
System-on-Chip Security Assurance for IoT
Devices: Cooperations and Conflicts

Sandip Ray
NXP Semiconductors, Austin, TX 78735. USA

sandip.ray@nxp.com

Abstract—Security is a critical component for computing
devices targeted towards Internet-of-Things applications. Un-
fortunately, IoT security assurance is a challenging enterprise,
involving cooperation and conflicts among a variety of stake-
holders working in concert with a variety of architecture and
design collateral generated across various points in a complex
design life-cycle. Furthermore, the long life and aggressive
energy/performance needs of IoT applications bring in new
challenges to security designs. In this paper we discuss some of
the challenges, the current industrial practice to address them,
some gaping holes in the state of the practice, and potential
research directions to address them.

I. INTRODUCTION

The emergence of the Internet-of-Things (IoT) has led to a
new era of computing when the number of smart, connected
computing devices exceeds the human population [1]. It is an
exciting time for computing, witnessing an explosive growth
in the smart, connected computing devices — with estimates
between 50 billion and 75 billion by 2020 and running into
the trillions within a decade more. The number and kind of
computing applications has seen a corresponding diversity,
ranging from smart dust to smart cities.

Security trustworthiness of computing systems are crucial to
the IoT regime. With computing devices being employed for a
large number of highly personalized activities (e.g., shopping,
banking, fitness tracking, providing driving directions, etc.),
these devices have access to a large amount of sensitive,
personal information which must be protected from unautho-
rized or malicious access. Furthermore, communication of this
information to other peer devices, gateways, and datacenters
is in fact crucial to providing the kind of adaptive, “smart”
behavior that the user expects from the device. For example,
a smart fitness tracker must detect from its sensory data (e.g.,
pulse rate, location, speed, etc.) the kind of activity being
performed, the terrain on which the activity is performed, and
even the motivation for the activity in order to provide antic-
ipated feedback and response to the user; this requires a high
degree of data processing and analysis much of which is per-
formed by datacenters or even gateways with higher computing
power than the tracker device itself. The communication and
processing of intimate personal information by the network
and the cloud exposes the risk that it may be compromised
by some malicious agent along the way. In addition to end
user information, most computing systems contain confidential
collateral from architecture, design, and manufacturing, e.g.,
cryptographic and digital rights management (DRM) keys,

programmable fuses, on-chip debug instrumentation, defeature
bits, etc. Malicious or unauthorized access to secure assets
in a computing device can result in identity thefts, leakage
of company trade secrets, even loss of human life. A crucial
component of a modern System-on-Chip (SoC) architecture
includes mechanisms to protect these assets.

In this paper, we look at the spectrum of challenges for
security assurance in SoC designs targeted for Internet-of-
Things, and the state of the practice in developing security
architecture for these devices. Unfortunately, and in spite of
significant work on SoC security architecture, the current state
of the practice [2], [3] does not satisfy the requisite constraints
to enable smooth usage for IoT applications. In particular,
IoT security involves conflicts and trade-offs between a large
number of stake-holders, including energy, performance, in-
telligence, and validation. We discuss the current challenges
in IoT security, and touch upon some emergent research to
address them.

The remainder of the paper is organized as follows. Sec-
tions II and III provide a high-level overview of the current
state of the practice in security assurance for modern SoC
designs. Section V discusses some of the unique challenges
in IoT security. In Section VI we briefly introduce a new
approach to address the IoT security needs. This approach is
work in progress, but provides a promising direction towards
addressing the in-field configurability needs as well as secu-
rity/performance/energy trade-offs necessary for IoT devices.
We conclude in Section VII.

II. SOC SECURITY POLICIES

SoC security is driven by the requirement protect system
assets against unauthorized access. The assets in an SoC design
include cryptographic and DRM keys, premium content, de-
featuring bits, configuration fuses as well as personal end user
information, etc., and are sprinkled across different IP blocks.
Access control can be defined by confidentiality, integrity, and
availability requirements [4]. The goal of a security policy is
to map the requirements to “actionable” design constraints that
can be used by IP implementers or SoC integrators to develop
protection mechanisms. Following are two representative ex-
amples for a typical SoC.

• Example 1: During boot, data transmitted by the crypto
engine cannot be observed by any IP in the SoC fabric
other than its intended target.

978-1-5090-5191-5/17/$31.00@2017 IEEE

Fig. 1. Life cycle of a typical SoC from exploration to production.

• Example 2: A secure key container can be updated for
silicon validation but not after production.

Example 1 is a confidentiality requirement while Example 2
is an integrity constraint; The policies provide definitions
of (computable) conditions to be satisfied by the design
for accessing a security asset. Furthermore, these may vary
depending on the state of execution (e.g., boot time, normal
execution, etc.), or position in the development life-cycle (e.g.,
manufacturing, production, etc.). In addition to access control,
security policies can capture requirements from information
flow, liveness, time-of-check vs. time-of-use (TOCTOU), etc.

III. SECURITY ACROSS SOC DESIGN LIFE-CYCLE

Fig. 1 provides a high-level overview of the SoC design
life-cycle. Each component of the life-cycle involves a large
number of design, development, and validation activities. Here
we summarize the key activities involved along the life-cycle,
that pertain to security.

Risk Assessment. Security requirements definition is a key
part of product planning, and happens concurrently with (and
in close collaboration with) the definition of architectural
features. This process involves identifying the security assets
in the system, their ownership, and protection requirements,
collectively defined as security policies. The result of this
process is the generation of a set of documents, often referred
to as product security specification (PSS), which provides
the requirements for downstream architecture, design, and
validation activities.

Security Architecture. The goal of a security architecture
is to design mechanisms for protection of system assets. It
includes (1) identifying and classifying potential adversary
for each asset; (1) determining attacker entry points, also
referred to as threat modeling; and (3) developing protection
and mitigation strategies. The security definition typically
proceeds in collaboration with architecture and design of other
system features, including speed, power management, thermal
characteristics, etc.

Security Validation. Security validation spans the architec-
ture, design, and post-silicon components of the system life-

cycle. The actual validation target and properties validated
at any phase depends on the collateral available, e.g., we
target, respectively, architecture, design, implementation, and
silicon artifacts as the matures. One key activity is to subvert
the advertised security requirements in PSS, and identify
mitigation measures.

IV. SECURITY ARCHITECTURES: STATE OF THE PRACTICE

How would we go about designing authentication mecha-
nisms to ensure policy enforcement? Unfortunately, the state
of the practice today depends heavily on human creativity. The
typical approach is to develop a baseline architecture definition
which is then repeatedly refined through the following two
steps:

• identify potential threats to the current architecture; and
• refine the architecture with mitigation strategies.

The baseline architecture is typically derived from legacy
architectures for previous products, adapted to account for
the policies defined for the SoC design under exploration. In
particular, for each asset, the architect must identify (1) who
can access the asset, (2) what kind of access is permitted by
the policies, and (3) at what points in the system execution
or product development life-cycle such access requests can be
granted or denied. Note that not all assets are statically defined;
many assets are created at different IPs during the system
execution. For example, a fuse or e-wallet may have a statically
defined asset such as key configuration modes. During system
execution, these modes are passed to the cryptographic engine,
which generates the cryptographic keys for different IPs and
transmits them through the system NoC to the respective
IPs. Each participant IP has sensitive assets (either static or
created) during different phases of the system execution, and
the security architecture must account for any possible access
to these assets at any point.

There has been significant work towards standardizing ar-
chitecture to implement access control for different assets.
Most of this work has taken the form of developing a Trusted
Execution Environment (TEE), viz., a mechanism for guaran-
teeing isolation between code and sensitive data at different
points of the system execution. TEEs, of course, have been a
part of computer security for a long time, with a large number
of mechanisms and architectures. One of the most common
TEE architectures is the Trusted Program Module (TPM),
which is an international standard for a secure cryptoprocessor
designed to secure the hardware by integrating cryptographic
keys into devices [5]. It covers methods for secure generation
of cryptographic keys and limitation of their use, the require-
ments from random number generator, as well as capabilities
such as remote attestation and sealed storage. In addition to
TPM, there has been significant work on architecting other
TEEs, both in industrial platform and in academic research [6],
[7]. Some important TEE frameworks specifically developed
for SoC designs include Samsung KNOX [8], Intel R© Software
Guard Extension (SGX) [9], and ARM Trustzone R© [3]. Note
that in spite of differences motivated by the isolation and
separation targets, the underlying architectural plans for these

TEEs are similar, viz., a combination of hardware support
(e.g., secure operating modes, virtualization), and software
mechanisms (e.g., context switch agents, integrity check).

The TEEs provide a foundation (i.e., a mechanism of isola-
tion) for implementing security policies. However, they are a
far cry from a standardized approach for implementing policies
themselves. To provide such approaches, it is necessary to
(1) develop a language for succinctly expressing security
policies; (2) architecting a parameterized “skeleton” design
that can be easily instantiated to diverse policy implementa-
tions; and (3) developing techniques for synthesizing policy
implementation from high-level descriptions. Recent academic
and industrial research has attempted to mitigate some of these
issues. Li et al. [10] provide a language and synthesis frame-
work for certain security policies. Basak et al. [11] provide a
microcontrol-based framework for implementing certain class
of security policies. There have been optimized architectural
support for specific classes of policies,e.g., control-flow in-
tegrity [12], Trojan resistance [13]. However, in spite of such
work on pieces of the problem, we are still far away from
a robust, configurable security architecture as necessary for
robust system design. Some key deficiencies include inter-
play of secure access control with on-chip instrumentation,
definition of security architectures that are configurable for
different phases of system life-cycle, and lack of a centralized
IP for policy implementation in the SoC design, which makes
it difficult to evaluate policy compliance.

V. IOT SECURITY: CONFIGURABILITY, PERFORMANCE,
AND ENERGY TRADE-OFFS

IoT applications introduce additional constraints on the SoC
security architecture. Most of the constraints arise from the
following three requirements.

Long Field Life. Unlike traditional desktop, laptop, or mobile
computing devices, many devices targeted for IoT (such as a
smart automotive or smart meter) have a long in-field life often
spanning over a decade or more. The consequence to security
is that security requirements may evolve significantly over
this period, e.g., consider the security requirements for today’s
systems vis-a-vis those of a decade back. Requirements can
change because of (1) a new security exploitation discovered
when the device is in-field; or (2) new requirements based on
an unanticipated use case or change in performance or energy
requirements; or (3) obsolescence of a protection mechanism
due to changing computing paradigm, e.g., emergence of
quantum computers subverting cryptographic algorithms.

Bulk Production. As IoT devices are getting deployed in
quantities ranging from billions to trillions, it is impossible to
design each system individually by accounting for its unique
use-case constraints. Indeed, in our current swift-changing
environment of computing, all the use-case constraints are
not even clearly defined by the time a system design is
initiated. On the other hand, security requirements are typically
unique to each class of device, e.g., a home appliance, an
automotive, and an implant has completely different security

requirements. Addressing the challenge of unique security
needs while permitting development of systems en masse is a
critical requirement for IoT applications.

Tight Energy/Performance Requirements. Many IoT de-
vices operate within a very strict thermal, power, performance,
and real-time constraints. For example, an implant connected
to a human body must operate within the thermal constraints
defined by physiology; a wearable such as a smart watch
must operate within energy budget that precludes the device
getting uncomfortably hot; a processor in a car engine must
withstand potentially high temperatures and enable real-time
communication with the highway system. Security solutions
must account for these constraints. For example, one cannot
use a TEE that consumes high energy or significantly affects
real-time performance on a smart implant or automotive sys-
tem respectively/ Furthermore, the requirements may change
dynamically during execution, e.g., one may withstand more
energy consumption when wearing a smart watch at a coffee
shop in return for a higher level of security protection, while
one may trust the home network to enable a lower protection
level to conserve battery.

The above requirements suggest the need for high exten-
sibility built into the security architecture, to permit post-
silicon, in-field, and potentially run-time configurability of
security requirements. This would address both the challenge
of evolving security requirements in course of the long life or
run-time updates, and also permit bulk production while en-
abling post-manufacture reconfiguration of the policies based
on deployment target. Unfortunately, this is hard to do in
today’s security architectures which implement a fixed set of
security policies. These policies are conceived in advance dur-
ing architecture exploration and risk assessment. Furthermore,
their implementation is spread across hardware, firmware,
and system software of different IPs. This makes any update
(whether on-field or in advanced implementation stages) a
highly non-trivial activity. Consequently, in-field updates today
are based on creative and complex workarounds with software
or firmware patches and point fixes. More often than not, the
result is a modification in functionality not thought through in
advance, a significant increase in system complexity in-field,
and increased points of vulnerability and attack.

There is also a significant trade-off between configurability
on the one hand and energy/performance on the other, e.g.,
a highly configurable implementation typically involves a
high software component which typically results in higher
performance and energy overhead than a custom hardware.

VI. EMERGENT APPROACH: A CENTRALIZED SECURITY
ARCHITECTURE

Recent work [11], [14] has attempted to address the problem
of reconfigurability as well as potential trade-offs between
security, energy, and performance. The idea is to provide
an easy-to-integrate, scalable infrastructure IP that serves as
a centralized resource for SoC designs to protect against
diverse security threats at minimal design effort and hardware

Fig. 2. SoC security architecture Based on E-IIPS for efficient implementation
of diverse security policies.

overhead. Fig. 2 shows the overall architecture of E-IIPS. It
includes a microcontroller-based firmware-upgradable module
called SPC (for ”security policy controller”) that realizes
system-level security policies of various forms and types using
firmware code following existing security policy languages.
The SPC module interfaces with the constituent IP blocks
in a SoC using “security wrappers” integrated with the IPs.
These security wrappers extends the existing test (e.g., IEEE
1500 boundary scan based wrapper [15]) and debug wrapper
(e.g., ARM’s CoreSight interface [16]) of an IP. These security
wrappers detect local events relevant to the implemented
policies and enable communication with the centralized SPC
module. The result is a flexible architecture and approach for
implementing highly complex system-level security policies,
including those involving interoperability requirements and
trade-offs with debug, validation, and power management.
The architecture is realizable with modest area and power
overhead [11]. Furthermore, more recent work has shown that
the existing design instrumentations, e.g., for DfD, could be
exploited in implementing the architecture [14].

Of course, the architecture itself is only one component of
the policy definition. Several challenges remain, e.g., (1) defin-
ing a language for security policy specification that can be
efficiently compiled to SPC microcode, (2) study of bottle-
necks related to routing and congestion across communication
fabrics in implementing the architecture, (3) implementing

security policies involving potentially malicious IPs (including
malicious security wrappers or Trojans in the SPC itelf),
etc. Nevertheless, the approach shows a promising direction
towards systematizing policy implementations. Furthermore,
by enclosing the policy definitions to a centralized IP, it
enables security validation to focus on a narrow component of
the design, thereby potentially reducing validation turn-around.

VII. CONCLUSION

We have discussed the current practice in development of
security architecture for modern SoC designs. We described
the new challenges induced by IoT applications and the gaps in
the state of the practice in addressing these challenges. We dis-
cussed emergent research for addressing these challenges. Al-
though the emergent research is promising, it is just a start. We
believe that a comprehensive solution to the problem would
require significant collaboration among security researchers
as well as system and hardware architects, performance and
power management experts, and system validators.

REFERENCES

[1] D. Evans, “The internet of things - how the next evolution of the internet
is changing everything,” White Paper. Cisco Internet Business Solutions
Group (IBSG), 2011.

[2] S. Krstic, J. Yang, D. W. Palmer, R. B. Osborne, and E. Talmor, “Security
of SoC Firmware Load Protocol,” in IEEE HOST, 2014.

[3] ARM, “Building a secure system using trustzone technology,” ARM
Limited, 2009.

[4] S. J. Greenwald, “Discussion Topic: What is the Old Security Paradigm,”
in Workshop on New Security Paradigms, 1998, pp. 107–118.

[5] Trusted Computing Group, “Trusted Platform Module Specification,”
http://www.trustedcomputinggroup.org/tpm-main-specification/.

[6] A. Vasudevan, E. Owusu, Z. Zhou, J. Newsome, and J. M. McCune,
“Trustworthy Execution on Mobile Devices: What Security Properties
Can My Mobile Platform Give Me?” in Trust and Trustworthy Comput-
ing, ser. LNCS. Springer, vol. 7344, pp. 150—178.

[7] J. M. McCune, B. Parno, A. Perrig, M. K. Reiter, and H. Isozaki,
“Flicker: An Execution Infrastructure for TCB Minimization,” in Pro-
ceedings of ACM EuroSys, 2008.

[8] Samsung, “Samsung KNOX,” www.samsungknox.com.
[9] Intel, “Intel R© Software Guard Extensions Programming Reference,”

https://software.intel.com/sites/default/files/managed/48/88/329298-002.
pdf.

[10] X. Li, V. K. anf J. Oberg, M. Tiwari, V. Rajarathinam, R. Kastner,
T. Sherwood, B. Hardekopf, and F. T. Chong, “Sapper: A Language
for Hardware-Level Security Policy Enforcement,” in International
Conference on Architectural Support for Programming Languages and
Operating Systems, 2014.

[11] A. Basak, S. Bhunia, and S. Ray, “A Flexible Architecture for Systematic
Implementation of SoC Security Policies,” in Proceedings of the 34th
International Conference on Computer-Aided Design, 2015.

[12] L. Davi, M. Hanreich, D. Paul, A.-R. Sadeghi, P. Koeberl, D. Sullivan,
O. Arias, and Y. Jin, “Hafix: Hardware assisted flow integrity extension,”
in Proceedings of the 52nd Annual Design Automation Conference,
2015.

[13] L. Changlong, Z. Yiqiang, S. Yafeng, and G. Xingbo, “A System-On-
Chip bus architecture for hardware Trojan protection in security chips,”
in EDSSC, 2011.

[14] A. Basak, S. Bhunia, and S. Ray, “Exploiting Design-for-Debug for
Flexible SoC Security Architecture,” in IEEE DAC (accepted), June
2016.

[15] IEEE Joint Test Action Group, “IEEE Standard Test Access Port and
Boundary Scan Architecture,” IEEE Std., vol. 1149, no. 1, 2001.

[16] E. Ashfield, I. Field, P. Harrod, S. Houlihane, W. Orme, and S. Wood-
house, “Serial Wire Debug and the CoreSightTM Debug and Trace
Architecture,” 2006.

