Deductive Verification of Pipelined Machines
Using First-order Quantification*

Sandip Ray and Warren A. Hunt, Jr.

Department of Computer Sciences, University of Texas at Austin
{sandip, hunt}@cs.utexas.edu
http://www.cs.utexas.edu/users/{sandip, hunt}

Abstract. We outline a theorem-proving approach to verify pipelined
machines. Pipelined machines are complicated to reason about since they
involve simultaneous overlapped execution of different instructions. Nev-
ertheless, we show that if the logic used is sufficiently expressive, then
it is possible to relate the executions of the pipelined machine with the
corresponding Instruction Set Architecture using (stuttering) simulation.
Our methodology uses first-order quantification to define a predicate that
relates pipeline states with ISA states and uses its Skolem witness for
correspondence proofs. Our methodology can be used to reason about
generic pipelines with interrupts, stalls, and exceptions, and we demon-
strate its use in verifying pipelines mechanically in the ACL2 theorem
prover.

1 Introduction

This paper is concerned with formal verification of pipelined machines. Pipelin-
ing is a key feature in the design of today’s microprocessors. It improves perfor-
mance by temporally overlapping execution of different instructions; that is, by
initiating execution of a subsequent instruction before a preceding instruction
has been completed. To formally verify modern microprocessors, it is imperative
to be able to effectively reason about modern pipelines.

Formal verification of microprocessors normally involves showing some cor-
respondence between a microarchitectural implementation (MA) and its cor-
responding Instruction Set Architecture (ISA). The ISA is typically a non-
pipelined machine which executes each instruction atomically. For non-pipelined
microprocessors, one typically shows simulation correspondence (Fig. 1): If an
implementation state is externally equal to a specification state, then execut-
ing one instruction in both the microarchitecture and the ISA results in states
that are externally equal [1,2]. This implies that for every (infinite) execution
of MA, there is a corresponding (infinite) execution of the ISA with the same
visible behavior. However, for pipelined machines, such correlations are difficult
to establish because of latency in the pipelines. As a result, a large number
of correspondence notions have been used to reason about pipelined machines.

* Support for this work was provided in part by the SRC under contract 02-TJ-1032.



ISA-st

externallyf " externally
equal 1 equal

MA-step

MA MA’

Fig. 1. Commutative Diagram for Simulation Correspondence

As features like interrupts, and out-of-order instruction execution have been
modeled and reasoned about, notions of correctness have had to be modified
and extended to account for these features. Consequently, the correspondence
theorems have become complicated, difficult to understand, and even contro-
versial [3]. Further, the lack of uniformity has made composition of proofs of
different components of a modern processor cumbersome and difficult.

In this paper, we argue that in a logic that allows arbitrary first-order quan-
tification and Skolemization, simulation-based correspondence is still effective
and sufficient for reasoning about modern pipelines. Our notion of correctness is
stuttering simulations [2], and preserves both safety and liveness properties. The
chief contribution of this work is to show how to effectively use quantification to
define a correspondence relating the states of a pipelined machine with those of
its ISA. Our work makes use of the Burch and Dill pipeline flushing diagram [4]
(Fig. 2), to derive the correspondence without complicated invariant definitions
or characterization of the precise timing between the execution of different in-
structions in the pipeline. Indeed, our techniques are generic and we are able
to apply the same notion of correspondence to pipelines with stalls, interrupts,
exceptions, and out-of-order execution, and verify such machines mechanically
with reasonable automation.

In this section, we first survey related approaches and notions of correctness
used in verification of pipelined machines. We then describe our approach and
proof methodology in greater detail.

1.1 Related Work

Reasoning about pipelines has been an active area of research. Aagaard et al. [3]
provides an excellent survey and comparison of the different techniques. Some
of the early studies have used skewed abstraction functions [5,6] to map the
states of the pipeline at different moments to a single ISA state. The skewed
abstraction functions need to precisely characterize all timing delays and hence
their definitions are both complex and vulnerable to design modifications. By
far the most popular notion of correctness used has been the Burch and Dill
pipeline flushing diagram [4] (Fig. 2). The approach is to use the implementa-
tion itself to flush the pipeline by not permitting new instructions to be fetched,



Fig. 2. Burch and Dill Pipeline Flushing Diagram

and projecting the programmer-visible components of the flushed state to de-
fine the corresponding ISA state. Sawada and Hunt [7,8] use a variant called
flush point alignment to verify a complicated pipelined microprocessor with ex-
ceptions, stalls, and interrupts using the ACL2 theorem prover. They use an
intermediate data structure called MAETT to keep track of the history of ex-
ecution of the different instructions through the pipeline. Hosabettu et al. [9]
use another variant, flush point refinement, and they verify a deterministic out-
of-order machine using completion functions. Both of these approaches require
construction of complicated invariants to demonstrate correlation between the
pipelined machine and the ISA. In addition, there have also been compositional
model checking approaches to reason about pipelines. For example, Jhala and
McMillan [10] use symmetry, temporal case-splitting, and data-type reduction
to verify out-of-order pipelines. While more automatic than theorem proving,
applicability of the method in practice requires the user to explicitly decompose
the proof into manageable pieces to alleviate state exzplosion. Further, it relies
on symmetry assumptions which are often violated by the heterogeneity of mod-
ern pipelines. Finally, there has been work on using a combination of decision
procedures and theorem proving to verify modern pipelines [11,12], whereby de-
cision procedures have been used to assist the theorem prover in verifying state
invariants.

Manolios [13] shows logical problems with the Burch and Dill notion and pro-
vides a general notion of correctness using well-founded equivalence bisimulation
(WEB) [14]. He uses it to reason about several variants of Sawada’s pipelines [7].
This, to our knowledge, is the first attempt in reasoning about pipelines using
a general-purpose correctness notion expressing both safety and liveness prop-
erties. Our notion of correctness and proof rules are a direct consequence of the
work with WEBs. The basic difference between our approach and that of Mano-
lios is in the methodology used for relating pipeline states with ISA states. Since
this methodology is a key contribution of this paper, we compare our approach
with his in greater detail after outlining our techniques in Section 3.



1.2 Overview of Our Approach

We now describe how it is possible to relate pipeline states with the correspond-
ing ISA using simulation-based correspondence in spite of overlapped execution
of different instructions. Note that our quest here is for a generic approach rather
than the verification of one specific design. To convey the basic idea we present a
simplified view of pipelined machines, namely in-order execution and completion
of at most one instruction in a clock cycle. A precise mathematical description is
presented later in Section 3, and features like interrupts, out-of-order execution
etc., are dealt with in Section 4.

Consider the pipelined machine in some state MA, where a specific instruc-
tion ; is poised to complete. Presumably, then, before reaching MA, the ma-
chine must have encountered some state MA; in which 7; was poised to enter
the pipeline. Call MA; the witnessing state of MA. Assuming that instructions
are completed in order, all and only the incomplete instructions at state MA;
(meaning, all instructions before ;) must complete before the pipeline can reach
state MA starting from MA;. Now consider the state MA;r obtained by flushing
MA,. The flushing operation also completes all incomplete instructions without
fetching any new instructions; that is, MA;r has all instructions before i; com-
pleted, and is poised to fetch ¢;. If only completed instructions affect the visible
behavior of the machine, then this suggests that MA;r and MA must be exter-
nally equal.!

Based on the above intuition, we define a relation sim to correlate pipeline
states with ISA states: MA is related to ISA if and only if there exists a witnessing
state MA; such that ISA is the projection of the visible components of MA;F.
Recall that projection preserves the visible components of a state. From the
arguments above, whenever states MA and ISA are related by sim they are
externally equal. Thus to establish simulation correspondence (Fig. 1), we need
to show that if MA is related to ISA, and MA' and ISA’ are states obtained by
1-step execution from MA and ISA respectively, then MA' and ISA’ are related
by sim. Our approach is shown in Fig. 3. Roughly, we show that if MA and ISA
are related, and MA; is the corresponding witnessing state for MA, then one
can construct a corresponding witnessing state for MA’ by running the pipeline
for a sufficient number of steps from MA;. In particular, ignoring the possibility
of stalls (or bubbles) in the pipeline, the state following MA;, which is MA], is
a witnessing state of MA’', by the following argument. Execution of the pipeline
for one cycle from MA completes i; and the next instruction, iz, after i; in
program order is poised to complete in state MA’. The witnessing state for MA’'
thus should be poised to initiate i3 in the pipeline. And indeed, execution for
one cycle from MA; leaves the machine in a state in which i3 is poised to enter
the pipeline. (We make this argument more precise in the context of an example
pipeline using Lemma 2 in Section 3.) Finally, the correspondence between MA]

! Notice that MA and MA;r would possibly have different values of the program
counter. This is normally addressed [13] by excluding the program counter from the
observations (or labels) of a state.



ISA-step -

" . ./ no.
/7 isim proj ' sim
Y /J/ Y

proj ./ T :
et MA MA-step MA

7/

/ ,
A"" ga(hearlnally ',.--"externally
flush -\ - equal

-

MA-step

Fig. 3. Use of Burch and Dill and Symbolic Execution to obtain Simulation-based
refinement proofs

and ISA' follows by noting that the MA states MA;, MA!, and ISA states ISA
and ISA' satisfy the Burch and Dill pipeline flushing diagram.

The reader should note that the above proof approach depends on our de-
termining the witnessing state MA; given MA. However, since MA; is a state
that occurs in the “past” of MA, MA might not retain sufficient information for
computing MA;. In general, to compute witnessing states, one needs to define an
intermediate machine to keep track of the history of execution of the different
instructions in the pipeline. However, an observation of this paper is that given
a sufficiently expressive logic, the witnessing state need not be constructively
computed. Rather, we can simply define a predicate specifying “some witnessing
state exists”. Skolemization of the predicate then produces a witnessing state.

In the presence of stalls, a state MA might not have any instruction poised to
complete. Even for pipelines without stalls, no instruction completes for several
cycles after the initiation of the machine. Correspondence in the presence of such
bubbles is achieved by allowing finite stutter in our verification framework. In
other words, if MA is related to ISA, and MA has no instruction to complete,
then MA' is related to ISA instead of ISA'. Our proof rules guarantee such
stuttering is finite, allowing us to preserve both safety and liveness properties.
Note that correspondence frameworks allowing a finite stutter are known to be
effective in relating two system models at different levels of abstraction using
simulation and bisimulation. In ACL2, stuttering has been used with simulation
and bisimulation to verify concurrent protocols [15,14], and indeed, pipelined
machines [13].

The remainder of the paper is organized as follows. We discuss our notion
of correspondence and the associated proof rules in Section 2. In Section 3, we
discuss the correspondence proof for an example pipelined machine. In Section 4,
we show how our method can be used to reason about pipelines with interrupts,
out-of-order execution etc. Finally, we conclude in Section 5. All the theorems
described here have been proven with the ACL2 theorem prover [16,17]. ACL2 is
an essentially first-order logic of total recursive functions, with induction up to ¢



and support for first-order quantification via Skolemization. However, this paper
does not assume any prior exposure to ACL2; we use traditional mathematical
notations for our presentation.

2 Refinements

Our proof rules relate infinite executions of two computing systems using single-
step theorems. The rules are adapted from the proof rules for stuttering simula-
tion [2], and a direct consequence of work with WEBs [14].

Computing systems are typically modeled in ACL2 as state machines by
three functions namely init, step, and label, with the following semantics:

— The constant function nit() returns the initial state of the system.

— Given a state s and an external input 4, the function step(s,) returns the
state of the system after one clock cycle.

— For a state s, the function label(s) returns valuations of the observable com-
ponents of 5.2

Such models are common in ACL2 and have been found useful in verification
of several hardware and software systems [18,1]. Also, since ACL2 is a logic of
total functions, the functions step and label above are total.

We now describe the proof rules. Given models impl = (inits, step;, labelr ),
and spec = (initg, stepg, labels), the idea is to define binary predicates sim and
commit with the following properties:

1. sim(initr(), inits()),

2. Vp1,ps : sim(pr, ps) = label;(pr) = labels(ps),

3. VPIaPSa i; EI] : Sim(pI;pS) A commit@l, 2) = Sim(StepI @Ia l), StepS (p57j))7
4. Vpr,ps, i : sim(pr, ps) A ~commit(pr, i) = sim(step;(pr,1),ps)-

Informally, sim relates the states of impl with the states of spec, and commit
determines whether the “current step” is a stuttering step for spec. The above
four conditions guarantee that for every (infinite) execution of impl, there exists
a corresponding (infinite) execution of spec that has the same observations up
to stuttering. To guarantee that stuttering is finite, we define a unary function
rank with the following properties:

5. Vp : rank(p) € W, where W is a set known to be well-founded according
some ordering relation <.
6. VYp1,ps,i: sim(ps,pr) A ~commit(pr,i) = rank(step;(p1,1)) < rank(pr).

We say that impl is a (stuttering) refinement of spec, denoted (impl >> spec), if
there exist functions sim, commit, and rank that satisfy the six conditions above.
The proof rules essentially guarantee that impl is a simulation of spec up to finite
stuttering. The rules are analogous to proof rules for stuttering simulation [2]
with the difference that our rules allow only one-sided stutter. We have not

2 The label is analogous to the valuation of atomic propositions in a Kripke Structure.



yet found a problem in which two-sided stutter has been necessary. Notice also
that the notion of refinements is transitive, and this allows us to hierarchically
compose proofs of different components of large practical systems.

Our description above shows how to relate two non-deterministic system
models. A computing system M = (init, step, label) is deterministic if step is a
function of only the first argument, namely the current state. If impl is deter-
ministic, then commit is a function of the current state alone. In addition, if spec
is deterministic, then the condition 3 is modified to eliminate the choice of input
for the next step of spec:

3. Vpr,ps,: sim(pr,ps) A commit(pr) = sim(step;(pr1), stepg(ps))-

3 Pipeline Verification

We now show how to reason about pipelines using the correctness notion de-
scribed in Section 2. For clarity of presentation, we consider a deterministic
5-stage example pipeline with in-order execution. Features like arbitrary stalls,
interrupts, and out-of-order execution are dealt with in Section 4.

Our pipeline (Fig. 4) has fetch, decode, operand-fetch, execute, and write-
back stages. The machine has a decoder, an ALU, a register file, and 4 latches

Memory PC Register file
valid Decoder ;g valid valid
_ opcode _ | opcode 3
> — )_> rl T rl-va *
instr r2 r2-va rslt
r3 ’_» r3 ALU
Latchl Latch2 L atch3 Latch4

Fig. 4. A simple 5-stage pipeline

to store intermediate computations. Instructions are fetched from the memory
location pointed to by the program counter (PC) and loaded into the first latch.
The instructions then proceed in sequence through the different pipe stages in
program order until they retire. Every latch has a valid bit to indicate if the latch
is non-empty. We use a 3-address instruction format consisting of an opcode, two
source registers, and a target register. While the machine allows only in-order
execution, data forwarding is implemented from latch 4 to latch 3. Nevertheless,
the pipeline can still have 1-cycle stall: If the instruction i at latch 2 has as one
of its source registers the target of the instruction i3 at latch 3, then i» cannot
proceed to latch 3 in the next state when i3 completes its ALU operation.



The executions of the pipeline above can be defined as a deterministic model
MA = (init;, stepy, labelr). We assume that init; has some program loaded in the
memory, and some initial configuration of the register file, but an empty pipeline.
Since we are interested in the updates of the register file, we let label; preserve
the register file of a state. Finally, the ISA machine ISA = (inits, stepg, labels) is
merely one that executes the instruction pointed to by PC atomically; that is, it
fetches the correct operands, applies the corresponding ALU operation, updates
the register file, and increments PC in one atomic step.

Notice that we have left the actual instructions unspecified. Our proof ap-
proach does not require complete specification of the instructions but merely the
constraint that the ISA performs analogous atomic update for each instruction.
In ACL2, we use constrained functions for specifying the updates applied to
instructions at every stage of the pipeline.

Our goal now is to show that (MA >> ISA). We define commit so that
commit(MA) is true if and only if latch 4 is valid in MA. Notice that whenever
an MA state MA satisfies commit, some instruction is completed at the next
step. It will be convenient to define functions characterizing partial updates
of an instruction in the pipeline. Consequently, we define four functions run;,
rung, rung, and rung, where run;(MA, inst) “runs” instruction inst for the first
i stages of the pipe and updates the i-th latch. For example, runy(MA, inst)
updates latch 2 with the decoded value of the instruction. In addition, we define
two functions, flush and stalled. Given a pipeline state MA, flush(MA) returns
the flushed pipeline state MAp, by executing the machine for sufficient number
of cycles without fetching any new instruction. The predicate stalled is true of a
state MA if and only if both latches 2 and 3 are valid in MA, and the destination
for the instruction at latch 3 is one of the sources of the instruction at latch
2. Notice that executing a pipeline from a stalled state does not allow a new
instruction to enter the pipeline. Finally the function proj(MA) projects the PC,
memory, and register file of MA to the ISA.

Lemma 1 is the Burch and Dill correctness for pipelines with stalls and was
proved automatically by ACL2 using symbolic simulation.

Lemma 1. For each pipeline state MA,

‘ _ [ steps(proj(flush(MA))) if —stalled(MA)
s ) = {2 1t

We now define witnessing states. Given states MA; and MA, MA, is a witnessing
state of M A, recognized by the predicate witnessing(MA,, MA), if (1) MA; is not
stalled, and (2) MA can be derived from MA; by the following procedure:

1. Flush MA; to get the state MA;p.
2. Apply the following update to MA;r for i = 4,3,2,1:
— If latch ¢ of MA is valid then apply run; with the instruction pointed to
by PC in MA;F, correspondingly update latch ¢ of MA;r, and advance
PC; otherwise do nothing.



We now define predicate sim as follows:
— sim(MA, ISA) = (IMA, : (witnessing(MA1, MA))A(ISA = proj(flush(MA+))))

Now we show how the predicate sim can be used to show the conditions 1-6 in
Section 2. First, the function rank satisfying conditions 5 and 6 can be defined by
simply noticing that for any state MA, some instruction always advances. Hence
if 4 is the maximum number in MA such that latch ¢ is valid, then the quantity
(5 — 1) always returns a natural number (and hence a member of a well-founded
set) that decreases at every step. (We take ¢ to be 0 if MA has no valid latch.)
Also, witnessing(initr(), init;()) holds, implying condition 1. Further, condition 2
is trivial from definition of witnessing. We therefore focus here on only conditions
3 and 4. We first consider the following lemma:

Lemma 2. For all MA, MA; such that witnessing(MA1, MA):

1. witnessing(MA, step;(MA)) if ~commit(MA)
2. witnessing(step;(step; (MA1)), step;(MA)) if commit( MA)Astalled(step; (MA;))
3. witnessing(step; (MAy), stepr(MA)) if commit(MA) A —stalled(step;(MA,))

The lemma merely states that if MA is not a commit state, then stepping
from MA preserves the witnessing state, and otherwise the witnessing state for
step;(MA) is given by the “next non-stalled state” after MA;. The lemma can
be proved by symbolic execution of the pipelined machine. We can now prove
the main technical lemma that guarantees conditions 3 and 4 of Section 2.

Lemma 3. For all MA and ISA, such that sim(MA, ISA):

1. sim(step;(MA), ISA) if =commit(MA).
2. sim(step;(MA), stepg(ISA)) if commit(MA).

Proof. Let MA; be the Skolem witness of sim(MA, ISA). Case 1 follows from
Lemma 2, since witnessing(MA;, step;(MA)) holds. For case 2, we consider only
the situation —stalled(step;(MA;)) since the other situation is analogous. But
by Lemma 1 and definition of witnessing, proj(flush(step;(MA;))) = stepg(ISA).
The result now follows from Lemma 2. O

We end this section with a brief comparison between our approach and that
of Manolios [13]. We focus on a comparison with this work since unlike other
related work, this approach uses a uniform notion of correctness that is appli-
cable to both pipelined and non-pipelined microarchitectures. Indeed our use of
stuttering simulation is a direct consequence of this work. The basic difference is
in the techniques used to define the correspondence relation to relate MA states
with ISA states. While we define a quantified predicate to posit the existence
of a witnessing state, Manolios defines a refinement map from the states of MA
to states of ISA as follows: Point the PC to the next instruction to complete
and invalidate all the instructions in the pipe.? Notice immediately that the

3 Manolios also describes a “flushing proof” and shows that flushing can relate incon-
sistent MA states to ISA states. But our application of flush is different from his
in that we flush MA; rather than the current state MA. Our approach has no such
problems.



method requires that we have to keep track of the PC of each intermediate in-
struction. Also, as the different pipeline stages update the instruction, one needs
some invariant specifying the transformations on each instruction at each stage.
Short of computing such invariants based on the structure of the pipeline and
the functionality of the different instructions, we believe that any generic ap-
proach to determine invariants will reduce his approach to ours, namely defining
a quantified predicate to posit the existence of a witnessing state.

4 Generalization

Stuttering simulation can be used to verify pipelines with advanced features. In
this section, we consider arbitrary but finite stalls, interrupts, and out-of-order
instruction execution. Stuttering simulation cannot be used directly for machines
with out-of-order completion and multiple instruction completion. In Section 4.4
we discuss an approach to circumvent such limitations.

4.1 Stalls

The pipeline in Fig. 4 allowed single-cycle stalls. Pipelines in practice can have
stalls ranging over multiple cycles. If the stall is finite, it is easy to use stut-
tering simulation to reason about such pipelines. Stalls affect Lemma 2 since
given a witnessing state MA; of MA, the witnessing state for step;(MA) is
given by the “next non-stalled state” after MA;. But such a state is given by
clock(step; (MA1)), where the function clock (defined below) merely counts the
number of steps to reach the first non-stalled state. Finiteness of stalls guarantees
that the recursion terminates.

0 if —stalled(s)
1 + clock(step;(s)) otherwise

clock(s) = {

4.2 Interrupts

Modern pipelines allow interrupts and exceptions. To effectively reason about
interrupts, we model both MA and ISA as non-deterministic machines, where
the “input parameter” is used to decide whether the machine is to be interrupted
at the current step or proceeds with normal execution. Recall that our notion of
correspondence can relate non-deterministic machines. Servicing the interrupt
might involve an update of the visible components of the state. In the ISA, we
assume that the interrupt is serviced in one atomic step, while it might take
several cycles in MA.

We specify the witnessing states for an interruptible MA state as follows:
MA; is a witnessing state of MA if either (i) MA is not within any interrupt and
MA; initiates the instruction next to be completed in MA, or (ii) MA is within
some interrupt and MA; initates the corresponding interrupt. Then commit is
true if either the current step returns from some interrupt service or completes



an instruction. Assuming that pipeline executions are not interleaved with the
interrupt processing, we can then show (MA >> ISA) for such non-deterministic
machines. We should note here that we have not analyzed machines with nested
interrupts yet. But we believe that the methodology can be extended for nested
interrupts by the witnessing state specifying the initiation of the most recent
interrupt in the nest.

4.3 Owut-of-order Execution

Our methodology can handle pipelines with out-of-order instruction execution
as long as the instructions are initiated to the pipeline and completed in program
order. For a pipeline state MA, we determine the instruction i; that is next to
be completed, by merely simulating the machine forward from MA. We then
specify MA; to be a witnessing state of MA if i, is initiated into the pipeline
at MA;. Notice that since instructions are initiated and completed in-order,
any instruction before i; in program order must have been already initiated in
the pipeline in state MA;. Since flushing merely involves executing the pipeline
without initiating any instruction, flushing from state MA; will therefore produce
the state MA;r with the same visible behavior as state MA.

4.4 Out-of-order and Multiple Instruction Completion

Modern pipelines allow completion of multiple instructions at the same clock cy-
cle, and out-of-order completion of instructions. Such features cannot be directly
handled by our approach. In this section, we outline the problem and discuss
a possble approach. We admit, however, that we have not attempted to verify
pipelines with these features and our comments are merely speculative.

Consider a pipeline state MA poised to complete two instructions ¢; and iz
at the same cycle. Assume that 7; updates register r; and i updates register rs.
Thus the visible behavior of the pipeline will show simultaneous updates of the
two registers. The ISA, however, can only update one register at any clock cycle.
Thus, there can be no ISA state ISA with the properties that (i) MA and ISA
are externally equal, and (ii) executing both machines from MA and ISA results
in states that are externally equal, even with possible stutter. In other words,
there can be no simulation relation relating MA and ISA. The arguments are
applicable to out-of-order completion as well, where the updates corresponding
to the two instructions are “swapped” in the pipelined machine.

Since multiple and out-of-order completion affect the visible behavior of the
pipelined machine, we need to modify the execution of the ISA to show corre-
spondence. We propose the following approach: The ISA, instead of executing
single instructions atomically, non-deterministically selects a burst of instruc-
tions. Each burst consists of a set of instruction sequences with instructions in
different sequences not having any data dependency. The ISA then executes
each sequence in a burst atomically, choosing the order of the sequences non-
deterministically, and then selects the next burst after completing all sequences.



Notice that our “original” ISA can be derived from such an ISA by letting the
bursts be singleton sets of one instruction.

We are pursuing the “modified ISA” approach to verify practical pipelines.
However, we have not verified any complicated machine using this approach, and
investigation of the technique is a future area of research.

5 Summary and Conclusions

We have shown how to apply a uniform and well-studied notion of correspon-
dence, namely stuttering simulation, to verify pipelined machines. Since the no-
tion is compositional, proofs of pipelines can be directly composed with proofs of
other components of a microprocessor. Further, the use of witnessing states en-
ables us to merely “flush” the pipelined machine to define the simulation relation
without constructing complicated structural invariants.

Our work demonstrates the importance of first-order quantification in verifi-
cation of practical computing systems. We have seen how quantification enables
us to specify the witnessing state non-constructively by using the Skolem wit-
ness of a quantified predicate. Since the witnessing state is a state that has been
encountered in the “past”, constructing the state would require keeping track of
the history of execution via an intermediate machine, and definition of a compli-
cated invariant on that machine. The importance of first-order quantification is
often overlooked in the use of a general-purpose theorem prover, especially by the
ACL2 community. While ACL2 allows arbitrary first-order quantification, ACL2
proofs typically use constructive recursive functions. In this context, it should
be noted that a key advantage of the use of theorem-proving over algorithmic
decision procedures like model-checking is the expressivity of the logic. Beyond
this, theorem-proving normally involves more manual effort. Thus to successfully
use theorem-proving with reasonable automation, it is important to make effec-
tive use of expressivity. We have found quantification to be particularly useful in
many circumstances for “backward simulation”, when the property preserved in
a state is guaranteed by a state encountered by the machine in the past. Aside
from defining witnessing states for pipelined machines, backward simulation is
useful, for example, in specifying weakest preconditions for operationally mod-
eled sequential programs. We are working on identifying other situations in which
quantification can significantly reduce manual effort in deductive verification of
modern computer systems.

We have demonstrated the application of our approach to verify pipelines
with stalls, interrupts, and out-of-order execution using stuttering simulation.
As mentioned in Section 4.4, we cannot yet handle out-of-order completion and
multiple instruction completion. We plan to analyze the extention outlined in
Section 4.4 to reason about more complicated, practical pipelines.

Acknowledgments Rob Sumners was involved with the initial discussions
about the use of quantification for reasoning about pipelines. Anna Slobodové
read a draft of this paper and made several useful suggestions.



References

1

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

W. A. Hunt, Jr.: FM8501: A Verified Microprocessor. Springer-Verlag LNAI 795,
Heidelberg (1994)

Manolios, P.: Mechanical Verification of Reactive Systems. PhD thesis, Department
of Computer Sciences, The University of Texas at Austin (2001)

Aagaard, M.D., Cook, B., Day, N., Jones, R.B.: A Framework for Microprocessor
Correctness Statements. In: Correct Hardware Design and Verification Methods
(CHARME). Volume 2144 of LNCS., Springer-Verlag (2001) 443-448

Burch, J.R., Dill, D.L.: Automatic Verification of Pipelined Microprocessor Con-
trol. In Dill, D., ed.: Computer-Aided Verification (CAV). Volume 818 of LNCS.,
Springer-Verlag (1994) 68-80

Srivas, M., Bickford, M.: Formal Verification of a Pipelined Microprocessor. IEEE
Software (1990) 52-64

Bronstein, A., Talcott, T.L.: Formal Verification of Pipelines based on String-
functional Semantics. In Claesen, L.J.M., ed.: Formal VLSI Correctness Verifica-
tion, VLSI Design Methods II. (1990) 349-366

Sawada, J., W. A. Hunt, Jr: Trace Table Based Approach for Pipelined Micro-
processor Verification. In: Computer-Aided Verification (CAV). Volume 1254 of
LNCS., Springer-Verlag (1997) 364-375

Sawada, J., W. A. Hunt, Jr: Processor Verification with Precise Exceptions and
Speculative Execution. In Hu, A.J., Vardi, M.Y., eds.: Computer-Aided Verification
(CAV). Volume 1427 of LNCS., Springer-Verlag (1998) 135-146

Hosabettu, R., Gopalakrishnan, G., Srivas, M.: Verifying Advanced Microarchitec-
tures that Support Speculation and Exceptions. In: Computer-Aided Verification
(CAV). Volume 1855 of LNCS., Springer-Verlag (2000)

Jhala, R., McMillan, K.: Microarchitecture Verification by Compositional Model
Checking. In: Proceedings of Twelveth International Conference on Computer-
aided Verification (CAV). Volume 2102 of LNCS., Springer-Verlag (2001)

Bryant, R.E., German, S., Velev, M.N.: Exploiting Positive Equality in a Logic
of Equality with Uninterpreted Functions. In N. Halbwachs and D. Peled, ed.:
Computer-Aided Verification (CAV). Volume 1633 of LNCS., Springer-Verlag
(1999) 470-482

Lahiri, S.K., Bryant, R.E.: Deductive Verification of Advanced Out-of-Order Mi-
croprocessors. In W. A. Hunt, Jr, Somenzi, F., eds.: Computer-Aided Verification
(CAV). Volume 2275 of LNCS., Springer-Verlag (2003) 341-354

Manolios, P.: Correctness of pipelined machines. In W. A. Hunt, Jr, Johnson,
S.D., eds.: Third International Conference on Formal Methods in Computer-Aided
Design (FMCAD). Volume 1954 of LNCS., Springer-Verlag (2000) 161-178
Manolios, P., Namjoshi, K., Sumners, R.: Linking Model-checking and Theorem-
proving with Well-founded Bisimulations. In Halbwacha, N., Peled, D., eds.:
Computer-Aided Verification (CAV). Volume 1633 of LNCS. (1999) 369-379
Sumners, R.: An Incremental Stuttering Refinement Proof of a Concurrent Pro-
gram in ACL2. In Kaufmann, M., Moore, J.S., eds.: Second International Workshop
on ACL2 Theorem Prover and Its Applications, Austin, TX (2000)

Kaufmann, M., Manolios, P., Moore, J.S.: Computer-Aided Reasoning: An Ap-
proach. Kluwer Academic Publishers (2000)

Kaufmann, M., Manolios, P., Moore, J.S., eds.: Computer-Aided Reasoning: ACL2
Case Studies. Kluwer Academic Publishers (2000)

Moore, J.S.: Proving Theorems about Java and the JVM with ACL2. Models,
Algebras, and Logic of Engineering Software (2003) 227-290



