enable requirements

upgrade. The framework enables seamless and secure upgrade

of security policies post-silicon and in-field, while addressing

the performance and energy requirements. This enables, for

the first time to our knowledge, an approach to developing

“hardware patch”, i.e., hardware implementation of security

requirements that permit seamless post-silicon adaptation.

The paper makes three important contributions. First, we

present a SoC security architecture, developed from the bottom

up to enable hardware patching of security requirements.

We show how to implement diverse SoC security policies

including access control and information flow policies in the

architecture, and how to adapt, modify, and upgrade these

policies in field. Second, we present an automatic security

policy mapping flow, providing a streamlined methodology

for compiling high-level security policy definitions into the

framework. Finally, we provide comprehensive quantitative

analysis of energy, performance, and area overhead of the

architecture realized with embedded FPGA. We demonstrate

the efficacy of the architecture in terms of upgrading with

large number of realistic security policies obtained through

our industry contacts. We then compare our evaluation results

with alternative implementations.

The remainder of the paper is organized as follows. Sec-

tion II provides the relevant background on SoC security

policies and our motivation for proposing the architecture.

We discuss the proposed RSPE architecture in details in

Section III. Section IV illustrates the CAD framework for

automatically mapping and updating security policies in RSPE.

Our experimental results are described in Section V in terms

of major design parameters. We discuss related work in

Section VI, and conclude in Section VII.

II. BACKGROUND AND MOTIVATION

A. SoC Security Policies

A significant component of SoC security is driven by the

requirement to protect various on-chip assets against unautho-

rized access. Protection requirements to these security assets

can be defined by confidentiality, integrity, and availability

978-1-5090-0602-1/18/$31.00 ©2018 IEEE

10A-3

733

Fig. 1. An overview of a generic SoC architecture with the proposed RSPE
(Reconfigurable Security Policy Engine).

properties [5]. The goal of a security policy is to map the

requirements to “actionable” design constraints that can be

used by SoC designers to develop protection mechanisms. Fol-

lowing are two representative examples of common security

policy.

• Example 1: During boot, data transmitted by the crypto

engine cannot be observed by any IP in the SoC fabric

other than its intended target.

• Example 2: A secure key container can be updated for

silicon validation but not after production.

Example 1 is a confidentiality requirement while Example 2

is an integrity constraint; The policies provide definitions

of (computable) conditions to be satisfied by the design for

accessing a security asset.

In addition to access control, security policies can capture

requirements from information flow, liveness, time-of-check

vs. time-of-use (TOCTOU), etc. A primary goal of SoC

security architecture is to correctly and efficiently implement

the security policies. Unfortunately, the state of the practice

today depends heavily on human creativity. SoC designers use

various architectural and system artifacts (e.g., fuses, firmware,

etc.) creatively to realize them in practice.

B. Motivation for In-field Hardware Patching

We consider two scenarios to illustrate the limitations of

current practice of security policy implementation.

Case I: Attack on Confidentiality The attack scenario con-

sists of two IPs, namely a trusted crypto engine IP A and

an untrusted third party IP B. Ideally, the security policies

to set the access control of different IPs are defined at the

risk assessment phase. In practice, however, the policies go

through continuous refinement through different phases of

architecture. In some cases, the process gets extended to early

design and implementation activities as new knowledge and

constraints keep coming to light. Consequently, the security

architects fail to implement a definitive information flow policy

to map the IP-specific design constraints at the time of product

launch i.e. time t=0. More importantly, the architects connect

several IPs in same network-on-chip (NoC) in SoC with

crypto block due to resource constraints and mark the IPs

Fig. 2. Software flow for SoC security policy implementation in the
proposed architecture.

as “safe” to observe part of the keys being exchanged in the

communication fabric. Consequently, the untrusted IP B can be

exploited by adversaries at a later time t in device life cycle to

violate the information flow policy. For instance, the adversary

can revoke Key Obliviousness, i.e., exploit the malicious IP

B to infer cryptographic keys by snooping data from crypto

engine on the low-security communication fabric and gain

illegal access breaching the confidentiality of the design [6].

The current mitigation approaches usually include the rigorous

tasks of overhauling and upgrading the firmware.

Case II: Attack on Integrity An adversary can launch a

code injection attack through a malicious or rogue IP by

overwriting code segments via Direct Memory Access (DMA).

For instance, the attacker can exploit the System Management

Interrupt (SMI) handler to write to an address inside Sys-

tem Management RAM (SMRAM), which is basically part

of DRAM reserved by BIOS SMI handlers. Based on the

vulnerability, the adversary may have control over the address

to write, the value being written, or both [7]. Preventive

measures to thwart such attacks include identifying memory

access requests to DMA-protected regions, and setting up

mechanisms to bar DMA requests to all protected accesses.

In the aforementioned scenarios, the current approaches of

mitigation fail to offer in-field adaptation of hardware as it

involves multiple IPs and requires comprehensive changes in

architecture and implementation. The proposed architecture

overcomes these key limitations by enabling efficient and

secure upgrade of policy implementations after deployment.

III. HARDWARE PATCHING INFRASTRUCTURE

Our key observation is that an SoC security policy can be

viewed as a sequence of “commands” that specify how to react

to certain behavior of IPs and inputs. These commands can be

implemented in a separate, centralized IP which communicates

with other IPs through a standardized interface. Based on

this observation, we develop the following three architectural

10A-3

734

(a) (b)

Fig. 3. Detailed illustration of the proposed security architecture. (a) RSPE acts as a centralized flexible security policy engine that enforces the security
policies. (b) Security wrappers on individual IPs provide standardized, frame-based communication with RSPE.

Fig. 4. Implementation of representative SoC security policy.

components to enable implementation of diverse policies in a

way that is seamlessly configurable in field.

A. Reconfigurable Security Policy Engine (RSPE)

This block acts as the security brain of the SoC. It receives

communication of relevant security events from the security

wrappers in IPs, identifies the security state, and enforces

mitigatory actions based on the enforced policies. The key

enabler of in-field patching is the centralized location of all

security policy implementations within RSPE. In particular,

patching only requires updating the commands implemented

in RSPE. This can be seamlessly performed if RSPE is in fact

implemented on a reconfigurable hardware such as FPGA. The

security wrappers do not need update even when the policies

are changed in field. Since they are programmable at boot

time by RSPE, an update only requires re-programming them

to observe and control a potentially different set of signals that

correspond to the updated policies.

B. Smart Security Wrappers

To implement security policies, RSPE must know some of

the internal events of each IP and communications among

IPs. This is achieved through the design of smart security

wrappers, which essentially extend the test (e.g., IEEE 1500

boundary scan based wrapper) and debug wrapper (e.g., ARMs

Coresight IP interface) which are already present for functional

verification. The wrappers are programmable, so that they can

be configured to monitor and control different sets of signals.

RSPE configures the wrappers during boot for monitoring

signals necessary to enforce the implemented security policies;

during execution, RSPE identifies the security state of the

system from the monitored signals, and if a policy violation

is detected, RSPE can “allow” or “disallow” the event.

Fig. 4 illustrates an example policy implemented through

this architecture. The policy prohibits access of first 16
(address-wise) internal registers of IP A by IP B when A
is performing a security-critical computation. To enforce the

policy, RSPE must know when B attempts to access particular

local registers of A as well as the security state of the

computation being performed by A at that instant. When IP A
starts a security critical computation as indicated by a status

flag, its security wrapper detects the event and communicates

it with the RSPE. RSPE updates the security state of the SoC

and disables accesses to all registers of A by B through control

logic in B’s security wrapper. If B attempts to access a register

bit (e.g., register 7) in A’s address space to read a configuration

value, the security wrapper of B detects this event of interest

and informs the RSPE. The RSPE, determining that the request

of B as a violation of the policy, denies corresponding access

and maintains the disable status in B’s security wrapper.

C. Integration with Design-for-Debug (DfD) Infrastructure

To obtain controllability and observability over the required

signals inside IP blocks, we interface RSPE with the on-

chip Design-for-Debug (DfD) interface. A primary purpose

of DfD is to provide access and control to signals that enable

diagnosis of an unanticipated bug in field. Consequently, this

10A-3

735

interface provides access to an extensive set of observable

and controllable signals, which can be repurposed to realize

security policies. We architect the security wrappers for each

IP by exploiting DfD to identify relevant security-critical

events. On detection of such an event, DfD communicates the

information to the IP security wrapper that communicates it

to the centralized RSPE. To enable this functionality without

hampering debug usages for the DfD, we implemented IP-

level modification of the DfD logic including local debug in-

strumentation. In particular, noninterference with debug usage

requires transmission of security data to RSPE via a separate

port (instead of re-purposing debug trace port and bus), which

incorporates additional trigger logic. To address this issue,

we employed configuration register interface of corresponding

DfD modules that can be configured by RSPE through trace

port and then security-critical events can be logged into IP-

specific security wrappers.

IV. PROPOSED CAD FRAMEWORK

A. Overall Flow and Major Steps

We have developed a CAD framework for synthesizing

security policies into an RSPE implementation based on

embedded FPGA. The framework has the following features:

(1) it is amenable to automatic synthesis of arbitrary policies if

the policies are described in specific predicate-action format,

as shown in Table I, and when the required observable and

controllable signals are accessible to the security policy en-

gine; (2) it explores the design space to obtain energy-optimal

policy implementations; (3) it allows incremental mapping of

policies using partial reconfiguration for field upgrade; and

(4) it integrates with the existing FPGA synthesis flow and

exploits commercial application mapping tools.

Fig. 5 illustrates the major steps of the security policy map-

ping flow into a FPGA fabric. It integrates into conventional

FPGA synthesis flow by adding two new steps (shaded in

blue) in the front-end of the overall flow. In particular, it adds

a pre-compilation stage where security policies are parsed and

a register-transfer level description is created. The security

policies are described as 3-tuple: 〈timing, predicate, action〉.
The timing information indicates either an operating mode or

a timing information with respect to global clock. In case of

policy 1 and 3 in Table I, the timing information is represented

as the operational mode for the DLX processor (user mode)

and the operational mode of whole SoC (debug mode), respec-

tively. The predicate information indicates specific conditions

based on the IP-internal observable signals or property of the

interconnection fabric; the condition is expressed as a Boolean

function of multiple observable signals. For the first policy,

the predicate is formed by OR-ing two or more signals (e.g.

Mem RD/WR Req. by User, Mem RD/WR Req. by IP A). The

timing information is AND-ed with the predicate to create a

combined condition. The third element is the action to be taken

when the joint condition is true. This is done by asserting/de-

asserting signals or performing specific checks on a set of

variables. For policy 1, the specific action is a check if the

RD/WR address is within a range. The policies are parsed and

Fig. 5. Mapping diverse security policies on embedded FPGA-based RSPE.

an equivalent Verilog RTL code is generated by accounting for

the information on IO ports for all IPs, test/debug ports, and

interconnect fabric. The input/output is defined by considering

all required observable and timing signals as input and all

variables which are controlled as outputs. We represent each

policy as an “assign” statement if it does not require using a

state element, and as a separate “always” block otherwise.

The RTL module representing a set of policies is synthe-

sized using FPGA synthesis tool. By considering the tim-

ing and other constraints, we generate a number of pareto-

optimal mapping solutions. Resource sharing between several

policies, in particular in the implementation of the predicate

logic, is explored to optimize the area/energy requirement of

the mapping under timing constraint. In case of incremental

mapping of new set of policies on existing policies using the

partial mapping solutions provided by the commercial FPGA

mapping tools, we use the information on existing resource

usage. From the pareto-optimal solutions, we select the best

solution in terms of energy or area based on user preferences.

B. Authentication and Remote Upgrade

To protect the RSPE patch installation from attacks by

malicious backdoors or Trojans, an authentication mechanism

is employed based on secure challenge-response keys. SRAM

Physically Unlonable Function (PUF) based keys are generated

at power-up exploiting the intrinsic process variations. The

reasons for choosing SRAM PUF include cost efficiency of

weak PUF and avoidance of additional circuitry. The power-

up key generation prevents any on-chip key storage access

control attacks. The PUF-based authentication of the RSPE by

a verifier at the update unit allows secure remote authentication

and in-field patch installation.

V. RESULTS AND DISCUSSION

Due to lack of standard open-source SoC models, we

developed an SoC design model that includes many major

components of an industrial SoC design. It comprises of a

32-bit pipelined DLX microprocessor core (DLX), a repre-

sentative memory controller IP, a 128b FFT engine, a 128b

AES crypto core, a clock controller, a power management

10A-3

736

TABLE I
REPRESENTATIVE SOC SECURITY POLICIES IMPLEMENTED ON THE PROPOSED ARCHITECTURE.

Policy # Predicate Part Action Part IPs Involved

1
User mode & (Mem RD/WR Req. by
User — Mem RD/WR Req. by IP A — ...)

RD/WR Addr. within
specified range

DLX μP & any other IP with
access to system memory

2
Supervisor mode & (Mem RD Req. by
User — Mem RD/WR Req. by IP A — ...)

RD Addr. within shared
memory range & No WR

DLX μP & any other IP with
access to system memory

3
Debug mode & (Trace cells busy —
power mgmt. module busy)

No update in power control
firmware & no changes in
SPI controller Config. Reg.

Power mgmt. module & SPI
controller

4
!(Supervisor mode) & (Inst. Mem
Update Req. through test access port
or SPI controller)

No update of Inst. Mem.
allowed

DLX μP

5 Active Crypto mode
No interrupt or Memory
Access Req. from the DLX
core or any IP is allowed

Crypto module, processor
and other IPs access to
processor

TABLE II
ESTIMATION OF OBSERVABLE AND CONTROLLABLE SIGNALS

IP Type TW SW DfD % Increment

O
b
se

rv
ab

le

DLX uP 5 547 772 41.13
AES 5 386 776 101.04
SPI n/a 104 161 54.81

Mem. 5 224 608 171.43
FFT 5 134 218 62.69

Total 20 1395 2535 81.72

C
o
n
tr

o
ll

ab
le

DLX uP 1 142 255 79.58
AES 1 107 188 75.70
SPI n/a 75 144 92.00

Mem. 1 104 187 79.81
FFT 1 76 156 105.26

Total 4 504 930 84.52

TABLE III
ESTIMATION OF NUMBER OF SECURITY POLICIES

Tuple Type TW SW DfD % Increment

2P, 1A 570 490046760 2987015850 5.10
4P, 1A 14535 7.91E+13 1.59E+15 19.16
8P, 1A 377910 1.75E+23 3.89E+25 220.42
8P, 2A 377910 4.42E+25 1.81E+28 407.94

unit, as well as a Serial Peripheral Interface (SPI) controller,

all obtained from open-source IP databases from Opencores

(http://opencores.org). A 32 KB central system memory IP

is also integrated into it. To compare RSPE with microcon-

troller unit (MCU) based policy engine implementation, we

augmented the SoC design with an alternative design described

in previous work [6].

We implemented 10 representative security policies of vary-

ing complexity (cf. Table I), including different kinds of

access control, as well as some instances of information flow,

liveness, and secure boot. The entire framework has been

functionally validated using ModelSim for typical policy use

cases. All area, power and performance analysis are performed

using 32nm CMOS technology library. We conducted our

experiments on Cyclone V FPGA development board.

An estimation of the total number of observable and con-

trollable signals with different design specifications, i.e., TW
(test wrappers), SW (security wrappers), and DfD (Design-

for-Debug Infrastructure) is provided in Table II. The increase

in observability and controllability over signals from various

IP blocks is compared among the policy engines with test

wrappers (TW), smart security wrappers (SW), and DfD inter-

face (DfD). The column titled % Increment represents increase

in signal observability and controllability in DfD integrated

design compared to security wrapper based policy engine.

Table III provides a comparative estimation of the number of

arbitrary policies that can be implemented with DfD integrated

RSPE and other designs. In Table III, P, and A represents

predicate and action, respectively. We considered the observ-

able signals from multiple IP blocks to determine the possible

number of predicates and exploited the controllable signals to

assert control and set the constraint through the action tuple of

the policy framework. Table III shows the maximum limit on

the number of security policies in several case scenarios e.g. 2
predicates, 1 actions; 4 predicates, 2 actions; 8 predicates, 2
actions etc. In every case, the DfD instrumentation results in

a higher number of policies compared to other designs.

Table IV shows comparative overhead results for the FPGA

implementation over the MCU version. Our testbench exer-

cises 10 of these policies in succession in a specific scenario.

For the MCU implementation, between 15 and 20 instructions

are involved in the execution of one policy. The estimated

dynamic and static powers are based on the signal activities in

the representative test bench and standard voltage and thermal

models at available 32 nm technology library. The total energy

is calculated as the total power (dynamic + static) multiplied

by the total latency incurred for the ten policies. For the

FPGA implementation, the values of the parameters (die area,

latency, total power, total energy) are calculated as follows.

From the Altera Quartus tool, after compilation of the design,

the reported number of arithmetic logic modules (both partially

and fully utilized ones) is multiplied by the corresponding

ALM area to obtain the total die area. The same testbench

(as used in MCU version) is utilized to annotate signal

activities for dynamic and static power calculation. To mimic

the overhead of embedded FPGA, the total reported static

power (reported for the whole FPGA chip) is multiplied by the

total logic utilization factor to obtain the contribution towards

the net leakage power. The FPGA implementation is around

5.02 X more energy-efficient than the MCU implementation.

Furthermore, the MCU implementation takes on average 5.5
X more time compared to FPGA to execute these policies. The

superior performance and energy efficiency are critical benefits

of FPGA implementation since many IoT devices are energy-

constrained and often require real-time security protection.

Table V provides a breakdown of energy consumption per

policy. This is done by a testbench that executes each policy

10A-3

737

TABLE IV
AREA, PERFORMANCE, POWER AND ENERGY VALUES FOR DLX PROCESSOR CORE AND EMBEDDED FPGA BASED SPE MODULE AND CALCULATED

RATIOS FOR COMPARISON BETWEEN TWO APPROACHES.

Die Area Clock Frequency Cycle Count Total Latency Dynamic Static Total Energy
(μm2) (MHz) (10 policies) (μs) Power (mW) Power (mW) (nJ)

DLX μP 0.724 203 210 1.04 14.27 63.48 80.86

FPGA 1.06 138 26 0.189 64.9 20.43 16.13

Ratio 0.68 1.47 8.07 5.49 0.22 3.11 5.02

TABLE V
RESULTS FOR EXECUTION OF EACH POLICY IN FPGA BASED RSPE

Security Policy No. P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Energy (nJ) 1.865 1.842 1.851 1.876 1.861 1.839 1.846 1.85 1.868 1.875

Latency (ns) 21.74 14.48 7.24 21.74 14.48 21.74 14.48 14.48 21.74 7.24

Resources (ALMs) 5465 4065 3260 5465 4065 4065 5465 4065 5465 3260

TABLE VI
COMPARISON OF AREA OVERHEAD FOR THE ENTIRE SOC

SoC
Org. Area

(μm2)

μC Design
Overhead (%)

FPGA Design
Overhead (%)

SoC Model 13.1 × 106 21.7 30.74

Apple A6
(APL0598)

96.71 × 106 2.92 4.26

Qualcomm
Snapdragon 800

118.3 × 106 2.39 3.49

in isolation. The energy costs across various policies are close

because each policy represents some type of access control

regulation and thereby involves similar computations on the

individual IP frames. Besides, all of them incur 3 cycles (2
cycle read of corresponding event frame after buffer flag and

1 cycle execution to determine security state).

Table VI provides comparison of area overhead for the

entire SoC between MCU and FPGA based implementation.

Even though FPGA area is 0.68 X of MCU area, the total area

overhead for realistic SoCs still less than 5%.

VI. RELATED WORK

Early research on security policies looked primarily on soft-

ware systems and developed analysis frameworks for access

control and information flow policies [8]. With modern SoC

designs incorporating significant security assets, SoC security

policies have become an area of significant research activities

[9]. Basak et al. [6] defined an architecture for security policies

using dedicated security wrappers. Ray et al. [10] discussed

trade-offs between security and debug requirements in SoC

designs. Backer et al. [11] analyzed the use of enhanced DfD

infrastructure to confirm adherence of software execution to

trusted model. Besides, Lee et al. [12] studied low-bandwidth

communication of external hardware with the processor via

the core debug interface, to monitor information flow.

VII. CONCLUSION

We have presented an architecture and a CAD frame-

work for implementing SoC security policies that accounts

for the flexibility and in-field updates required by emerging

applications. We have also presented an automatic synthesis

framework that enables mapping arbitrary security policies

into this framework and integrates with commercial tool flow.

High adaptability and capability to implement diverse policies

with minimal overhead are distinct features of the architecture.

It simultaneously avoids the high performance and energy

cost inherent in a software-based policy implementation. For

a set of illustrative policies, we showed significant reduction

in performance, power, and energy overhead.

ACKNOWLEDGMENTS

The work is supported in part by Semiconductor Research

Corporation (SRC) grant 2649.001.

REFERENCES

[1] D. Evans, “The internet of things - how the next evolution of the internet
is changing everything,” White Paper. Cisco Internet Business Solutions
Group (IBSG), 2011.

[2] M. R. Sastry, I. T. Schoinas, and D. M. Cermak, “Method for enforcing
resource access control in computer system,” US Patent 20120079590
A1, 2012.

[3] S. Krstic et al., “Security of SoC Firmware Load Protocol,” HOST, 2014.
[4] ARM, “Building a secure system using trustzone technology,” ARM

Limited, 2009.
[5] S. J. Greenwald, “Discussion Topic: What is the Old Security Paradigm,”

Workshop on New Security Paradigms, 1998, pp. 107–118.
[6] A. Basak, S. Bhunia, and S. Ray, “A Flexible Architecture for Systematic

Implementation of SoC Security Policies,” IEEE ICCAD, 2015.
[7] J. Loucaides and A. Furtak, “A New Class of Vulnerability in SMI

Handlers of BIOS/UEFI Firmware,” The 15th Annual CanSecWest
Conference (CanSecWest 2015), 2015.

[8] J. Goguen and J. Meseguer, “Security Policies and Security Models,”
IEEE Symp. on Security & Privacy, 1982.

[9] S. Ray and Y. Jin, “Security Policy Enforcement in Modern SoC
Designs,” ICCAD, 2015.

[10] S. Ray, J. Yang, A. Basak, and S. Bhunia, “Correctness and Security at
Odds: Post-silicon Validation of Modern SoC Designs,” in DAC, 2015.

[11] J. Backer, D. Hely, and R. Karri, “On enhancing the debug architecture
of a system-on-chip (SoC) to detect software attacks,” DFTS, 2015.

[12] J. Lee, I. Heo, Y. Lee, and Y. Paek, “Efficient dynamic information flow
tracking on a processor with core debug interface,” DAC, 2015.

[13] X. Li et al., “Sapper: A Language for Hardware Level Security Policy
Enforcement,” ASPLOS, 2014.

10A-3

738

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

