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Abstract. We present a framework for certifying hardware designs gead
through behavioral synthesis, by using formal verificatiortertify the associ-
ated synthesis transformations. We show how to decompasedtiification into
two components, which can be respectively handled by thementary verifi-
cation techniques, theorem proving and model checking.appeoach produces
a certified reference flow, composed of transformationglldigtfrom production
synthesis tools but represented as transformations omgrajh an associated
formal semantics. This tool-independent abstractionndisegles our framework
from the inner workings of specific synthesis tools whilerpitting certification
of hardware designs generated from a broad class of bebhhdiescriptions. We
provide experimental results suggesting the scalabititpmactical designs.

1 Introduction

Recent years have seen high complexity in hardware desigaising it challenging
to develop reliable, high-quality systems through harafted Register Transfer Level
(RTL) or gate-levelimplementations. This has motivatedaagal migration away from
RTL towards Electronic System Level (ESL) designs whichmpedescription of de-
sign functionality abstractly in high-level languagesy, SystemC. However, the ESL
approach crucially depends on reliable toolsfehavioral synthesjshat is, automated
synthesis of a hardware circuit from its ESL descriptiorh&goral synthesis tools ap-
ply a sequence of transformations to compile the ESL desanipo an RTL design.

Several behavioral synthesis tools are available todag][INevertheless, and de-
spite its great need, behavioral synthesis has not yet fauthel acceptance in indus-
trial practice. A major barrier to its adoption is the lackd#signers’ confidence in
correctness of synthesis tools themselves. The differi@rmastraction level between a
synthesized design and the ESL description puts the onuslwavioral synthesis to en-
sure that the synthesized design indeed conforms to theipliése. On the other hand,
synthesis transformations necessary to produce desitisfy e the growing demands
of performance and power include complex and aggressivmiggitions which must
respect subtle invariants. Consequently, synthesis tyelsften either (a) error-prone
or (b) overly conservative, producing circuits of poor diyehnd performance [4, 5].
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In this paper, we develop a scalable, mechanized frameveorgeftifying behav-
ioral synthesis flows. Certification of a synthesis flow anteua the guarantee that its
output preserves the semantics of its input descriptiams,tthe question of correct-
ness of the synthesized design is reduced to the questiamabfsis of the behavioral
description. Our approach is distinguished by two key fiestu

— Our framework isndependentf the inner workings of a specific tool, and can be
applied to certify designs synthesized by different toodsrf a broad class of ESL
descriptions. This makes our approach particularly sletédy certifying security-
critical hardware which are often synthesized from donsgiaeific languages [6].

— The approach produces a certifimference flowwhich makes explicit generic
invariants that must be preserved by different transfoionat The reference flow
serves as a formal specification for reliable, aggressimthggis transformations.

Formal verification has enjoyed significant successes irattaysis of industrial
hardware designs [7, 8]. Nevertheless, applying formdfieation directly to certify a
synthesizedlesign is undesirable for two reasons. First, it defeatvéng purpose of
behavioral synthesis as a vehicle for raising design atigtrasince it requires reason-
ing at the level of the synthesized design rather than thaiefal description. Second,
the cost of analyzing a complex design is substantial anccdisé must be incurred
for each design certification. Instead, our approach tarfetsynthesis flopthereby
raising the level of abstraction necessary for designfaetion.

In the remainder of this section, we first provide a brief ei@v of behavioral
synthesis with an illustrative example; we then describreapproach in greater detail.

1.1 Behavioral Synthesis and An lllustrative Example

A behavioral synthesis tool accepts a design descriptidrealibrary of hardware re-
sources; it performs a sequence of transformations on therigdon to generate RTL.
The transformations are roughly partitioned into the felltg three phases.

— Compiler transformations. These include loop unrolling, common subexpression
elimination, copy propagation, code motion, etc. Furthenen expensive opera-
tions (e.g, division) are often replaced with simpler onesy, subtraction).

— Scheduling.This phase determines the clock step for each operationofieging
between operations is constrained by the data and confrehdkencies. Scheduling
transformations include chaining operations across ¢mmdil blocks and decom-
posing one operation into a sequence of multi-cycle opmratbased on resource
constraints. Furthermore, several compiler transformnatare employed, exploit-
ing (and creating opportunities for) operation decompasiand code motions.

— Resource binding and control synthesisThis phase binds operations to func-
tional units, allocates and binds registers, and genetiaéesontrol circuit to im-
plement the schedule.

After these transformations, the design can be expressBdlasThis design is sub-
jected to further manual optimizations to fine-tune for parfance and power.

Each synthesis transformation is non-trivial. The consege of their composition
is a significant difference in abstraction from the origidakcription. To illustrate this,
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Fig. 1. (A) C code for TEA encryption function. (B) Schema of RTL dyasized by AutoPilot.

consider the synthesis of the Tiny Encryption Algorithm )H9]. Fig. 1 shows a
C implementation and the circuit synthesized by the AutitHikehavioral synthesis
tool [10]. The following transformations are involved ireteynthesis of the circuit.

— In the first phase, constant propagation removes unnegegsébles.

— In the second phase, the key scheduling transformatiooimeefd ispipelining, to
enable overlapping execution of operations from diffeteap iterations.

— In the third phase, operations are bound to hardware ressg, “+" operation
to an adder), and the FSM module is generated to schedulgt@perations.

Each transformation must respect subtle design invariduts instance, paralleling
operations from different loop iterations must avoid raoeditions, and scheduling
must respect data dependencies. Since such consideratioastangled with low-level
heuristics, it is easy to have errors in the synthesis toplémentation, resulting in
buggy designs [5]. However, the difference in abstracéeel makes direct comparison
between the C and RTL descriptions impractical; perfornsingh comparison through
sequential equivalence checking [11] requires cost-pithe symbolic co-simulation
to check input/output correspondence.

1.2 Approach Overview

We address the above issue by breaking the certificationt@eral synthesis trans-
formations into two componentserified andverifying.> Fig. 2 illustrates our frame-
work. A verified transformation is formally certified once and for all usitggdrem

5 The terms Verified’ and “verifying” as used here are borrowed from analogous notions in the
compiler certification literature.
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Fig. 2. Framework for certification of behavioral synthesis flows

proving; averifying transformation is not itself verified, but each instancedsoan-
panied by a verification of correspondence between inpubatglut. The viability of
decomposition is justified by the nature of behavioral sgaih Transformations ap-
plied at the higher level,g(g, compiler and scheduling transformations) are generic.
The cost of a monolithic proof is therefore mitigated by thesability of the transfor-
mation over different designs. Such transformations makéhaverified component.
On the other hand, the optimizations performed at the loawel§ are unique to the de-
sign being synthesized; these transformations constftateerifying component. Since
the verification is discharged per instance, it must be falljomatic. However, these
transformations tend to be localized and independent diajlmvariants, making it
tractable to verify them automatically by sequential eglemce checking.

1.3 Golden Circuit Model and Synthesis Certification

In a practical synthesis tool, transformations are implatiee with low-level, optimized
code. A naive approach for therified componente.g, to formally verify such a tool
with all optimizations would be prohibitive. Furthermogeich an approach would tie
the framework to a single tool, limiting reusability.

To mitigate this challenge, we develop a formal, graph-tiasestraction called
clocked control/data flow grapfCCDFG), which serves as the universal golden circuit
model. We discuss our formalization of CCDFG in Section 2DEG is an abstrac-
tion of the control/data flow graph (CDFG) — used as an int&liate representation in
most synthesis tools — augmented with a schedule. The ctosgection between the
formal abstraction and the representation used in a syistes enables us to view
synthesis transformations as transformations on CCDF@¢whviating a morass of
tool-specific details. We constructeference flovas a sequence of CCDFG transforma-
tions as follows: each transformation generates a CCDFGdlgaaranteed to preserve
semantic correspondence with its input. A production fiamsation is decomposed
into primitive transformationstogether with algorithms/heuristics that determine the



application sequence of these transformations. Once thtipe transformations are
certified, the algorithms or heuristics do not affect thereciness of a transformation
sequence, only the performance. The reference flow reguirédmowledge about the
algorithms/heuristics which are often confidential to atkgsis tool.

Given a synthesized hardware desi§rand its corresponding behavioral descrip-
tion, the certification of the hardware can be mechanicalyggmed as follows.

— Extract the CCDF@ from the behavioral description.

— Apply the certified primitive transformations from the reface flow, following the
application sequence provided by the synthesis tool. Thdtris a CCDFQ’ that
is close to taD in abstraction level.

— Apply equivalence checking to guarantee corresponderteesbaC’ andD.

The overall correctness of this certification is justifiedthg correctness of theerified
andverifying components and their coupling through the CCDEG

How does the approach disentangle the certification of dnegited hardware from
the inner workings of the synthesis tool? Although eachfiedttransformation mimics
a corresponding transformation applied by the tool, frompkrspective ofertifying
the hardware they are merely heuristic guides transfor@@BFGs to facilitate equiv-
alence checking: certification of the synthesized hardwedtaces to checking that the
initial CCDFG reflects the design intent. The initial CCDFG can beraatically ex-
tracted from the synthesis tools’ initial internal repretsgion® Furthermore, the frame-
work abstracts low-level optimizations making the verifica problem tractable.

The rest of the paper is organized as follows. In Section 2eegnt the semantics
of CCDFG. In Section 3 we discuss how to use theorem provingtify the correctness
of generic CCDFG transformations. In Section 4 we presenequivalence checking
procedure. We provide initial experimental results in #&ch, discuss related work in
Section 6, and conclude in Section 7.

2 Clocked Control/Data Flow Graphs

A CCDFG can be viewed as a form@aintrol/data flow grapfCDFG) — used as inter-
nal representation in most synthesis tools including SpatkAutopilot — augmented
with a schedule. Fig. 3 shows two CCDFGs for the TEA encryptithe semantics
of CCDFG are formalized in the logic of the ACL2 theorem pnoje]. This section
briefly discusses the formulation of a CCDFG,; for a more catgphccount, see [13].
The formalization of CCDFG assumes that the underlying aigg provides the
semantics for a collectiompsof primitive operationsThe primitive operationsin Fig. 1
include comparison and arithmetic operations. We alsonassal partition of design
variables intcstate variablesandinput variables Variable assignments are assumed to
be in a Static in Single Static Assignment (SSA) form. Deslgscriptions are assumed
to be amenable to control and data flow analysis. Control fiolaroken up into basic

® Since the input description is normally unclocked, theiahi€CDFG does not contain sched-
ule information, and can be viewed as a CDFG. Schedules asrafed by synthesis transfor-
mations that turn the unclocked representation to a clooked
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Fig. 3.(A) Initial CCDFG of TEA encryption function. (B) Transforaa CCDFG after pipelining.
The shaded regions represent scheduling steps, and wkie t&present microsteps. For brevity,
only the control flow is shown; data flow is omitted. Althoudietunderlying operations are
assumed to be in SSA form, the diagrams aggregate sevegi sissignments for simplicity.

blocks. Data dependency is given by “read after write” payadop; is data dependent
onop; if op; occurs aftepp; in some control flow path and computes an expression over
some state variablethat is assigned most recently by; in the path. The language is
assumed to disallow circular data dependencies.

Definition 1 (Control and Data Flow Graphs). Let ops £ {op1,...,op,} be a set
of operations over some skt of (state and input) variables, anigh be a set of basic
blocks each consisting of a sequence of operatiordata flow graphGp over ops is
a directed acyclic graph with vertex set opscéntrol flow graphG¢ is a graph with

vertex set bb and each edge labeled with an assertiondver

An edge inG p fromop; to op; represents data dependency, and an edge:ifrom bb;
to bb; indicates thabb; is a direct predecessor &f; in the control flow of. An assertion
on an edge holds whenever program control makes the conmdspptransition.

Definition 2 (CDFG). Let ops = {op1,...,opn} be a set of operations over a set
of variablesV, bb = {bby,...,bb,} be a set of basic blocks oveps, Gp andG¢
are data and control flow graphs oveps and bb respectively. ACDFG is the tuple
Geop £ (Gp,Ge, H), whereH is a mappingH : ops — bb such thatH (op;) = bb,

iff op; occurs inbb;.



The execution order of operations in a CDFG is irrelevanbag las control and data
dependencies are respected. The definitiomiofostepsnakes this notion explicit.

Definition 3 (Microstep Ordering and Partition). LetGcp £ (Ge,Gp, H), where
the set of vertices ofi¢ is bb £ {bby,...,bb;}, and the set of vertices iip is
ops 2 {op1,...,op,}. For eachbb, € bb, a microstep orderings a relation <,
over ops(bb) = {op; : H(op;) = bby} such thatop, <. op, if and only if there is
a path fromop,, to op; in the subgraptGp i of Gp induced byops(bbi). A microstep
partition of bb, under <y, is a partition M, of ops(bby,) satisfying the following two
conditions. (1) For eaclp € My, if op,, opy € p thenop, 4 opy, andopy, Ak opg. (2)
If p,q € My, with p # q, op, € p, opy € q, andop, < opsy, then for eachop, € p
andopy € q opy A1 ope .- Amicrostep partition of7op is a setM containing each
microstep partitionM/,.

If op, andop, are in the same partition, their order of execution does raitemn if p
andgq are two microsteps whene <. ¢, the operations ip must be executed before
q to respect the data dependencies. Note that we treat differgtances of the same
operation as different (with same semantics); this perstippgilation of ' as a function
instead of a relation, and simplifies the formalization. ig.B, each white box corre-
sponds to a microstep partition. SinGg, is acyclic, < is an irreflexive partial order
on ops(bby,) and the notion of microstep partition is well-defined. Gixeemicrostep
partition M 2 {mg,my,...} of Gop eachm; is called amicrostepof Gep. It is
convenient to view<, as a partial order over the microstepsbf.

CCDFGs are formalized by augmenting a CDFG with a schedwasider a mi-
crostep partitionV/ of Gop. A schedulel” of M is a partition orgroupingof M; for
m1, me € M, if m; andmg are in the same group if, we say that they belong to the
same scheduling step. Informally, if two microstepslihare in the same group il
then they are executed within the same clock cycle.

Definition 4 (CCDFG). A CCDFGis a tupleG £ (Gcp, M, T), whereGep is a
CDFG, M is a microstep partition of7-p, andT is a schedule oi/.

We formalize CCDFG executions through a state-based s&rsaAtCCDFG states

a valuation of state variables, an€C&DFG inputis a valuation of input variables. We
also assume a well-defindditial state Given a sequence of inputs, anexecutiorof

a CCDFGG = (Gep, M,T) is a sequence of CCDFG states that corresponds to an
evaluation of the microsteps ii¥ respectind/.

Finally, we consideoutputsandobservation An outputof a CCDFGG is some
computable functiorf of (a subset of) state variables Gf informally, f corresponds
to some output signal in the circuit synthesized frénTo formalize this in ACL2's
first order logic, the output is restricted to a Boolean eggi@n of the state variables;
the domain of each state variable itself is unrestrictedclvinables us to represent
programs such as the Greatest Common Divider (GCD) algorittat do not return
Boolean values. For each statef GG, theobservatiorcorresponding to an outpytat
states is the valuation off unders. Given a sef” of output functions, any sequenée
of states ofGG induces a sequence of observati@hswe refer toO as theobservable
behaviorof £ underF'.



3 Certified Compilation

Certifying a transformatioff requires showing that if the applicationdfon a CCDFG

G generates a new CCDFG’, then there is provable correspondence between the
executions of7 andG’. The certification process crucially depends on a formabnot

of correspondence to relate the executions7oénd G’. Note that the notion must
comprehend differences between execution order of opesatis long as the sequence
of observations is unaffected. The notion we use is loosaet orstuttering trace
containmenfl14, 15]. Roughly, a CCDF@' refines( if for each execution ofs’ there

is an execution of7 that produces the same observable behavior up to stuttéieg
formalize this notion below.

Definition 5 (Compressed Execution)Let€ £ s, s1, . .. be an execution of CCDFG
G and F' be a set of output functions ovét. Thecompressiorof £ under F' is the
subsequence & obtained by removing each such thatf(s;) = f(s;+1) for every
ferF.

Definition 6 (Trace Equivalence).Let G and G’ be two CCDFGs on the same set
of state and input variableg, and £’ be executions off and G’ respectively, and”

be a set of output functions. We say tiais trace equivalento £’ if the observable
behavior of the compression &funderF is the same as the observable behavior of the
compression of’ underF'.

Definition 7 (CCDFG Refinement).We say that a CCDFG’ refinesG if for each
executiort’ of G’ there is an executioéi of G such that is trace equivalent tg”.

Remark 1.For theverifiedcomponent, we use refinement instead of full equivalence as
a notion of correspondence between CCDFGs, to permit ctinggbe same ESL de-
scription with a number of different concrete implementas. In theverifying frame-
work, we will use a stronger notion of equivalence (and imfjeuivalence without
stuttering), to facilitate sequential equivalence chegki

In addition to showing that a transformation on a CCD&E@roduces a refinement
of G, we must account for the possibility that a transformati@yroe applicable t6-
only if G has a specific structural characteristic; furthermore éselt of application
might produce a CCDFG with a characteristic to facilitatelbsequent transformation.
To make explicit the notion of applicability of a transfortiaa, we view a transforma-
tion as a “guarded commana”’£ (pre, T, post): 7 is applicable to a CCDFG which
satisfiegpre and produces a CCDFG which satisfjesst

Definition 8 (Transformation Correctness).A transformationr £ (pre, T, post) is
correctif the result of applyin@ to any CCDFGG satisfyingpre refinesG; and satisfies
post.

The following theorem is trivial by induction on the sequeraf transformations.
Here[7y, ..., 7,] represents the compositiondy, . . ., 7,.

Theorem 1 (Correctness of Transformation Sequences)etr, ..., , be some se-
quence of correct transformations, whete= (pre;, T;, post;), Letpost; = pre; 1,
1 < i < n. Then the transformatiofpre, 7o, 71, . . ., Tn], post,,) is correct.



Theorem 1 justifies decomposition of a transformation inteegquence of primitive
transformations. Note that the proof of Theorem 1 is inddpanof a specific transfor-
mation. We thus constructraference flovas follows. (1) Identify and distill a sequence
70, - - - , T, OF primitive transformations; (2) verify; individually; and (3) check that for
each0 < i < n, post; = pre; . Theorem 1 guarantees the correctness of the flow.

Verifying the correctness of individual guarded transfations using theorem prov-
ing might involve significant manual effort. To amelioratest cost, we identify and
derivegeneric theoremthat can certify a class of similar transformations. As apéanm
example, consider any transformation that refines the stbetihe following theorem
states that each such transformation is correct.

Theorem 2 (Correctness of Schedule RefinementletG = (Gop, M, T) andG’ £
(Gep, M, T") be CCDFGs such that for any two microsteps m; € M if T’ assigns
m; andm; the same group then so ddEsThenG’ is a refinement of.

Theorem 2 is admittedly trivial; it is only shown here fouskration purposes. How-
ever, the same approach can verify more complex transfaynsat-or example, con-
sider the constant propagation and pipelining transfaonatshown in Figure 3 for
our TEA example. The implementations of these transfonatinvolve significant
heuristics, for instance, to determine whether to applyttéiesformations in a specific
case, how many iterations of the loop should be pipelined Hdwever, from the per-
spective of correctness, the only relevant conditions atieutwo transformations are:
(1) if a variablev is assigned a constantthenwv can be eliminated by replacing each
occurrence with; and (2) a microstepr,; can be overlapped with microstep; from a
subsequent iteration if for eaatp, € m; andop; € m;, op; A op, in G. Since these
conditions are independent of a specific desigmy,( TEA) to which the transforma-
tion is applied, the same certification can be used to jugfgpplicability for diverse
designs. The approach is viable because we employ theomrmgrwhich supports
an expressive logic, thereby permitting stipulation of ¢femeral conditions above as
formal predicates in the logic. For example, as we show iniptes work [16], we can
make use of first-order quantification to formalize a genegfmement proof of arbi-
trary pipelines, which is directly reusable for verificatiof the pipeline transformation
in our framework. Another generic transformation that islely employed in behav-
ioral synthesis i®peration balancingits correctness depends only on the fact that the
operations involved are associative and commutative andegroven for CCDFGs
containing arbitrary associative-commutative operation

We end the discussion of therifiedframework with another observation. Since the
logic of ACL2 is executablepre andpostcan be efficiently executed for a given con-
crete transformation. Thus, a transformatior® (pre, 7, post) can be appliecven
before verificatiorby usingpre and postfor runtime checks: if a CCDFG: indeed
satisfiespre and the application of on G results in a CCDFG satisfyingostthen the
instanceof application ofr onG can be composed with other compiler transformations;
furthermore, the expense of the runtime assertion cheaddnge alleviated by gener-
ating aproof obligation for a specific instangehich is normally more tractable than a
monolithic generic proof of the correctnessrofThis provides a trade-off between the
computational expense of runtime checks and verificatiandi¥idual instances with
a (perhaps deep) one-time proof of the correctness of aftranation.



4 Equivalence Checking

We now discuss how to check equivalence between a CCDFG singrithesized cir-
cuit. Theverifiedcomponent facilitates close correspondence betweenahsfarmed
CCDFG and the synthesized circuit, critical to the scalighiif equivalence checking.

4.1 Circuit Model

We represent a circuit as a Mealy machine specifying the tesda the state elements
(latches) in each clock cycle. Our formalization of cirsug typical in traditional hard-
ware verification, but we make combinational nodes exgliciacilitate the correspon-
dence with CCDFGs.

Definition 9 (Circuit). A circuit is a tupleM = (I, N, F) where[ is a vector of
inputs; N is a pair (N, N;) whereN. is a set oftombinational nodeand N, is a set
of latches and F' is a pair (F.., F,;) whereF,, maps each combinational nodez N,

to an expression ove¥,. U Ny U I and for each latchl € Ny, F,; maps each latch to

n € N.U Ny U I whereFy is a delay function which takes the current value:db be
the next-state value af

A circuit stateis an assignment to the latches/\fy. Given a sequence of valuations
to the inputsig, i1, . . ., acircuit trace of M is the sequence of stateg, s1, .. ., where
(1) so is the initial state and (2) for eagh> 0, the states; is obtained by updating the
elements iV, given the state valuatios}_; and input valuatior;_,. Theobservable
behaviorof the circuit is the sequence of valuations of theputswhich are a subset
of latches and combinational nodes.

4.2 Correspondence between CCDFGs and Circuits

Given a CCDFGG and a synthesized circuit/, it is tempting to define a notion of
correspondence as follows: (1) Establish a fixed mappingdsst the state variables
of G and the latches i/, and (2) stipulate an execution 6f to be equivalent to
an execution of\/ if they have the same observable behavior. However, this doe
work in general since the mappings between state variahlk$agches may be differ-
ent in each clock cycle. To address this, we introdddd ap : ops — N., mapping
CCDFGoperationgo the combinational nodes in the circuit: each operationapped
to the combinational node that implements the operatientapping is independent
of clock cycles. Fig. 4 shows the mapping for the synthescexlit of TEA. Recall
from Section 1.1 that the FSM decides ttantrol signalsfor the circuit; the FSM is
thus excluded from the mapping. We now define the equivalbeteeen and M .

Definition 10. A CCDFG stater of G is equivalent to a circuit state of M with
respect to an inputand a microstep partition, if for each operatiorp in ¢, the inputs
to op according tar and: are equivalent to the inputs tB M ap(op) according tos and
EMap(i), i.e., the values of each inputdp and the corresponding input tBM ap(op)
are equivalent, and the outputs@f are equivalent to the outputs &M ap(op).
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< +2)A(0+i1)A(10>>5)+i3)
out

[ return | [ pl_s!;n =1 |
T

tmp26 = sum0+0x9e3779b9 |-+~ -

tmp39 = ( (v1_0 << 4)+k0)* -
(tmp26 + v1_0) A (v1_0>>5) -t
+k1))

T
tmp41 = tmp39 + v0_0 e IOt
tmpd9 = (tmpd1 + tmp26) ~ | -~~~
((tmp41 >> 5) + k3) viol —

Fig. 4. Synthesized circuit for TEA and the corresponding openatitapping with pipelined
CCDFG; dotted lines represent mapping from CCDFG operstiocombinational circuit nodes.

Definition 11. Given a CCDFGG and a circuitM, G is equivalent taV/ if and only
if for any executiorizg, z1, 22, . . .] of G generated by an input sequenég i1, iz, . . .]
and by microstep partitiofég, 1, . . .] of G, and the state sequen¢®), s1, so, .. .| of
M generated by the input sequerd@eM ap(ip), EMap(i1), EMap(is), .. .|, z; and
s are equivalent with respect tQ underiy, k£ > 0.

4.3 Dual-Rail Simulation for Equivalence Checking

We check equivalence between CCDEGand circuit}M by dual-rail symbolic simu-
lation (Fig. 5); the two rails simulat&é’ and M respectively, and are synchronized by
clock cycle. The equivalence checking in clock cyklis conducted as follows:

Single Clock Cycle
CCCDFG ) Simulation of CCDFG

Eqivél@llence Inbut Yes. Fixed Point Computation Equivalent No
Maﬁping Cons‘xtraints or Execution up to Given Bolhs\ g

!

- Single Clock Cycle
CCITCUII ) Simulation of Circuit

Fig. 5. Dual-Rail simulation scheme for equivalence checking keetwCCDFG and circuit.



1. The current CCDFG statg, and circuit state,, are checked to see whether for the
inputig, the inputs to each operatiep in the scheduling stefy, are equivalent to
the inputs toE Map(op). If yes, continue; otherwise, report inequivalence.

2. G is simulated by executing, on z; underi; to computer;,, and recording the
outputs of eaclop € t;. M is simulated for one clock cycle fros, under input
EMap(ix) to computes,41. The outputs for eachp are checked for equivalence
with the outputs o M ap(op). If yes, continue; otherwise, report inequivalence.

3. The next scheduling step.; is determined from control flow. if, has multiple
outgoing control edges, the last microstep,oéxecuted is identified. The outgoing
control edge from this microstep whose condition evaluttésie leads t@ 1.

We permit both bounded and unbounded (fixed-point) simadati In particular, the
simulation proceeds until (i) the equivalence check féilsthe end of a bounded input
sequence is reached, or (iii) a fixed point is reached for &ounded input sequence.

We have implemented the dual-rail scheme on the bit levethénintel Forte en-
vironment [17], where symbolic states are representedqyBiPDs. We have also im-
plemented the scheme on the word level with several builiptimizations, using Sat-
isfiability Modulo Theories (SMT); this is viable since welglvel mappings between
operations and circuit nodes are explicit. We use bit-visdim encode the variables in
the CCDFG and the circuit; the SMT engine checks input/cigquivalence and deter-
mines control paths. Our word-level checker is based on ¥@3SMT engine [18].

The bit-level and word-level checkers are complementdrg.fit-level checker en-
sures that the equivalence checking is decidable, whilevtrd-level checker provides
the optimizations crucial to scalability. The word-levlekecker can make effective use
of results from bit-level checking in many cases. One tylpscanario is as follows.
SupposéV/ is a design module of modest complexity but is awkward to kla¢evord-
level. Then the bit-level checker is used to check the edprive of the CCDFG o/
with its circuit implementation; when the word-level checks used for equivalence
checking of a module that call¥/, it skips the check of\/, treating the CCDFG ol/
and its circuit implementation as equivalent black boxes.

5 Experimental Results

We used the bit-level checker on a set of CCDFGs for GCD anctdineesponding
circuits synthesized by AutoPilot. The experiments wenedemted on a workstation
with 3GHz Intel Xeon processor withGB memory. Table 1 shows the statistics before
and after schedule refinement (Theorem 2). Since we bit-BleB€ CDFG operations,
the running time grows exponentially with the bit width; f&bit GCD, checking re-
quires abou® hours. It is interesting to understand how schedule refimeraffects
the performance of equivalence checking. Schedule refinepagtitions operations in
the loop body into two clock cycles. This does not change fpeht computation;
however, the number of cycles for which the circuit is sinedbdoubles. For small bit-
widths, the running time after schedule refinement is abeattimes slower than that
before. However, for large bit widths, the running time isrdoated by the complexity
of the CCDFG simulation instead of the circuit simulatiomeTdecrease in time with
the increase in bit width frorfi to 8 is likely due to BDD variable reordering.



Table 1. Bit-level equivalence checking statistics

Circuit Before schedule refinemenifter schedule refinement
Bit Width | # of Node${Time (Sec.) BDD Nodes || Time (Sec.) BDD Nodes

2 96 0.02 503 0.02 783

3 164 0.05 4772 0.07 11113
4 246 0.11 42831 0.24 20937
5 342 0.59 16244 1.93 99723
6 452 12.50 39968 27.27 118346
7 576 369.31 220891 383.98 164613
8 714 6850.56 1197604 3471.74 581655

Using our word-level checker, we have checked several RHigds synthesized
by AutoPilot with CCDFGs derived from AutoPilot’s intermate representations; the
statistics are shown in Table 2. The designs illustratecbfiit facets of the framework.

Table 2. Word-level equivalence checking statistics

Design GCD| TEA | DCT | 3DES| 3DESkey
C Code Size (#of Lines) 14 | 12 | 52 | 325 412
RTL Size (# of Lines) | 364 | 1001| 688 | 18053| 79976
Time (Seconds) 2 15.6| 30.1| 355.7| 2351.7
Memory (Megabytes) | 4.1 | 24.6| 49.2| 59.4 307.2

GCD contains a loop whose number of iterations depends omghes. TEA has an
explicitly bounded loop. DCT contains sequential compatatvithout loop. 3DES rep-
resents a practical design of significant size. 3IKeg is included to illustrate the scal-
ability of our approach on relatively large synthesizedgles. The results demonstrate
the efficacy of our word-level equivalence checking. In cast, full word-level sym-
bolic simulation comparing the input/output relations adif@l RTL runs out of memory
on all the designs but DCT (for which it needs twice as mucletand memory).

6 Related Work

An early effort [19] on verification of high-level synthes#&gets the behavioral portion
of VHDL [20]. A translation from behavioral VHDL to dependemflow graphs [21]
was verified by structural induction based on the CSP [22]asdits. Recently, there
has been research on certified synthesis of hardware fromafdanguages such as
HOL [23] in which a compiler that automatically translatesursive function defini-
tions in HOL to clocked synchronous hardware has been deedIA certified hard-
ware synthesis from programs in Esterel, a synchronougnlésiguage, has been also
been developed [24] in which a variant of Esterel was embeddEelOL.

Dave [25] provides a comprehensive bibliography of conmpitzification. One of
the earliest work on compiler verification was the Piton pcbj26], which verified a



simple assembly language compiler. Compiler certificatizms a critical component
of the Verisoft project [27], aiming at correctness of impkntations of computing sys-
tems with both hardware and software components. The VEBipand CompCert [29]
projects have explored a general framework for certificatibcompilers for various C
subsets [30, 31]. There has also been work wardying compiler, where each instance
of a transformation generates a proof obligation dischiilyea theorem prover [32].
There has been much research on sequential equivalendérahéSEC) between
RTL and gate-level hardware designs [33, 34]. Researchlba$a done on combina-
tional equivalence checking between high-level desigssftware-like languagesg(g,
SystemC) and RTL-level designs [11]. There has also beernt & SEC between soft-
ware specifications and hardware implementations [35]: E583sertion graphs [36]
were extended so that an assertion graph edge have pre anzbpdgion labels, and
also associated assignments that update state variablee fias also been work on
equivalence checking with other graph representatieigs,Signal Flow Graph [37].

7 Conclusion

We have presented a framework for certifying behaviorattsssis flows. The frame-
work includes a combination aferified andverifying paradigms: high-level transfor-
mations are certified once and for all by theorem provingJeviow-level tweaks and
optimizations can be handled through model checking. Weotisinated the use of the
CCDFG structure as an interface between the two compon@etsfication of differ-
ent compiler transformations is uniformly specified by viegithem as manipulation of
CCDFGs. The transformed CCDFG can then be used for equaatgrecking with the
synthesized design. One key benefit of the approach is tbhviates the need for de-
veloping formal semantics for each different intermediafgresentation generated by
the compiler. Furthermore, the low-level optimizationplemented in a synthesis tool
are abstracted from the reasoning framework without weakethe formal guarantee
on the synthesized design. Our experimental results itelibat the approach scales to
verification of realistic designs synthesized by productgnthesis tools.

In future work, we will make further improvements to improsealability. In the
verifiedcomponent, we are formalizing other generic transfornmatéog, code motion
across loop iterations. In theerifying component, we are considering the use of theo-
rem proving to partition a CCDFG into smaller subgraphs fampositional certifica-
tion. We are also exploring ways to tolerate limited peratidns in mappings between
CCDFGs and circuitse(g, due to manual RTL tweaks) in their equivalence checking.
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