
FirVer: Concolic Testing for Systematic Validation of Firmware Binaries

Tashfia Alam1, Zhenkun Yang2, Bo Chen2, Nicholas Armour2 and Sandip Ray1

1ECE Department, University of Florida, Gainesville, FL, USA
2Intel Corporation, Hillsboro, OR, USA

Abstract— We present an infrastructure, FirVer, for system-
atic validation of firmware binaries. FirVer makes unique use of
virtual prototyping and unit testing interfaces for effective com-
prehension of hardware-firmware. We used FirVer on several
library functions of TianoCore, a full-featured UEFI-compatible
boot firmware developed by Intel Corporation. FirVer achieved
more than 90% in line and function coverages, and between
60% and 80% branch coverage. FirVer also enabled exploration
of corner cases that exposed segmentation faults in many
constituent functions.

I. Introduction

Firmware is software that can directly control hardware
components and is shipped with the hardware platform [1].
The hardware-specific, low-level nature of firmware distin-
guishes it from application code or even the operating system
(OS), which for the most part, tend to be device-independent.
In some cases, firmware provides an interface to the rest of
the OS; in other instances, firmware is executed during the
computer’s boot process, e.g., the Basic Input/Output System
(BIOS) executes before the OS is loaded. In virtually every
case, firmware executes in privileged mode. Consequently, the
correct functionality of firmware is critical to the trustworthi-
ness of the overall system. Furthermore, it is depressingly easy
to exploit firmware vulnerabilities to compromise security
[2], [3]. Obviously, validation techniques to enable systematic
detection of firmware errors are of paramount importance to
system assurance.

Firmware validation has received considerable attention
over the recent years [4], [5], [6], [7]. Much of this work aims
to adapt software verification approaches to firmware, possibly
accounting for sparing and well-defined interfaces with hard-
ware. Unfortunately, firmware poses some unique challenges
that make such adaptation challenging. In particular, given
the tight interaction of firmware with hardware, firmware val-
idation is really a hardware-software co-validation problem;
however, methodologies, flows, formalisms used in practice
differ significantly for hardware and software validation flows.

In this paper, we develop an infrastructure for firmware
validation that addresses the above constraints. Our infra-
structure, FirVer, (for “Firmware Verification Infrastructure”)
enables automated, binary-level concolic testing for systematic
exploration of firmware implementations. We account for
hardware-software interactions by analyzing the binary on
top of a virtual platform that includes interface definitions
for the target hardware (e.g., registers, interface protocols)
visible to the firmware. A unique contribution of FirVer
is a methodology for concolic testing directly on top of a
virtual machine without requiring a guest OS to facilitate

trace recording and analysis. Finally, it avoids the need for
supporting specific source language features by focusing on
firmware exploration at the binary level.

We have applied FirVer to test of TianoCore (http://
www.tianocore.org), a complex, full-featured boot firmware
developed by Intel Corporation. TianoCore is an open-source
implementation of the Unified Extensible Firmware Interface
(UEFI) developed as the open-source replacement for legacy
BIOS in personal computers. Our experimental results demon-
strate that the method provides high assurance in firmware
validation, e.g., for the tested libraries, FirVer achieved line
and function coverage above 90%. Perhaps more importantly,
FirVer could systematically expose several segmentation fault
errors in the current TianoCore implementation.

The remainder of the paper is organized as follows. Section
II provides the requisite background on concolic testing and a
brief overview of binary-level concolic testing. We discuss the
challenges in applying existing concolic testing frameworks
directly on firmware binaries and present a solution, FirVer, to
extend it on firmware in section III. Section IV illustrates the
FirVer design components and we show the application and
evaluation of FirVer on TianoCore functions in the following
section. We discuss some related work in Section VI and
conclude in Section VII.

II. Background

A. Symbolic Execution and Concolic Testing

The idea of symbolic execution is to treat certain variables
as having symbolic values. The symbolic execution creates
a symbolic expression for each variable involved (in the
program under test) as follows. Consider the code fragment
below.

void test (int x, int y) {

int z = 2*y;

int p,q;

if (x ==100) {

if (x < z) {

p =2q;

}}}

The symbolic expression for p after symbolic execution of the
code fragment will be the following:

if (x == 100) then

{if (x < 2*y0) then p = 2*q0 else q0}

Since the symbolic expression represents the entire set of
values the symbolic variable can take, symbolic execution
can point to subtle corner case scenarios and hard-to-excite

bugs, e.g., scenarios corresponding to dereferencing an invalid
pointer or reading past the end of a buffer.

The name “concolic” is a portmanteau of “concrete” and
“symbolic”. Concolic testing combines concrete simulations
with symbolic execution. The software under test is first ex-
ecuted on concrete inputs, and the execution trace is recorded,
which includes information of the branches taken along with
any other pertinent context. The execution trace is then fed
to a symbolic execution engine (SEE); the SEE treats some
(or all) of the inputs from concrete tests as symbolic and
constructs the expressions involving these symbolic values
that are built up as it executes the sequence of operations
in the trace. The goal is to select another execution path, e.g.,
by flipping some of the conditionals in the current concrete
path. This is done by the symbolic execution engine. The
branches in the trace with conditionals involving symbolic
values are branches whose outcomes could be changed with
an appropriate choice of concrete values for the symbolic
values. For instance, suppose concolic testing starts with the
inputs x = 0, y = 0. Here, the branch being encountered
is the test (x != 100); consequently, the variable x is a
candidate variable whose value can be flipped to explore a
different branch. A constraint solver can find these concrete
values, e.g., in this case, the assignment is x != 100 and
produce a new test case exercising a new path through the
program. These new test cases are then, in turn, concretely
executed. The process repeats until all possible paths through
the software have been explored or a user-specified constraint
is satisfied.

B. Binary Concolic Testing

Enabling symbolic execution for binary code requires
keeping track of the program state during a concrete run.
To achieve this, binary concolic testing tools are generally
built on top of a virtual platform (VP) environment. The
idea is to run the target binary on top of a guest OS
executed on the VP; the guest OS can be instrumented to
provide a controlled execution environment for the binary
and record the execution environment, which is used by
the SEE. This provides a context to symbolic execution
and is instrumental to the generation of effective tests. A
popular VP infrastructure used in concolic testing tools is
the Quick Emulator (QEMU) virtual prototyping environment
(https://qemu-project.gitlab.io/qemu). It includes support for
X86 ISA, and consquently can run X86 binaries of Linux and
Windows. Correspondingly, KLEE [8] is a commonly used
SEE used for software analysis.

Concolic testing frameworks built with QEMU and KLEE
include S2E [9] and CRETE [10]. Both use trace recording
with guest OS on QEMU VP, which is used by KLEE
to generate new tests. Our work builds upon the CRETE
framework, which enables loose coupling of concrete and
symbolic executions through standardized execution traces
and test cases. The key idea is that one can execute the
binary on top of a virtual prototyping (VP) environment and
record the concrete execution trace from the VP together with
sufficient context to enable offline symbolic execution.

III. Firmware Analysis: Challenges and the FirVer Solution

Although symbolic exploration and concolic testing have
been successfully applied on application and system code, its
application on firmware has been limited. Source-level sym-
bolic exploration is complicated by the need to include models
of hardware to comprehend hardware-firmware interactions
that are realistic enough to exhibit the interaction corner cases
while abstract enough to eliminate irrelevant details; building
and maintaining such models for each interaction scenario is
non-trivial and labor-intensive. Furthermore, firmware source
code (when available) includes complex low-level language
features (e.g., it is common to have several levels of re-
directions of function pointers and a significant amount of
embedded assembly [11]), making it infeasible to apply
verification techniques that require neat language features and
formalisms. On the other hand, binary-level concolic testing is
limited in practice by the need for instrumenting and recording
binary traces, as explained above, and generally exploit the
services of a guest OS running on a VP. Unfortunately,
firmware, by its very nature, runs on “bare metal”, i.e., on top
of the hardware directly, where OS services are unavailable.

The key insight for FirVer is that it is possible to overcome
the challenges in binary-level concolic testing without requir-
ing the addition of instrumentation or trace recording func-
tionalities implemented through operating systems by directly
using available VP features. Note that capturing the context of
concrete execution is necessary for concolic testing to enable
dynamic sequencing of concrete and symbolic executions.
Instead, FirVer simply records (in VP) the sequence (trace)
T of instructions encountered during a concrete firmware
run. Offline analysis of T can then identify (1) the most
recent conditional encountered and (2) test inputs required
to flip the condition to generate a new run. The approach
significantly decouples the concrete and symbolic executions
by enabling symbolic execution offline while still exploiting
the benefit of using symbolic analysis to iteratively identify
test inputs for systematic exploration of firmware paths. Note
that this approach can be integrated directly into a VP without
requiring OS support; transfer of relevant information can be
performed directly from the VP to the offline SEE through
simple hypercalls.

IV. FirVer Design

FirVer implements the observations above while abstract-
ing the trace recording and transferring hypercalls from the
user. Algorithm 1 shows the overall FirVer execution flow. To
provide this transparency, the front end of FirVer is simply
a test harness (referred to as FirVer runner) that enables
the user to specify the target firmware. In addition to the
regular test harness used in unit testing, the FirVer harness
enables the stipulation of specific variables to be concolic.
Additionally, The trace hypercall passes this information to
the SEE (see below) to enable focused symbolic exploration.
The FirVer infrastructure extends a VP framework with the
following components.

Runner executes a concrete run of the firmware, using a
test input provided by the Replayer (see below). The runner

Host OS

(a) (b)

FIRVER Runner

FIRVER Virtual Prototype
(Instrumented VP)

FIRVER Tracer

FIRVER Manager

Captured
Trace

Selected
Trace

FIRVER Replayer

New
Test

Cases

Symbolic Execution
Engine

New
Test
Case Host OS

Test harness with
concrete tests

 Native Virtual Prototype

Generated
TestCase Database

 TestCases

TestCases

Host OS

Fig. 1. Realization of the FirVer Solution on Firmware. (a) FirVer
Architecture during Test Generation. (b) Test Execution.

execution is seeded by an initial (default) test input provided
by the user.

Tracer captures the binary trace T from the concrete execu-
tion, together with the hardware state C reached at the end
of the concrete run. The tracer coordinates with the Trace
Manager (see below) through VP hypercalls.

Manager coordinates between the concrete and symbolic
environments. Algorithm 2 summarizes the Manager func-
tionality. It includes a database of trace pairs 〈T ,C〉 obtained
from the Tracer. Since T includes the sequence of instructions
encountered during concrete execution, we can apply simple
control flow analysis to identify the basic blocks in T .
Furthermore, hardware interaction is computed by correlating
the encountered instructions in T with the hardware states
captured in C, e.g., update to memory location L in C would
be explicitly captured by a store instruction in T .1 The
“massaged” trace T ′ is added to the Trace-database, V and
one of the selected trace is passed into the Replayer (see
below); correspondingly, the generated tests, B from Replayer
are added to the Test database, U and one (a set) of the
previously unexplored tests, t are passed to the runner/concrete
execution environment.

Replayer. The Replayer is embedded in the symbolic exe-
cution environment. Its job is to invoke SEE and coordin-
ate with the Manager to receive traces and generate tests.
SEE is simply an off-the-shelf symbolic exploration tool
that computes inputs to explore a feasible unexplored branch
consistent with the hardware state C, which can be solved as
a Boolean Satisfiability problem. Unlike traditional concolic
testing techniques, we only compute an unexplored control
flow from the given trace rather than exploring the entire
firmware state space. Consequently, the SEE incurs little cost
in performance or memory.

Remark 1: One challenging factor in designing the runner
is the identification of the firmware variables permitted to be
symbolic. For instance, consider a variable v that holds the
pointer to a buffer. Obviously, making the pointer value (which
would mean that starting address of the buffer) symbolic is not
helpful. FirVer runner accounts for such cases, e.g., instead of
the pointer, the buffer entries pointed by the variable (and the

1Since T is a concrete run in VP, all memory indirections are obviously
resolved prior to the execution of the instruction. Consequently, it is possible
to perform the correlation using only the pair 〈T ,C〉.

Algorithm 1: FIRVER Test Generation
Input:

(a) Code Under test (TP)
(b) Initial concrete seed test τ

Output: Database of Tests U
1 U ← {τ}
2 V ← {}

3 repeat
4 Let t ∈ U be a previously unexplored test
5 〈E〉 ← Runner(TP,t)

6 〈T ,C〉 ← Tracer(E)
7 V ← V ∪ {〈T ,C〉}
8 〈U,V〉 ← Manager(U,V)
9 until No New trace added to V

10 return U

Algorithm 2: Managing traces and tests
Input:
(a) Database of Tests U
(b) Database of Trace Pairs V
Output: New test and trace databases 〈U,V〉

1 Let 〈T ,C〉 ∈ V
2 Let V ← V\〈T ,C〉
3 T ′ ← MassageTrace(T ,C)
4 〈x, B〉 ← SEE(T ′)
5 V ← V ∪ {x}
6 U ← U ∪ B
7 return 〈U,V〉

size of the buffer) are made symbolic in the test harness (and
correspondingly the runner). Handling such details is critical
in making concolic testing tool viable for complex low-level
software and firmware implementations that include realistic
features.

Fig. 1 shows the system architecture of FirVer. Note
that the FirVer runner is created by simply augmenting the
standard test harnesses used for unit testing, with facilities
for capturing additional book-keeping information required by
Tracer. Correspondingly, the tests generated by FirVer can be
executed systematically on top of the same virtual prototype
environment (Native VP without any Tracer program) by
simply replacing the FirVer runner with a traditional test
harness.

V. Application: Application and Evaluation of FirVer on
TianoCore Boot Firmware

A. Setup

We have used FirVer to verify several functions of the
TianoCore firmware. TianoCore was developed by Intel Cor-
poration as the “Foundation Code” of its Extensible Firmware
Interface (EFI), a successor to the 16-bit x86 legacy PC BIOS
[12]. TianoCore is a full-featured boot firmware, including
all five phases of UEFI. Additionally, it has a full firmware
stack for power management, security, update signing, glitch
resistance, and many others.

Generated Test Suite

Input Database
(Library, Header Files)

Create a Runner Program

Instrument Firmware Binary with Runner

Boot the firmware image in Virtual
Machine

Execute FIRVER

System Initialization and
Preparation

Fig. 2. FirVer workflow applied on TianoCore

Our realization of FirVer uses QEMU-x86 as the VP, with
KLEE as the target SEE. Fig. 2 shows the FirVer workflow for
TianoCore. The FirVer setup requires a test harness definition
that is used to create the runner program. Note that since
TianoCore is UEFI-compatible, the test harnesses can be built
as an EFI application.

Remark 2: (Implementation Note) The UEFI application
can be mounted in QEMU using the VFAT file system.
However, for QEMU to create a snapshot, it has to save
the metadata related to the snapshot into the actual images
used to boot. It means the image(s) we use to boot (for
example, bios.bin in FAT32 file-system) need to be in the
proper image format compatible with QEMU. We address
this by creating a blank iso image with a vfat file-system
that contains the harness app and convert the iso image into
QEMU qcow2 format.

We applied FirVer on two TianoCore libraries BaseSa-
feIntLib and MemoryAllocationLib. BaseSafeIntLib library
contains implementation of “safe” operation of type con-
version, addition, subtraction and multiplication functions of
different sizes (bytes) of data with the goal to eliminate
integer overflows. MemoryAllocationLib is responsible for
safe memory allocation routines depending on boot services of
DXE phase of UEFI execution. These functions constitute the
regression suite of HBFA (Host Based Firmware Analyzer)
unit testing framework on BIOS [13] and are critical to the
security of the firmware. Table I provides a summary of some
of the functions. All functions from the two libraries (90 from
MemoryAllocationLib and 27 from MemoryAllocationLib)
were explored in our experiments.

Remark 3: In addition to the function itself, the number of
test cases generated depends on the allocated buffer size in the
test harness (if the function involves usage of buffer). Indeed,
in many cases, a minimum size is necessary for appropriate
test cases to be generated, e.g., for SafeUint64Mult, the
appropriate buffer size is required for the concolic testing
to generate tests that correspond to valid multiplicands and
multiplier.

B. Coverage Results

Table II shows the evaluation of generated tests in terms
of line coverage, function coverage, and branch coverage of
the functions from the mentioned libraries. For a succinct
presentation of the results, we divide the functions into a few
classes based on the functionality and report the respective
coverage for each class. For example, the SafeUintMult class
represents the functions that prevent overflow during the
multiplication of unsigned integers for different sizes of mul-
tiplicands and multipliers. AllocatePages includes functions
that allocate one or more 4 KB pages of different data types,
such as EfiBootServicesData, EfiRuntimeServicesData. The
line coverage from FirVer is 90-100%, and the function
coverage is between 87-100%.

It is illustrative to understand the branch coverage results,
which are much lower than other coverages. There are two
reasons for this behavior. First, certain branches are semantic-
ally impossible to cover. Consider, for example, the following
code fragment.
if (x < 100) then return;

...

Clearly, the code represented as ... (including any branch
conditions there) is only reachable when the value of x is not
less than 100. However, branch coverage will attempt to reach
those control flow under both conditions (x < 100) and (x
≥ 100) resulting in the coverage values being penalized. Our
“estimated average” column adjusts for this approximation by
eliminating the semantically unreachable branch conditions.
The second reason is that there were some corner cases where
exploring a branch condition led to segmentation faults (see
below). Consequently, we had to explicitly remove those tests
from coverage calculation.

C. Segmentation Faults

The FirVer test generation found segmentation fault under
a specific corner case bug that manifested in 63 functions
of BaseSafeIntLib. This happens if a test input has a NULL
value for the buffer passed to the function. The buffer is
used by these functions to store the output (converted) value,
avoiding explicit returns. Consequently, if enough space is
not allocated for the buffer, the output generated goes out
of bound, resulting in a segmentation fault. Note that while
this can be considered a real bug, we have not found an
instance of the invocation of that function that resulted in this
corner case being exposed. Nevertheless, the fact that FirVer
found segmentation faults in a firmware implementation that
is defined as a foundation code for next-generation boot
firmware underlines the importance of tools like FirVer for
firmware analysis.

TABLE I
FirVer Applied on Tianocore

Target functions Significance of the functions Allocated Buffer Size in byte
in the test harness Number of Test cases

SafeInt8ToUint16

It performs 8 bit unsigned integer to 16 bit unsigned integer conversion.
This function converts the input specified by the output type and stores
the result into allocated output buffer. So the output must be at least as
large as the specified output type. If overflow or underflow occurs, it
returns error.

2 5

SafeInt16Add

This function performs addition on 16 bit integers. It performs addition
using provided augend and addend and returns the output stored in a
buffer. The buffer should be st least the size of the output type,
otherwise will return an error in case of an overflow or underflow.

2 10

SafeUint64Mult

It performs multiplication on uint64 type. It takes the multiplicand and
multiplier as input and converts the result specified by the output type
and stores the output in a buffer. The buffer is at least as large as the
result type.If overflow/underflow condition occurs,it returns error.

8 177

SafeInt64Sub

It performs subtraction on unsigned 64 bits integers. It performs subtrac-
tion using the provided minuend and subtrahend and return the output
stored in a buffer in the requested format. The buffer should be at least
the size of the output type, returns an error in case of overflow/underflow.

8 94

AllocatePages
It allocates one or more 4KB pages of EfiBootServicesData type and
returns a pointer to the allocated buffer. In case of 0 page or insufficient
memory satisfying the service, NULL is returned.

same as the input size 2

AllocateCopyPool

It allocates space or the number bytes specified by allocation size of type
EfiBootServicesData, copies allocation size bytes from buffer to the newly
allocated buffer, and returns a pointer to the allocated buffer. In case of
zero allocation size or insufficient memory satisfying the service, NULL
is returned.

same as the input size thousands of tests

VI. RelatedWork

DART [14] is one of the early works in concolic testing. It
applies automated random testing on the source code. KLEE
[8] is a highly used symbolic execution tool at the source
level which automatically generates tests with high coverage.
It performs source-level symbolic execution while our work
FirVer uses KLEE as the symbolic executor and extends
it to perform concolic execution on firmware binaries. UC-
KLEE [15] is an extension of KLEE that performs under-
constrained symbolic execution. FIE [16] also uses KLEE as
SEE to apply on low power platforms, especially firmware
programs for the MSP430 family of micro-controllers. S2E [9]
and CRETE [10], [17] tools have been developed to perform
concolic testing on binaries. However, their applicability is
limited to application code or system code under guest OS
support. Another symbolic execution-based tool is S2E [9]
which provides automated path analysis that tightly couples
the concrete and symbolic execution. Our work with FirVer
decouples concrete execution from symbolic analysis and
provides the flexibility of replacing the infrastructure used
on the VP component with a test harness while leaving
the offline analysis essentially unchanged. Another related
line of research is by Ahn et al. [18] that virtualizes the
hardware/firmware interactions as transaction properties and
applies concolic testing. However, it is not applicable when the
transaction does not exhibit a producer-consumer relationship.

One of the early tools in the security analysis of binary code
is BitBlaze [19]. It builds a binary analysis platform and uses
it to provide solutions for different security vulnerabilities.
ANGR [20] is a python based framework for binary analysis.
However, it suffers memory overhead as it has to maintain
execution states for all paths while FirVer minimizes memory
usage by analyzing the system path by path. Vex [21] integ-
rates some of the existing binary analysis approaches based
on both static and dynamic techniques and reproduces a single
framework. Aside from concolic testing, fuzzing has also
been successfully used for the detection of bugs or security
loopholes in low-level software [22]. AFL [23] is a popular
fuzzer that incorporates instrumentation and genetic algorithm
to generate test cases. JFuzz [24] is a tool that applies concolic
testing on Java programs, and Pex [22] applies testing on
.NET programs. Fuzzing perturbs inputs randomly to provide
unexpected inputs to the software/firmware under test. The key
difference with concolic testing is that the latter systematically
targets different program branches through symbolic analysis
of the branches encountered. Obviously, when successful, con-
colic testing provides a more systematic means for exploring
corner cases of the target design. HBFA [25] uses fuzzing
for UEFI. However, it confines analysis to the software
functionality and abstracts hardware interactions.

TABLE II
Evaluation of the generated tests applied on TianoCore

Function Class
Number of generated

tests Line Coverage (%) Function Coverage (%) Branch Coverage (%)

Min Max Min Max Avg Min Max Avg Min Max Avg Estimated
Avg

SafeUintMult 6 177 94 100 95.2 75 100 90.625 57.7 88.9 73.3 83.7
SafeIntMult 7 198 91 95.8 94 75 100 92.85 70.6 83.3 76.92 81.35
SafeUintAdd 5 46 90.9 100 96.36 100 100 100 57 62.16 59.75 95
SafeIntAdd 6 46 95.8 100 97.26 75 100 91.66 75 100 81.25 87.5

SafeUintSub 5 188 91.3 91.3 91.3 100 100 100 62.5 62.5 62.5 85.5
SafeIntSub 7 213 91.7 95.2 93.4 100 100 100 70.2 83.3 73.8 87.5

SafeUintToInt 5 35 75 82 78.5 75 100 87.5 57.7 57.7 57.7 67.86
SafeIntToUint 6 53 76.5 81 79.2 66.7 100 83.35 50 50 50 65.013
AllocatePages 2 26 100 100 100 100 100 100 66.7 66.7 66.7 100
AllocatePool 27 29 100 100 100 100 100 100 66.7 66.7 66.7 100

Reallocatepool 139 198 100 100 100 100 100 100 66.7 66.7 66.7 100

AllocateCopyPool - thousands
in an hour 100 100 100 100 100 100 66.7 66.7 66.7 100

VII. Conclusion and FutureWork

Firmware validation is a crucial component in developing
high-assurance SoC designs and cannot be directly addressed
by traditional software validation techniques. We developed a
concolic testing framework extended on a virtual prototyping
environment for systematically validating firmware binaries.
We demonstrated the effectiveness of FirVer libraries of
TianoCore boot firmware. In addition to achieving high cov-
erage, the tests generated illustrated corner case scenarios that
result in segmentation faults.

In future work, we plan to apply the FirVer system more
extensively on BIOS and also explore its applicability on
other (microcontroller) firmware. One target is the power
management firmware in SoC designs. We will also explore
opportunities for more automation, e.g., in generating the test
harness, smart identification of symbolic parameters.

References

[1] J. Grundy, “Firmware Verification: Challenges and Progress,” in FM-
CAD, 2013.

[2] C. Kallenberg and X. Kovah, “How Many Million BIOSes Would you
Like to Infect?,” in CanSecWest, 2015.

[3] J. Loucaides and A. Furtak, “A new class of vulnerability in SMI
Handlers of BIOS/UEFI Firmware,” in CanSecWest, 2015.

[4] P. Subramanyan, S. Malik, H. Khattri, A. Maiti, and J. M. Fung,
“Verifying information flow properties of firmware using symbolic
execution,” in DATE, pp. 337–342, 2016.

[5] B.-Y. Huang, S. Ray, A. Gupta, J. M. Fung, and S. Malik, “Formal
security verification of concurrent firmware in SoCs using instruction-
level abstraction for hardware,” in DAC, pp. 91:1–91:6, 2018.

[6] D. Kroening, L. Liang, T. Melham, P. Schrammel, and M. Tautschnig,
“Effective verification of low-level software with nested interrupts,” in
DATE, pp. 229–234, 2015.

[7] S. Ahn, S. Malik, and A. Gupta, “Completeness bounds and sequen-
tialization for model checking of interacting firmware and hardware,”
in CODES+ISSS, pp. 202–211, 2015.

[8] C. Cadar, D. Dunbar, and D. R. Engler, “Klee: unassisted and automatic
generation of high-coverage tests for complex systems programs.,” in
OSDI, 2008.

[9] V. Chipounov, V. Kuznetsov, and G. Candea, “The s2e platform: Design,
implementation, and applications,” ACM Transactions on Computer
Systems (TOCS), vol. 30, no. 1, pp. 1–49, 2012.

[10] B. Chen, C. Havlicek, Z. Yang, K. Cong, R. Kannavara, and F. Xie,
“Crete: A versatile binary-level concolic testing framework,” in Funda-
mental Approaches to Software Engineering (A. Russo and A. Schürr,
eds.), (Cham), pp. 281–298, Springer International Publishing, 2018.

[11] O. Bazhaniuk, J. Loucaides, L. Rosenbaum, M. R. Tuttle, and V. Zi-
mmer, “Excite: Symbolic execution for BIOS security,” in USENIX
Workshop on Offensive Technologies, 2015.

[12] “Unified Extensible Firmware Interface.” http://www.uefi.org.
[13] “HBFA,” 2021. https://github.com/tianocore/edk2-staging/tree/HBFA.
[14] P. Godefroid, N. Klarlund, and K. Sen, “Dart: Directed automated

random testing,” in PLDI, p. 213–223, 2005.
[15] D. Ramos, D. Engler, A. Aiken, D. Dill, and S. U. C. S. Department,

Under-constrained Symbolic Execution: Correctness Checking for Real
Code. Stanford University, 2015.

[16] D. Davidson, B. Moench, T. Ristenpart, and S. Jha, “Fie on firmware:
Finding vulnerabilities in embedded systems using symbolic execution,”
in USENIX Security Symposium, 2013.

[17] B. Chen, K. Cong, Z. Yang, Q. Wang, J. Wang, L. Lei, and F. Xie, “End-
to-end concolic testing for hardware/software co-validation,” in 2019
IEEE International Conference on Embedded Software and Systems
(ICESS), pp. 1–8, IEEE, 2019.

[18] S. Ahn and S. Malik, “Automated firmware testing using firmware-
hardware interaction patterns,” in Proceedings of the 2014 International
Conference on Hardware/Software Codesign and System Synthesis,
CODES ’14, (New York, NY, USA), Association for Computing Ma-
chinery, 2014.

[19] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. G. Kang,
Z. Liang, J. Newsome, P. Poosankam, and P. Saxena, “Bitblaze: A
new approach to computer security via binary analysis,” in Information
Systems Security (R. Sekar and A. K. Pujari, eds.), (Berlin, Heidelberg),
pp. 1–25, Springer Berlin Heidelberg, 2008.

[20] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino,
A. Dutcher, J. Grosen, S. Feng, C. Hauser, C. Kruegel, and G. Vigna,
“Sok: (state of) the art of war: Offensive techniques in binary analysis,”
in 2016 IEEE Symposium on Security and Privacy (SP), pp. 138–157,
2016.

[21] N. Nethercote and J. Seward, “Valgrind: a framework for heavyweight
dynamic binary instrumentation,” ACM Sigplan notices, vol. 42, no. 6,
pp. 89–100, 2007.

[22] N. Tillmann and J. de Halleux, “Pex–white box test generation for
.net,” in Tests and Proofs (B. Beckert and R. Hähnle, eds.), (Berlin,
Heidelberg), pp. 134–153, Springer Berlin Heidelberg, 2008.

[23] “AFL.” https://lcamtuf.coredump.cx/afl/.
[24] H. Zhu, “Jfuzz: A tool for automated java unit testing based on data

mutation and metamorphic testing methods,” in 2015 Second Inter-
national Conference on Trustworthy Systems and Their Applications,
pp. 8–15, 2015.

[25] Z. Yang, Y. Viktorov, J. Yang, J. Yao, and V. Zimmer, “Uefi firmware
fuzzing with simics virtual platform,” in 2020 57th ACM/IEEE Design
Automation Conference (DAC), pp. 1–6, 2020.

