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Abstract. We present a framework for certifying hardware designs generated
through behavioral synthesis, by using formal verificationto certify the associ-
ated synthesis transformations. We show how to decompose this certification into
two components, which can be respectively handled by the complementary verifi-
cation techniques, theorem proving and model checking. Theapproach produces
a certified reference flow, composed of transformations distilled from production
synthesis tools but represented as transformations on graphs with an associated
formal semantics. This tool-independent abstraction disentangles our framework
from the inner workings of specific synthesis tools while permitting certification
of hardware designs generated from a broad class of behavioral descriptions. We
provide experimental results suggesting the scalability on practical designs.

1 Introduction

Recent years have seen high complexity in hardware designs,making it challenging
to develop reliable, high-quality systems through hand-crafted Register Transfer Level
(RTL) or gate-level implementations. This has motivated a gradual migration away from
RTL towards Electronic System Level (ESL) designs which permit description of de-
sign functionality abstractly in high-level languages,e.g., SystemC. However, the ESL
approach crucially depends on reliable tools forbehavioral synthesis, that is, automated
synthesis of a hardware circuit from its ESL description. Behavioral synthesis tools ap-
ply a sequence of transformations to compile the ESL description to an RTL design.

Several behavioral synthesis tools are available today [1–4]. Nevertheless, and de-
spite its great need, behavioral synthesis has not yet foundwide acceptance in indus-
trial practice. A major barrier to its adoption is the lack ofdesigners’ confidence in
correctness of synthesis tools themselves. The differencein abstraction level between a
synthesized design and the ESL description puts the onus on behavioral synthesis to en-
sure that the synthesized design indeed conforms to the description. On the other hand,
synthesis transformations necessary to produce designs satisfying the growing demands
of performance and power include complex and aggressive optimizations which must
respect subtle invariants. Consequently, synthesis toolsare often either (a) error-prone
or (b) overly conservative, producing circuits of poor quality and performance [4, 5].

† Yan Chen was a M.S. student at Portland State University whenhe participated in this research.
⋆ This research was partially supported by a grant from Intel Corporation.



In this paper, we develop a scalable, mechanized framework for certifying behav-
ioral synthesis flows. Certification of a synthesis flow amounts to the guarantee that its
output preserves the semantics of its input description; thus, the question of correct-
ness of the synthesized design is reduced to the question of analysis of the behavioral
description. Our approach is distinguished by two key features:

– Our framework isindependentof the inner workings of a specific tool, and can be
applied to certify designs synthesized by different tools from a broad class of ESL
descriptions. This makes our approach particularly suitable for certifying security-
critical hardware which are often synthesized from domain-specific languages [6].

– The approach produces a certifiedreference flow, which makes explicit generic
invariants that must be preserved by different transformations. The reference flow
serves as a formal specification for reliable, aggressive synthesis transformations.

Formal verification has enjoyed significant successes in theanalysis of industrial
hardware designs [7, 8]. Nevertheless, applying formal verification directly to certify a
synthesizeddesign is undesirable for two reasons. First, it defeats thevery purpose of
behavioral synthesis as a vehicle for raising design abstraction since it requires reason-
ing at the level of the synthesized design rather than the behavioral description. Second,
the cost of analyzing a complex design is substantial and thecost must be incurred
for each design certification. Instead, our approach targets thesynthesis flow, thereby
raising the level of abstraction necessary for design certification.

In the remainder of this section, we first provide a brief overview of behavioral
synthesis with an illustrative example; we then describe our approach in greater detail.

1.1 Behavioral Synthesis and An Illustrative Example

A behavioral synthesis tool accepts a design description and a library of hardware re-
sources; it performs a sequence of transformations on the description to generate RTL.
The transformations are roughly partitioned into the following three phases.

– Compiler transformations. These include loop unrolling, common subexpression
elimination, copy propagation, code motion, etc. Furthermore, expensive opera-
tions (e.g., division) are often replaced with simpler ones (e.g., subtraction).

– Scheduling.This phase determines the clock step for each operation. Theordering
between operations is constrained by the data and control dependencies. Scheduling
transformations include chaining operations across conditional blocks and decom-
posing one operation into a sequence of multi-cycle operations based on resource
constraints. Furthermore, several compiler transformations are employed, exploit-
ing (and creating opportunities for) operation decomposition and code motions.

– Resource binding and control synthesis.This phase binds operations to func-
tional units, allocates and binds registers, and generatesthe control circuit to im-
plement the schedule.

After these transformations, the design can be expressed asRTL. This design is sub-
jected to further manual optimizations to fine-tune for performance and power.

Each synthesis transformation is non-trivial. The consequence of their composition
is a significant difference in abstraction from the originaldescription. To illustrate this,



void encrypt ( u i n t 3 2 t∗ v , u i n t 3 2 t∗ k ) {
/∗ set up ∗ /
u i n t 3 2 t v0=v [ 0 ] , v1=v [ 1 ] , sum=0 , i ;
/∗ a key schedule constant ∗ /
u i n t 3 2 t de l t a =0x9e3779b9 ;
/∗ cache key ∗ /
u i n t 3 2 t k0=k [ 0 ] , k1=k [ 1 ] ,

k2=k [ 2 ] , k3=k [ 3 ] ;

/∗ basic cyc le s t a r t ∗ /
for ( i =0; i < 32; i ++) {

sum += de l t a ;
v0 += ( ( v1<<4)+k0 ) ˆ ( v1 + sum)

ˆ ( ( v1>>5)+k1 ) ;
v1 += ( ( v0<<4)+k2 ) ˆ ( v0 + sum)

ˆ ( ( v0>>5)+k3 ) ;
}

/∗ end cyc le ∗ /
v [0 ]= v0 ; v [1 ]= v1 ;

}
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Fig. 1. (A) C code for TEA encryption function. (B) Schema of RTL synthesized by AutoPilot.

consider the synthesis of the Tiny Encryption Algorithm (TEA) [9]. Fig. 1 shows a
C implementation and the circuit synthesized by the AutoPilot behavioral synthesis
tool [10]. The following transformations are involved in the synthesis of the circuit.

– In the first phase, constant propagation removes unnecessary variables.
– In the second phase, the key scheduling transformation performed ispipelining, to

enable overlapping execution of operations from differentloop iterations.
– In the third phase, operations are bound to hardware resources (e.g., “+” operation

to an adder), and the FSM module is generated to schedule circuit operations.

Each transformation must respect subtle design invariants. For instance, paralleling
operations from different loop iterations must avoid race conditions, and scheduling
must respect data dependencies. Since such considerationsare entangled with low-level
heuristics, it is easy to have errors in the synthesis tool implementation, resulting in
buggy designs [5]. However, the difference in abstraction level makes direct comparison
between the C and RTL descriptions impractical; performingsuch comparison through
sequential equivalence checking [11] requires cost-prohibitive symbolic co-simulation
to check input/output correspondence.

1.2 Approach Overview

We address the above issue by breaking the certification of behavioral synthesis trans-
formations into two components,verified andverifying.5 Fig. 2 illustrates our frame-
work. A verified transformation is formally certified once and for all using theorem

5 The terms “verified” and “verifying” as used here are borrowed from analogous notions in the
compiler certification literature.
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Fig. 2. Framework for certification of behavioral synthesis flows

proving; averifying transformation is not itself verified, but each instance is accom-
panied by a verification of correspondence between input andoutput. The viability of
decomposition is justified by the nature of behavioral synthesis. Transformations ap-
plied at the higher level, (e.g., compiler and scheduling transformations) are generic.
The cost of a monolithic proof is therefore mitigated by the reusability of the transfor-
mation over different designs. Such transformations make up theverifiedcomponent.
On the other hand, the optimizations performed at the lower levels are unique to the de-
sign being synthesized; these transformations constitutetheverifying component. Since
the verification is discharged per instance, it must be fullyautomatic. However, these
transformations tend to be localized and independent of global invariants, making it
tractable to verify them automatically by sequential equivalence checking.

1.3 Golden Circuit Model and Synthesis Certification

In a practical synthesis tool, transformations are implemented with low-level, optimized
code. A naive approach for theverifiedcomponent,e.g., to formally verify such a tool
with all optimizations would be prohibitive. Furthermore,such an approach would tie
the framework to a single tool, limiting reusability.

To mitigate this challenge, we develop a formal, graph-based abstraction called
clocked control/data flow graph(CCDFG), which serves as the universal golden circuit
model. We discuss our formalization of CCDFG in Section 2. CCDFG is an abstrac-
tion of the control/data flow graph (CDFG) — used as an intermediate representation in
most synthesis tools — augmented with a schedule. The close connection between the
formal abstraction and the representation used in a synthesis flow enables us to view
synthesis transformations as transformations on CCDFG, while obviating a morass of
tool-specific details. We construct areference flowas a sequence of CCDFG transforma-
tions as follows: each transformation generates a CCDFG that is guaranteed to preserve
semantic correspondence with its input. A production transformation is decomposed
into primitive transformations, together with algorithms/heuristics that determine the



application sequence of these transformations. Once the primitive transformations are
certified, the algorithms or heuristics do not affect the correctness of a transformation
sequence, only the performance. The reference flow requiresno knowledge about the
algorithms/heuristics which are often confidential to a synthesis tool.

Given a synthesized hardware designD and its corresponding behavioral descrip-
tion, the certification of the hardware can be mechanically performed as follows.

– Extract the CCDFGC from the behavioral description.
– Apply the certified primitive transformations from the reference flow, following the

application sequence provided by the synthesis tool. The result is a CCDFGC′ that
is close to toD in abstraction level.

– Apply equivalence checking to guarantee correspondence betweenC′ andD.

The overall correctness of this certification is justified bythe correctness of theverified
andverifying components and their coupling through the CCDFGC′.

How does the approach disentangle the certification of a synthesized hardware from
the inner workings of the synthesis tool? Although each certified transformation mimics
a corresponding transformation applied by the tool, from the perspective ofcertifying
the hardware they are merely heuristic guides transformingCCDFGs to facilitate equiv-
alence checking: certification of the synthesized hardwarereduces to checking that the
initial CCDFG reflects the design intent. The initial CCDFG can be automatically ex-
tracted from the synthesis tools’ initial internal representation.6 Furthermore, the frame-
work abstracts low-level optimizations making the verification problem tractable.

The rest of the paper is organized as follows. In Section 2 we present the semantics
of CCDFG. In Section 3 we discuss how to use theorem proving toverify the correctness
of generic CCDFG transformations. In Section 4 we present our equivalence checking
procedure. We provide initial experimental results in Section 5, discuss related work in
Section 6, and conclude in Section 7.

2 Clocked Control/Data Flow Graphs

A CCDFG can be viewed as a formalcontrol/data flow graph(CDFG) — used as inter-
nal representation in most synthesis tools including Sparkand Autopilot — augmented
with a schedule. Fig. 3 shows two CCDFGs for the TEA encryption. The semantics
of CCDFG are formalized in the logic of the ACL2 theorem prover [12]. This section
briefly discusses the formulation of a CCDFG; for a more complete account, see [13].

The formalization of CCDFG assumes that the underlying language provides the
semantics for a collectionopsof primitive operations. The primitive operations in Fig. 1
include comparison and arithmetic operations. We also assume a partition of design
variables intostate variablesandinput variables. Variable assignments are assumed to
be in a Static in Single Static Assignment (SSA) form. Designdescriptions are assumed
to be amenable to control and data flow analysis. Control flow is broken up into basic

6 Since the input description is normally unclocked, the initial CCDFG does not contain sched-
ule information, and can be viewed as a CDFG. Schedules are generated by synthesis transfor-
mations that turn the unclocked representation to a clockedone.
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Fig. 3.(A) Initial CCDFG of TEA encryption function. (B) Transformed CCDFG after pipelining.
The shaded regions represent scheduling steps, and white boxes represent microsteps. For brevity,
only the control flow is shown; data flow is omitted. Although the underlying operations are
assumed to be in SSA form, the diagrams aggregate several single assignments for simplicity.

blocks. Data dependency is given by “read after write” paradigm: opj is data dependent
onopi if opj occurs afteropi in some control flow path and computes an expression over
some state variablev that is assigned most recently byopi in the path. The language is
assumed to disallow circular data dependencies.

Definition 1 (Control and Data Flow Graphs). Let ops , {op1, . . . , opn} be a set
of operations over some setV of (state and input) variables, andbb be a set of basic
blocks each consisting of a sequence of operations. Adata flow graphGD over ops is
a directed acyclic graph with vertex set ops. Acontrol flow graphGC is a graph with
vertex set bb and each edge labeled with an assertion overV .

An edge inGD fromopi to opj represents data dependency, and an edge inGC from bbi

to bbj indicates thatbbi is a direct predecessor ofbbj in the control flow of. An assertion
on an edge holds whenever program control makes the corresponding transition.

Definition 2 (CDFG). Let ops , {op1, . . . , opm} be a set of operations over a set
of variablesV , bb , {bb1, . . . , bbn} be a set of basic blocks overops , GD andGC

are data and control flow graphs overops and bb respectively. ACDFG is the tuple
GCD , 〈GD, GC , H〉, whereH is a mappingH : ops → bb such thatH(opi) = bbj

iff opi occurs inbbj.



The execution order of operations in a CDFG is irrelevant as long as control and data
dependencies are respected. The definition ofmicrostepsmakes this notion explicit.

Definition 3 (Microstep Ordering and Partition). LetGCD , 〈GC , GD, H〉, where
the set of vertices ofGC is bb , {bb1, . . . , bbl}, and the set of vertices inGD is
ops , {op1, . . . , opn}. For eachbbk ∈ bb, a microstep orderingis a relation≺k

overops(bbk) , {opi : H(opi) = bbk} such thatopa ≺k opb if and only if there is
a path fromopa to opb in the subgraphGD,k of GD induced byops(bbk). A microstep
partition of bbk under≺k is a partition Mk of ops(bbk) satisfying the following two
conditions. (1) For eachp ∈ Mk, if opa, opb ∈ p thenopa 6≺ opb andopb 6≺k opa. (2)
If p, q ∈ Mk with p 6= q, opa ∈ p, opb ∈ q, andopa ≺k opb, then for eachopa′ ∈ p

andopb′ ∈ q opb′ 6≺k opa′ . A microstep partition ofGCD is a setM containing each
microstep partitionMk.

If opa andopb are in the same partition, their order of execution does not matter; if p
andq are two microsteps wherep ≺k q, the operations inp must be executed before
q to respect the data dependencies. Note that we treat different instances of the same
operation as different (with same semantics); this permitsstipulation ofH as a function
instead of a relation, and simplifies the formalization. In Fig. 3, each white box corre-
sponds to a microstep partition. SinceGD is acyclic,≺k is an irreflexive partial order
on ops(bbk) and the notion of microstep partition is well-defined. Givena microstep
partition M , {m0, m1, . . .} of GCD eachmi is called amicrostepof GCD. It is
convenient to view≺k as a partial order over the microsteps ofbbk.

CCDFGs are formalized by augmenting a CDFG with a schedule. Consider a mi-
crostep partitionM of GCD. A scheduleT of M is a partition orgroupingof M ; for
m1, m2 ∈ M , if m1 andm2 are in the same group inT , we say that they belong to the
same scheduling step. Informally, if two microsteps inM are in the same group inT
then they are executed within the same clock cycle.

Definition 4 (CCDFG). A CCDFG is a tupleG , 〈GCD, M, T 〉, whereGCD is a
CDFG,M is a microstep partition ofGCD, andT is a schedule ofM .

We formalize CCDFG executions through a state-based semantics. A CCDFG stateis
a valuation of state variables, and aCCDFG inputis a valuation of input variables. We
also assume a well-definedinitial state. Given a sequenceI of inputs, anexecutionof
a CCDFGG = 〈GCD, M, T 〉 is a sequence of CCDFG states that corresponds to an
evaluation of the microsteps inM respectingT .

Finally, we consideroutputsandobservation. An outputof a CCDFGG is some
computable functionf of (a subset of) state variables ofG; informally, f corresponds
to some output signal in the circuit synthesized fromG. To formalize this in ACL2’s
first order logic, the output is restricted to a Boolean expression of the state variables;
the domain of each state variable itself is unrestricted, which enables us to represent
programs such as the Greatest Common Divider (GCD) algorithm that do not return
Boolean values. For each states of G, theobservationcorresponding to an outputf at
states is the valuation off unders. Given a setF of output functions, any sequenceE
of states ofG induces a sequence of observationsO; we refer toO as theobservable
behaviorof E underF .



3 Certified Compilation

Certifying a transformationT requires showing that if the application ofT on a CCDFG
G generates a new CCDFGG′, then there is provable correspondence between the
executions ofG andG′. The certification process crucially depends on a formal notion
of correspondence to relate the executions ofG and G′. Note that the notion must
comprehend differences between execution order of operations as long as the sequence
of observations is unaffected. The notion we use is loosely based onstuttering trace
containment[14, 15]. Roughly, a CCDFGG′ refinesG if for each execution ofG′ there
is an execution ofG that produces the same observable behavior up to stuttering. We
formalize this notion below.

Definition 5 (Compressed Execution).LetE , s0, s1, . . . be an execution of CCDFG
G and F be a set of output functions overG. Thecompressionof E underF is the
subsequence ofE obtained by removing eachsi such thatf(si) = f(si+1) for every
f ∈ F .

Definition 6 (Trace Equivalence).Let G and G′ be two CCDFGs on the same set
of state and input variables,E andE ′ be executions ofG andG′ respectively, andF
be a set of output functions. We say thatE is trace equivalentto E ′ if the observable
behavior of the compression ofE underF is the same as the observable behavior of the
compression ofE ′ underF .

Definition 7 (CCDFG Refinement).We say that a CCDFGG′ refinesG if for each
executionE ′ of G′ there is an executionE of G such thatE is trace equivalent toE ′.

Remark 1.For theverifiedcomponent, we use refinement instead of full equivalence as
a notion of correspondence between CCDFGs, to permit connecting the same ESL de-
scription with a number of different concrete implementations. In theverifying frame-
work, we will use a stronger notion of equivalence (and indeed, equivalence without
stuttering), to facilitate sequential equivalence checking.

In addition to showing that a transformation on a CCDFGG produces a refinement
of G, we must account for the possibility that a transformation may be applicable toG
only if G has a specific structural characteristic; furthermore the result of application
might produce a CCDFG with a characteristic to facilitate a subsequent transformation.
To make explicit the notion of applicability of a transformation, we view a transforma-
tion as a “guarded command”τ , 〈pre, T , post〉: τ is applicable to a CCDFG which
satisfiespreand produces a CCDFG which satisfiespost.

Definition 8 (Transformation Correctness).A transformationτ , 〈pre, T , post〉 is
correctif the result of applyingT to any CCDFGG satisfyingpre refinesG and satisfies
post .

The following theorem is trivial by induction on the sequence of transformations.
Here[T0, . . . , Tn] represents the composition ofT0, . . . , Tn.

Theorem 1 (Correctness of Transformation Sequences).Let τ0, . . . , τn be some se-
quence of correct transformations, whereτi , 〈prei, Ti, post i〉, Let post i ⇒ prei+1,
1 ≤ i < n. Then the transformation〈pre1, [T0, T1, . . . , Tn], postn〉 is correct.



Theorem 1 justifies decomposition of a transformation into asequence of primitive
transformations. Note that the proof of Theorem 1 is independent of a specific transfor-
mation. We thus construct areference flowas follows. (1) Identify and distill a sequence
τ0, . . . , τn of primitive transformations; (2) verifyτi individually; and (3) check that for
each0 ≤ i < n, post i ⇒ prei+1. Theorem 1 guarantees the correctness of the flow.

Verifying the correctness of individual guarded transformations using theorem prov-
ing might involve significant manual effort. To ameliorate this cost, we identify and
derivegeneric theoremsthat can certify a class of similar transformations. As a simple
example, consider any transformation that refines the schedule. The following theorem
states that each such transformation is correct.

Theorem 2 (Correctness of Schedule Refinement).LetG , 〈GCD, M, T 〉 andG′ ,

〈GCD, M, T ′〉 be CCDFGs such that for any two microstepsmi, mj ∈ M if T ′ assigns
mi andmj the same group then so doesT . ThenG′ is a refinement ofG.

Theorem 2 is admittedly trivial; it is only shown here for illustration purposes. How-
ever, the same approach can verify more complex transformations. For example, con-
sider the constant propagation and pipelining transformations shown in Figure 3 for
our TEA example. The implementations of these transformations involve significant
heuristics, for instance, to determine whether to apply thetransformations in a specific
case, how many iterations of the loop should be pipelined, etc. However, from the per-
spective of correctness, the only relevant conditions about the two transformations are:
(1) if a variablev is assigned a constantc, thenv can be eliminated by replacing each
occurrence withc; and (2) a microstepmi can be overlapped with microstepmj from a
subsequent iteration if for eachopi ∈ mi andopj ∈ mj , opj 6≺ opi in G. Since these
conditions are independent of a specific design (e.g., TEA) to which the transforma-
tion is applied, the same certification can be used to justifyits applicability for diverse
designs. The approach is viable because we employ theorem proving which supports
an expressive logic, thereby permitting stipulation of thegeneral conditions above as
formal predicates in the logic. For example, as we show in previous work [16], we can
make use of first-order quantification to formalize a genericrefinement proof of arbi-
trary pipelines, which is directly reusable for verification of the pipeline transformation
in our framework. Another generic transformation that is widely employed in behav-
ioral synthesis isoperation balancing; its correctness depends only on the fact that the
operations involved are associative and commutative and can be proven for CCDFGs
containing arbitrary associative-commutative operations.

We end the discussion of theverifiedframework with another observation. Since the
logic of ACL2 is executable,pre andpostcan be efficiently executed for a given con-
crete transformation. Thus, a transformationτ , 〈pre, T , post〉 can be appliedeven
before verificationby usingpre andpost for runtime checks: if a CCDFGG indeed
satisfiespre and the application ofτ on G results in a CCDFG satisfyingpostthen the
instanceof application ofτ onG can be composed with other compiler transformations;
furthermore, the expense of the runtime assertion checkingcan be alleviated by gener-
ating aproof obligation for a specific instance, which is normally more tractable than a
monolithic generic proof of the correctness ofτ . This provides a trade-off between the
computational expense of runtime checks and verification ofindividual instances with
a (perhaps deep) one-time proof of the correctness of a transformation.



4 Equivalence Checking

We now discuss how to check equivalence between a CCDFG and its synthesized cir-
cuit. Theverifiedcomponent facilitates close correspondence between the transformed
CCDFG and the synthesized circuit, critical to the scalability of equivalence checking.

4.1 Circuit Model

We represent a circuit as a Mealy machine specifying the updates to the state elements
(latches) in each clock cycle. Our formalization of circuits is typical in traditional hard-
ware verification, but we make combinational nodes explicitto facilitate the correspon-
dence with CCDFGs.

Definition 9 (Circuit). A circuit is a tupleM = 〈I, N, F 〉 whereI is a vector of
inputs;N is a pair 〈Nc, Nd〉 whereNc is a set ofcombinational nodesandNd is a set
of latches; and F is a pair 〈Fc, Fd〉 whereFc maps each combinational nodec ∈ Nc

to an expression overNc ∪Nd ∪ I and for each latchd ∈ Nd, Fd maps each latchd to
n ∈ Nc ∪ Nd ∪ I whereFd is a delay function which takes the current value ofn to be
the next-state value ofd.

A circuit stateis an assignment to the latches inNd. Given a sequence of valuations
to the inputsi0, i1, . . ., a circuit traceof M is the sequence of statess0, s1, . . ., where
(1) s0 is the initial state and (2) for eachj > 0, the statesj is obtained by updating the
elements inNd given the state valuationsj−1 and input valuationij−1. Theobservable
behaviorof the circuit is the sequence of valuations of theoutputswhich are a subset
of latches and combinational nodes.

4.2 Correspondence between CCDFGs and Circuits

Given a CCDFGG and a synthesized circuitM , it is tempting to define a notion of
correspondence as follows: (1) Establish a fixed mapping between the state variables
of G and the latches inM , and (2) stipulate an execution ofG to be equivalent to
an execution ofM if they have the same observable behavior. However, this does not
work in general since the mappings between state variables and latches may be differ-
ent in each clock cycle. To address this, we introduceEMap : ops → Nc, mapping
CCDFGoperationsto the combinational nodes in the circuit: each operation ismapped
to the combinational node that implements the operation; the mapping is independent
of clock cycles. Fig. 4 shows the mapping for the synthesizedcircuit of TEA. Recall
from Section 1.1 that the FSM decides thecontrol signalsfor the circuit; the FSM is
thus excluded from the mapping. We now define the equivalencebetweenG andM .

Definition 10. A CCDFG statex of G is equivalent to a circuit states of M with
respect to an inputi and a microstep partitiont, if for each operationop in t, the inputs
to op according tox andi are equivalent to the inputs toEMap(op) according tos and
EMap(i), i.e., the values of each input toop and the corresponding input toEMap(op)
are equivalent, and the outputs ofop are equivalent to the outputs ofEMap(op).
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Fig. 4. Synthesized circuit for TEA and the corresponding operation mapping with pipelined
CCDFG; dotted lines represent mapping from CCDFG operations to combinational circuit nodes.

Definition 11. Given a CCDFGG and a circuitM , G is equivalent toM if and only
if for any execution[x0, x1, x2, . . .] of G generated by an input sequence[i0, i1, i2, . . .]
and by microstep partition[t0, t1, . . .] of G, and the state sequence[s0, s1, s2, . . .] of
M generated by the input sequence[EMap(i0), EMap(i1), EMap(i2), . . .], xk and
sk are equivalent with respect totk underik, k ≥ 0.

4.3 Dual-Rail Simulation for Equivalence Checking

We check equivalence between CCDFGG and circuitM by dual-rail symbolic simu-
lation (Fig. 5); the two rails simulateG andM respectively, and are synchronized by
clock cycle. The equivalence checking in clock cyclek is conducted as follows:

or Execution up to Given BoundMapping
Eqivalence

Constraints
Input Yes. Fixed Point Computation No

CCDFG
Simulation of CCDFG

Single Clock Cycle

Simulation of Circuit
Single Clock Cycle

Equivalent?

Circuit

Fig. 5.Dual-Rail simulation scheme for equivalence checking between CCDFG and circuit.



1. The current CCDFG statexk and circuit statesk are checked to see whether for the
input ik, the inputs to each operationop in the scheduling steptk are equivalent to
the inputs toEMap(op). If yes, continue; otherwise, report inequivalence.

2. G is simulated by executingtk onxk underik to computexk+1 and recording the
outputs of eachop ∈ tk. M is simulated for one clock cycle fromsk under input
EMap(ik) to computesk+1. The outputs for eachop are checked for equivalence
with the outputs ofEMap(op). If yes, continue; otherwise, report inequivalence.

3. The next scheduling steptk+1 is determined from control flow. Iftk has multiple
outgoing control edges, the last microstep oftk executed is identified. The outgoing
control edge from this microstep whose condition evaluatesto true leads totk+1.

We permit both bounded and unbounded (fixed-point) simulations. In particular, the
simulation proceeds until (i) the equivalence check fails,(ii) the end of a bounded input
sequence is reached, or (iii) a fixed point is reached for an unbounded input sequence.

We have implemented the dual-rail scheme on the bit level in the IntelForte en-
vironment [17], where symbolic states are represented using BDDs. We have also im-
plemented the scheme on the word level with several built-inoptimizations, using Sat-
isfiability Modulo Theories (SMT); this is viable since word-level mappings between
operations and circuit nodes are explicit. We use bit-vectors to encode the variables in
the CCDFG and the circuit; the SMT engine checks input/output equivalence and deter-
mines control paths. Our word-level checker is based on the CVC3 SMT engine [18].

The bit-level and word-level checkers are complementary. The bit-level checker en-
sures that the equivalence checking is decidable, while theword-level checker provides
the optimizations crucial to scalability. The word-level checker can make effective use
of results from bit-level checking in many cases. One typical scenario is as follows.
SupposeM is a design module of modest complexity but is awkward to check at word-
level. Then the bit-level checker is used to check the equivalence of the CCDFG ofM
with its circuit implementation; when the word-level checker is used for equivalence
checking of a module that callsM , it skips the check ofM , treating the CCDFG ofM
and its circuit implementation as equivalent black boxes.

5 Experimental Results

We used the bit-level checker on a set of CCDFGs for GCD and thecorresponding
circuits synthesized by AutoPilot. The experiments were conducted on a workstation
with 3GHz Intel Xeon processor with2GB memory. Table 1 shows the statistics before
and after schedule refinement (Theorem 2). Since we bit-blast all CCDFG operations,
the running time grows exponentially with the bit width; for8-bit GCD, checking re-
quires about2 hours. It is interesting to understand how schedule refinement affects
the performance of equivalence checking. Schedule refinement partitions operations in
the loop body into two clock cycles. This does not change fixed-point computation;
however, the number of cycles for which the circuit is simulated doubles. For small bit-
widths, the running time after schedule refinement is about two times slower than that
before. However, for large bit widths, the running time is dominated by the complexity
of the CCDFG simulation instead of the circuit simulation. The decrease in time with
the increase in bit width from7 to 8 is likely due to BDD variable reordering.



Table 1.Bit-level equivalence checking statistics

Circuit Before schedule refinementAfter schedule refinement
Bit Width # of Nodes Time (Sec.) BDD Nodes Time (Sec.) BDD Nodes

2 96 0.02 503 0.02 783
3 164 0.05 4772 0.07 11113
4 246 0.11 42831 0.24 20937
5 342 0.59 16244 1.93 99723
6 452 12.50 39968 27.27 118346
7 576 369.31 220891 383.98 164613
8 714 6850.56 1197604 3471.74 581655

Using our word-level checker, we have checked several RTL designs synthesized
by AutoPilot with CCDFGs derived from AutoPilot’s intermediate representations; the
statistics are shown in Table 2. The designs illustrate different facets of the framework.

Table 2.Word-level equivalence checking statistics

Design GCD TEA DCT 3DES 3DES key
C Code Size (# of Lines) 14 12 52 325 412

RTL Size (# of Lines) 364 1001 688 18053 79976
Time (Seconds) 2 15.6 30.1 355.7 2351.7

Memory (Megabytes) 4.1 24.6 49.2 59.4 307.2

GCD contains a loop whose number of iterations depends on theinputs. TEA has an
explicitly bounded loop. DCT contains sequential computation without loop. 3DES rep-
resents a practical design of significant size. 3DESkey is included to illustrate the scal-
ability of our approach on relatively large synthesized designs. The results demonstrate
the efficacy of our word-level equivalence checking. In contrast, full word-level sym-
bolic simulation comparing the input/output relations of Cand RTL runs out of memory
on all the designs but DCT (for which it needs twice as much time and memory).

6 Related Work

An early effort [19] on verification of high-level synthesistargets the behavioral portion
of VHDL [20]. A translation from behavioral VHDL to dependence flow graphs [21]
was verified by structural induction based on the CSP [22] semantics. Recently, there
has been research on certified synthesis of hardware from formal languages such as
HOL [23] in which a compiler that automatically translates recursive function defini-
tions in HOL to clocked synchronous hardware has been developed. A certified hard-
ware synthesis from programs in Esterel, a synchronous design language, has been also
been developed [24] in which a variant of Esterel was embedded in HOL.

Dave [25] provides a comprehensive bibliography of compiler verification. One of
the earliest work on compiler verification was the Piton project [26], which verified a



simple assembly language compiler. Compiler certificationforms a critical component
of the Verisoft project [27], aiming at correctness of implementations of computing sys-
tems with both hardware and software components. The Verifix[28] and CompCert [29]
projects have explored a general framework for certification of compilers for various C
subsets [30, 31]. There has also been work on averifying compiler, where each instance
of a transformation generates a proof obligation discharged by a theorem prover [32].

There has been much research on sequential equivalence checking (SEC) between
RTL and gate-level hardware designs [33, 34]. Research has also be done on combina-
tional equivalence checking between high-level designs insoftware-like languages (e.g.,
SystemC) and RTL-level designs [11]. There has also been effort for SEC between soft-
ware specifications and hardware implementations [35]: GSTE assertion graphs [36]
were extended so that an assertion graph edge have pre and post condition labels, and
also associated assignments that update state variables. There has also been work on
equivalence checking with other graph representations,e.g., Signal Flow Graph [37].

7 Conclusion

We have presented a framework for certifying behavioral synthesis flows. The frame-
work includes a combination ofverifiedandverifying paradigms: high-level transfor-
mations are certified once and for all by theorem proving, while low-level tweaks and
optimizations can be handled through model checking. We demonstrated the use of the
CCDFG structure as an interface between the two components.Certification of differ-
ent compiler transformations is uniformly specified by viewing them as manipulation of
CCDFGs. The transformed CCDFG can then be used for equivalence checking with the
synthesized design. One key benefit of the approach is that itobviates the need for de-
veloping formal semantics for each different intermediaterepresentation generated by
the compiler. Furthermore, the low-level optimizations implemented in a synthesis tool
are abstracted from the reasoning framework without weakening the formal guarantee
on the synthesized design. Our experimental results indicate that the approach scales to
verification of realistic designs synthesized by production synthesis tools.

In future work, we will make further improvements to improvescalability. In the
verifiedcomponent, we are formalizing other generic transformationse.g., code motion
across loop iterations. In theverifying component, we are considering the use of theo-
rem proving to partition a CCDFG into smaller subgraphs for compositional certifica-
tion. We are also exploring ways to tolerate limited perturbations in mappings between
CCDFGs and circuits (e.g., due to manual RTL tweaks) in their equivalence checking.
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