
Equivalence Checking for
Behaviorally Synthesized Pipelines

Kecheng Hao
Dept. of Computer Science
Portland State University

kecheng@cs.pdx.edu

Sandip Ray
Dept. of Computer Sciences
University of Texas at Austin

sandip@cs.utexas.edu

Fei Xie
Dept. of Computer Science
Portland State University

xie@cs.pdx.edu

ABSTRACT
Loop pipelining is a critical transformation in behavioral
synthesis. It is crucial to producing hardware designs with
acceptable latency and throughput. However, it is a complex
transformation involving aggressive scheduling strategies for
high throughput and careful control generation to eliminate
hazards. We present an equivalence checking approach for
certifying synthesized hardware designs in the presence of
pipelining transformations. Our approach works by (1) con-
structing a provably correct pipeline reference model from
sequential specification, and (2) applying sequential equiva-
lence checking between this reference model and synthesized
RTL. We demonstrate the scalability of our approach on sev-
eral synthesized designs from a commercial synthesis tool.

Categories and Subject Descriptors
B.6.3 [Logic Design]: Design Aids—automatic synthesis,
optimization, verification

General Terms
Algorithms, Performance, Reliability, Verification

Keywords
Equivalence checking, behavioral synthesis, pipeline

1. INTRODUCTION
As hardware complexity increases, it is getting increas-

ingly difficult to develop a high-quality hardware system via
hand-crafted RTL. Electronic System Level (ESL) designs
provide a promising solution to this problem, by facilitating
more abstract design description (e.g., with SystemC). The
adoption of this approach, however, is crucially dependent
on the correctness of behavioral synthesis [13, 16, 11, 5, 3],
viz., the compilation of an ESL description to RTL.

A critical transformation in behavioral synthesis is loop
pipelining, producing temporal overlap of successive loop it-
erations. It is available in most state-of-the-art tools (e.g.,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2012, June 3-7, 2012, San Francisco, California, USA.
Copyright 2012 ACM 978-1-4503-1199-1/12/06 ...$10.00.

AutoESL [17], CatapultC [12], and Cynthesizer [4]) and is
crucial to the synthesis of high-throughput hardware. How-
ever, it induces retiming and out-of-order executions; fur-
thermore, the mapping of internal operations is lost between
the sequential description and the pipelined RTL. This rules
out standard sequential equivalence checking (SEC) tech-
niques for their comparison. In particular, some key opti-
mizations (e.g., cutpoints) become inapplicable.

We present an SEC framework for certifying synthesized
designs with pipelined loops. We have applied our tool on
industrial-size designs with thousands of lines of RTL, syn-
thesized by AutoESL. This scalability is derived from tight
integration with the synthesis flow. Instead of directly com-
paring the synthesized RTL with the sequential description,
we develop an intermediate pipeline reference model. This
model provably preserves the semantics of the sequential
description. However, our model generation algorithm is
parameterized by pipeline parameters, whose values are ob-
tained from the synthesis tool; this ensures that the struc-
ture of the generated model is similar to that of the synthe-
sized RTL, and enables internal operation mapping between
the reference model and the RTL.

The rest of this paper is organized as follows. Section 2
provides relevant background. Sections 3 and 4 present our
approach. We present experimental results in Section 5. We
discuss related work in Section 6 and conclude in Section 7.

2. BACKGROUND

2.1 Behavioral Synthesis
A behavioral synthesis tool applies a sequence of transfor-

mations to an ESL specification to transform it into RTL.
Figure 1(a) illustrates an ESL description with a simple
loop structure and Figure 1(b) shows the schematics of the
pipelined RTL design synthesized by AutoESL. The follow-
ing transformation phases are involved in this synthesis.

• First, compiler transformations are applied to the ESL
description. For instance, constant propagation is used
in the example to remove unnecessary variables.

• The second phase is scheduling, which optimizes the
clock cycle for each operation. In this phase, opera-
tions are chained across conditional blocks and decom-
posed into smaller multi-cycle sub-operations. Loop
pipelining is employed as part of this phase.

• The third phase is resource binding and control syn-
thesis. This phase binds operations to hardware units,

#def ine N 100
i n t p i p e (i n t a [N]) {

i n t i ;
i n t r e s u l t = 0 ;
f o r (i = 0 ; i < N; ++i) {

i n t tmp1 = r e s u l t + a [i] ;
a [i] = tmp1 ;
r e s u l t = tmp1 + 1 ;

}
r e tu rn r e s u l t ;

}

Reg_118

Reg_123

Reg_53

FSM

Reg_i

Mem Control

Logic

0
x_q0

ap_return
x_rw0

x_addr0
x_rw1

x_addr1

1

1

x_d0

%i = phi (0, %indvar);

%result = phi (0, %result_1)

%exitcond = icmp eq %i 100

%a_load = load %a_addr

%a_load = load %a_addr

Store %tmp1 %a_addr

ret result

Input

Y

N

indvar = add %i 1

%exitcond == 1

%a_addr = getelemtptr %A %i

%tmp1 = add %a_load %result

%result_1 = add %tmp1 1

S1

S2

S3

S4

S5

(a) (b) (c)

Figure 1: (a) C Code with Loop Design. (b) Schema of RTL Synthesized by AutoESL. (c) CCDFG

and allocates registers. For instance, the“+”operation
is bound to a hardware adder. Furthermore, a control
circuit is generated (typically as a finite-state machine
module) to implement the schedule.

After the transformations, the design is expressed as RTL.

2.2 A Certification Framework
In [14], we proposed a verified/verifying framework for cer-

tifying behaviorally synthesized RTL. The key idea was to
compare the RTL with the design representation after the
high-level (compiler and scheduling) transformations have
been applied to the ESL description. To achieve this, the
framework introduced CCDFG, a formalization of design
specification that augments the traditional Control/Data
Flow Graph (CDFG) with a schedule. High-level transfor-
mations can be certified offline (by theorem proving) to pre-
serve CCDFG semantics. The transformed CCDFG is com-
pared with RTL through SEC via dual-rail symbolic sim-
ulation. In [6], we also developed three optimizations to
optimize SEC performance. The resulting framework was
scalable to industrial-size designs.

However, this previous work ignored pipelining. In partic-
ular, the optimizations were critically dependent on ready
availability of mapping information for internal operations
between the CCDFG and the RTL, which was determined
from the resource bindings performed by the synthesis tool;
pipelining destroys this ready correspondence, making direct
mapping inapplicable.

2.3 CCDFG Formalization
Figure 1(c) illustrates the CCDFG corresponding to the C

code shown in Figure 1(a). Details of the formal semantics
of CCDFG are presented in previous paper [14]. Formally, a

CCDFG G , 〈GCD,M, T 〉, where GCD is the control/data
flow graph, M is a microstep partition, and T is a sched-
ule. The formalization assumes that the underlying lan-
guage provides the semantics for primitive operations (e.g.,
arithmetic operations, comparison, etc.). The operations
are partitioned into microsteps that stipulate the operations
that can be executed concurrently. Finally, microsteps are
grouped into a schedule which specifies the microsteps that
are completed within a single clock cycle. Following stan-
dard conventions, the control flow is broken up into ba-
sic blocks; data dependencies follow the “read after write”

S2 S3 S4

Execution order before pipelining

Execution order after pipelining

S2 S3 S4 S2 S3 S4

S2 S3 S4

S2 S3 S4

S2 S3 S4

S2 S3 S4

Figure 2: Execution Orders Before and After
Pipelining. The rounded boxes S2, S3, and S4 are
scheduling steps in the sequential design.

paradigm: opj is dependent on opi if opj occurs after opi in
a control path and computes an expression over some vari-
able v that is assigned most recently by opi in the path. A
CCDFG execution is formalized by a state-based semantics.
A CCDFG state (resp., CCDFG input) is a valuation of the
state (resp., input) variables. Given a sequence of inputs, an
execution of a CCDFG G with microstep partition M and
schedule T is a sequence of CCDFG states that corresponds
to an evaluation of the microsteps of M respecting T .

3. CHALLENGES WITH LOOP PIPELINES
Loop pipelining allows multiple successive iterations of a

loop to operate in parallel by executing a new iteration be-
fore the previous iteration completes. Consider pipelining
the loop in Figure 1(a). Figure 2 shows the execution orders
of the scheduling steps in the loop body before and after
pipelining. In the sequential design, execution of iteration
i involves reading the value of a[i] from the memory in S2,
adding i and a[i] in S3, and storing new value to the memory
and computation of result in S4. However, with pipelining,
iteration i+ 1 is initiated before iteration i completes.

The result of overlapping executions is a significant dif-
ference in the schedule of operations between the CCDFG
of the sequential design and the RTL generated from the
pipeline. Each scheduling step of the pipeline is composed of

a number of scheduling steps of the sequential design; there
is no longer a direct operation mapping between the CCDFG
and RTL. Furthermore, due to the difference in the execu-
tion order of the scheduling steps, the controlling finite-state
machines are also different. A direct SEC between the two
reduces to comparison of their input-output relations, which
is prohibitively expensive for loops with many iterations.

4. SEC WITH REFERENCE MODEL
Our solution to the above problem is to develop a reference

pipelining transformation on CCDFGs. Given a CCDFG G

and certain pipeline parameters (see below), we generate
a new CCDFG G′ by pipelining the loops. Note that our
transformation is different from that used by the synthe-
sis tool to generate the pipelined RTL. The synthesis tool
transformation includes algorithms and heuristics to deter-
mine how many iterations to pipeline, when to introduce
stalls and bubbles, etc.; on the other hand, our algorithm
merely takes such information as parameters to create G′.
In fact, we obtain this information from the synthesis tool
itself. Thus the output CCDFG G′, if successfully generated
by our algorithm,1 is guaranteed to have close structural cor-
respondence with the synthesized RTL. On the other hand,
irrespective of the actual value of these parameters, G′ is
guaranteed to be semantically equivalent toG and can there-
fore be soundly used instead of G for SEC.

The following definition characterizes the loops handled
by the algorithm.

Remark 1 (Conventions). For a given CCDFG G ,

〈GCD,M, T 〉 and a set t ∈ T , we use the term “projection

of G on t” to mean the CCDFG Gt , 〈G
′

CD,M ′, {t}〉 where
G′

CD and M ′ contain only the operations in GCD and M

respectively, that are members of t. For a set T0 ⊆ T , we
use “projection of G on T0” to denote the following graph
G′. The nodes of G′ are given by the set N , {Gt : t ∈ T0};
given g0, g1 ∈ N , there is an edge from g0 to g1 if there are
operations o1 and o2 such that o1 ∈ g0, o2 ∈ g1 and there is
an edge from o1 to o2 in GCD.

Definition 1 (Pipelinable Loop). For a CCDFG G

, 〈GCD,M, T 〉 and for T0 ⊆ T , we say that T0 induces a
“pipelinable loop” if (1) the projection of G on T0 is a cycle
C, and (2) in the projection of G on T there is a unique node
(called the “entry node”) in C with a predecessor outside
C and a unique node (called the “exit node”) in C with a
successor outside C.

Remark 2. The notion of pipelinable loops is more re-
strictive than the common loop definition in programming
languages. In particular, a pipelinable loop has a single exit
and loop nesting is disallowed. Our definition is based on the
kind of loops that can be pipelined during behavioral synthe-
sis. For instance, if a design contains nested loops, then the
inner loop can be unrolled completely (possibly by compiler
transformations) before the outer loop can be pipelined.

1Our algorithm does not use semantic invariants of the pro-
gram being transformed. Thus we may fail to pipeline a
loop for a given number of iterations (and report spurious
hazard) when in fact such a pipeline is hazard-free. How-
ever, in practice we have not seen a case where the synthesis
tool generates a pipeline with specific parameters and our
algorithm reports a spurious hazard on those parameters.

S’2

S’3

S’5

S’6

CCDFG after pipelining

S2

S3

S4

S2

S3 S2

S4 S3 S2

Pipeline

 Prologue

Pipeline

 Full

Pipeline

 Epilogue
S4

S’4

CCDFG before pipelining Pipelined CCDFG construction

S5 S5

(a) (b) (c)

Figure 3: Input and Output CCDFGs of Loop
Pipelining Transformation

Remark 3. Since a schedule is a partition of microsteps,
T0 induces a partition of GCD such that if t0 6= t1 the parti-
tion induced by t0 is disjoint from that induced by t1. Given
a set T of scheduling steps, one can describe the CCDFG
G , 〈GCD,M, T 〉 uniquely as the triple 〈S,E,M〉 where S

and E denote the nodes and edges of the projection of G on
T , and M is the set of microstep partitions refined by T . We
use this view in the rest of the paper for pipelinable loops.

Given CCDFG G, our reference transformation replaces
each loop L in G with the pipelined refinement of L as de-
scribed in Algorithm 1. Here I is iteration interval, which
indicates how many clock cycles later a new iteration is to
be“fed” into the pipeline, and N is the number of scheduling
steps in L. Values of these parameters are readily available
from AutoESL.

Algorithm 1 PIPELINELOOP(L = 〈S,E,M〉, I , N)

1: S′

1 ← GenerateSchedulingSteps(S,I,N)
2: 〈S′

2,M
′

1〉 ← GenerateP ipelineRegs(S′

1,M,E, I)
3: E′

1 ← GenerateEdges(S′

2, E, I,N)
4: 〈S′

3,M
′

2〉 ← GenerateForwarding(S′

2,M
′

1, E
′

1, I)
5: return 〈S′

3, E
′

1,M
′

2〉

Figure 3 illustrates the use of the algorithm on our simple
example. We now discuss the different steps of the algorithm
in greater detail.

Algorithm 2 GenerateSchedulingSteps (S, I , N)

1: SG ← ∅;
2: iter← 0 /*loop iteration*/
3: while iter ∗ I < N do
4: SG ← mergeIteration(SG, S, I, iter)
5: iter ← iter + 1
6: end while
7:
8: /*build new edges within one single scheduling step */
9: for each step s′ in SG do
10: for each step pair (s′[pos], s′[pos+ 1]) in s′ do
11: e′ ← buildEdge(s′[pos], s′[pos+ 1])
12: s′ ← append(s′, e′)
13: end for
14: end for
15: return SG

S2

S3

S4

Iter = 0; Iter = 1 Iter = 2

Scheduling step

before pipelining
Scheduling step

after pipelining

S2

S3

S4

S2

S3

S4

S2

S3 S2

S4 S3

S4

S2

S3

S4

Legend:

(a) (b) (c) (d)

S’2

S’3

S’4

S’5

S’6

S’2

S’3

S’4

S’5

S’6

S’2

S’3

S’4

S’5

S’6

S’2

S’3

S’4

S’5

S’6

Figure 4: Construction of Scheduling Steps

Algorithm 2 describes the construction of scheduling steps
of the pipelined CCDFG. The algorithm simulates the pro-
cess of “feeding” a new loop iteration into the pipeline un-
til the pipeline is full. Consider the sequence of iterations
shown in Figure 4. The output is an array (initially empty)
of graphs. Each graph represents the projection of the ref-
erence pipeline CCDFG at a single scheduling step. We
first build the nodes of each graph in the array (Lines 3-6);
we then compute the edges within each graph (Lines 8-14).
The set of nodes of each graph in SG is determined by I

and N . The algorithm updates SG for every iteration. If
the pipeline is not yet full, i.e., can accept a new iteration
but no iteration is completed yet (Line 3), then a new iter-
ation is introduced and merged with the existing iterations
in the pipeline by subroutine mergeIteration. Subroutine
mergeIteration merges each scheduling step in the new it-
eration with the corresponding steps already in pipeline, re-
turns new scheduling steps as shown in Figure 4(b), (c), (d).
To model the exit, the pipeline enters the “flushing” stage in
which iterations are completed without new iteration being
introduced. The pipeline full stage corresponds to the new
loop body for the pipelined CCDFG while the prologue and
epilogue correspond to the entry and exit.

We now build the edges for each graph in SG. The goal is
to ensure that the new control flow respects that of the input
loop. The process is demonstrated in Figure 5 (a). Recall
that a scheduling step of the pipeline involves a number of
scheduling steps of the original CCDFG (across several iter-
ations). To ensure that the original control flow is respected,
a scheduling step s′ of the pipeline is executed following the
iteration order. This is achieved by adding edges enforcing
the evaluation of microsteps from left to right. For instance,
in S′

4 shown in Figure 5 (a), an edge is created to connect S4

and S3. Since S4 is from an earlier iteration, the direction is
from S4 to S3. The edge condition !exitcond states that loop
does not exit. If the loop exits at iteration i, all iterations
from (i + 1) must be skipped: this is ensured by inserting
the exit condition on all such edges. Subroutine buildEdge

creates the correct edge condition according to the control
flow.

Algorithm 3 inserts “pipeline registers” between iterations
to facilitate correct data flow and prevent variables from be-
ing overwritten before being consumed. In a CCDFG, the

S2

S3 S2

S4 S3 S2

S3S4

S4

S2

S3 S2

S4 S3 S2

S3S4

S4

build the new edges within

one single scheduling step

build the new edges between

scheduling steps and back edges

! exitcond TRUE

! exitcond

Loop Exit

e
x
it
c
o

n
d

! exitcond

e
x
it
c
o
n
d

e
x
it
c
o
n

d

! exitcond

TRUE

exitcond

Dead Edges

(a) (b)

S’2

S’3

S’4

S’5

S’6

S’5

S’6

TRUE

S’2

S’3

S’4

Figure 5: Construction of Edges

effect of pipeline registers is mimicked using temporary vari-
ables as follows. We first compute all program variables that
may be overwritten before being consumed(Line 2); this con-
stitutes the variables that potentially require pipeline reg-
isters. To find such variables, we compare the distance be-
tween the producer msp and the last consumer msc; if the
distance is greater than I , v is assigned the new data value of
the next iteration before current iteration’s value has been
fully consumed; this warrants insertion of pipeline variables
in every scheduling step between msp and msc. The value
is propagated every clock cycle following the CCDFG data
flow. In Figure 6, variable %a addr is computed in S2 and
the last use scheduling step is S4. The distance is greater
than I = 1, therefore, temporary variables a addr pipe1 and
a addr pipe2 are inserted. Subroutine addP ipelineReg gen-
erates new microsteps for assignments of the pipeline vari-
ables, create new edges to integrate these microsteps into
the data path, and updates the schedule.

Algorithm 3 GeneratePipelineRegs (S, M , E, I)

1: S′ ← S;M ′ ←M

2: Vpr ← getP ipelineRegisterV ars(S,M,E, I)
3: for each variable v in Vpr do
4: msp ← getProducer(v)
5: msc ← getLastComsumer(v)
6: 〈S′,M ′〉 ← addP ipelineReg(S′,M ′, E,msp,msc)
7: end for
8: return 〈S′,M ′〉

Algorithm 4 shows the construction of edges governing
the control flow of the pipelined CCDFG. Figure 5 (b) shows
how to build edges between new scheduling steps (Lines 3-6).
One example is the edge from S2 in S′

2 to S4 in S′

3. Because
the pipeline is still in prologue stage, the edge condition is
that loop does not exit.

The back edge of the new loop connects the last scheduling
step of the pipeline full stage to the first one. S′[N − 1] is
the last one and S′[N − I] is the first step in the pipeline
full stage. Finally, for an unbounded loop, exit can occur
in any iteration. Thus, we must allow the pipeline to start
flushing in any iteration, even when the pipeline is not full
(Lines 12-17). In the example shown in Figure 5(b), the exit
point of the loop is in S2, therefore in pipeline epilogue, the

edge from S4 to S3 will never be valid. This is because the
loop would have already exited and the S3 and S4 of the new
iteration will not execute. The dead edges will be removed
to simplify the final CCDFG.

Algorithm 4 GenerateEdges (S, E, I , N)

1: E′ ← ∅
2: /*build the edges between new scheduling steps*/
3: for each step pair(S[i], S[i+ 1]) in S do
4: e′ ← buildEdge(S[i], S[i+ 1])
5: E′ ← append(E′, e′)
6: end for
7: /*build the back edge*/
8: ssrc ← S[N − 1]; sdst ← S[N − I]
9: ebackedge ← buildEdge(ssrc, sdst)
10: E′ ← append(E′, ebackedge)
11: /*build the early exit edge*/
12: i← N − 1
13: while i < sizeof(S) − 1 do
14: e′ ← buildEdge(S[i], sloopexit)
15: E′ ← append(E′, e′)
16: i← i+ I

17: end while
18: return 〈E′〉

Algorithm 5 GenerateForwarding (S, M , E, I)

1: /*find all loop carried dependencies*/
2: Dlc ← getLoopCarriedDependencies(S,M,E)
3: S′ ← S;M ′ ←M

4: for each pair (ow, or) in Dlc do
5: if checkForwarding(or, I, S

′) then
6: 〈S′,M ′〉 ← moveOp(ow, or, S

′, E,M ′)
7: else
8: return ERROR

9: end if
10: end for
11: return 〈S′,M ′〉

A critical puzzle is computation of data forwarding paths
along pipeline iterations (Algorithm 5). Data forwarding is
critical to achieving aggressive pipelining and eliminate the
data hazards. The first key observation is that forwarding is
only necessary for loop carried dependencies, which extend
back to the previous iteration. Dlc denotes a list of depen-
dencies and Subroutine getLoopCarriedDependencies finds
all loop carried dependencies. Each dependency is pair of
operations (ow, or), ow is the last write operation in the
loop body and or is the first read operation. Subroutine
checkForwarding checks if the data forwarding is possible
(i.e., whether the value is computed before use) for these
variables in the scheduling steps of the pipeline. We then
implement forwarding using so-called “Φ nodes”. Φ nodes
are special operators in compiler transformations and are
widely used in resolving conditional branches in a number
of compilers, and used to postpone computation of control
flow to run time. In particular, a Φ node is introduced in
a basic block which has multiple predecessors; the values of
variables in a Φ node for a specific execution are given by
the specific block which actually precedes the node in that
execution. To understand its utility for data forwarding,

%i = phi (0, %indvar);

%result = phi (0, %result_1)

%exitcond = icmp eq %i 100

%a_load = load %a_addr

%a_load = load %a_addr

Store %tmp1 %a_addr_pipe2

Y

N

indvar = add %i 1

%exitcond == 1

%a_addr = getelemtptr %A %i

%tmp1 = add %a_load %result

%result_1 = add %tmp1 1

S2

S3

S4

%a_load = load %a_addr

%tmp1 = add %a_load %reslult

S3

%result = phi(0, %result_1)

Forwarding

Next iteration

%i = phi (0, %indvar);

%result = phi (0, %result_1)

%exitcond = icmp eq %i 100

%a_load = load %a_addr

Y

N

indvar = add %i 1

%exitcond == 1

%a_addr = getelemtptr %A %i

S2

%a_addr_pipe1 = load %a_addr

%a_addr_pipe_1 = load %a_addr

%a_addr_pipe2 = %a_addr_pipe1

%a_addr_pipe2 = %a_addr_pipe1

Figure 6: Pipeline Registers and Forwarding

consider Figure 6. In the non-pipelined design Φ operators
can occur only in scheduling step S2. The valid value of
variable %result is computed by the Φ node in scheduling
step S2. Since we desire to execute scheduling steps S2 and
S3 within a single scheduling step, we move the Φ from S2

to S3 and forward the value directly from the producer to
the consumer. In general, to implement pipeline forwarding,
we need to relocate the position of the Φ operator for a vari-
able to immediately before its first consumer, also update
the assignment of Φ node according to the new control flow.
The “move” is implemented in moveOp, which will generate
new scheduling S′ and new microstep partition M ′.

5. EXPERIMENTAL RESULTS
We implemented the loop pipelining algorithm on top of

our verified/verifying certification framework for behavioral
synthesis [14]. SEC is implemented by cycle-by-cycle dual-
rail, word-level symbolic simulation between CCDFG and
RTL that utilizes CVC3 SMT engine, as well as several op-
timizations including cutpoints, cut-loop, and modular anal-
ysis [6]. We ran our tool on a collection of pipelined designs
synthesized by AutoESL. All experiments were conducted
on a workstation with 3GHz Intel Xeon processor with 2GB
memory.

Table 1 illustrates the results. Our framework could suc-
cessfully handle SEC for synthesized designs with pipelined
loops involving several thousand lines of RTL within rea-
sonable time and memory bounds. Note that this success
on pipelines depends on the applicability of other optimiza-
tions during SEC. The reason is that because of the presence
of non-trivial loops, SEC without cut-loop optimization re-
quires expensive fixed-point computation which runs out of
memory and time. For all designs, brute-force SEC between
the unpipelined CCDFG and the RTL times out. SEC be-
tween the pipelined CCDFG and the RTL can mostly fin-
ish. With the optimizations applied, SEC finishes with re-
duced memory and time usages. The results thus support

Table 1: Loop Pipelining Experimental Results

Design
RTL App. Domain Loop Info. Pipeline Info. Without Opt. With Opt.
#line Inter- Depth Oper- Forw- Pipeline Mem. Time Mem. Time

val ations arding Register (MB) (Sec) (MB) (Sec)
MemoryOp 291 Memory operation 1 4 18 2 2 24 38 4 0.3

TEA 383 Cryptography 1 4 28 4 2 - - 40 6.2
XTEA 483 Cryptography 1 3 37 4 1 - - 52 7.8

CORDIC 485 Data processing 1 3 31 4 0 38 7.9 5 0.9
SmithWater 517 Data processing 2 3 73 3 0 - - 134 50.2

FIR 610 Signal processing 3 5 27 3 1 763 127.4 63 10.8
YUVToRGB 756 Image processing 2 6 77 1 5 - - 335 128.9
MotionComp 1248 Image processing 1 3 53 3 0 434 132.2 50 11.4

DES 3292 Cryptography 1 3 17 2 2 468 364.7 257 163.3

our preference to compare the RTL with a closely resembling
pipelined CCDFG that facilitates the optimizations, rather
than develop a specialized SEC algorithm for pipelines.

6. RELATED WORK
Koelbl et al. [8] provide a tutorial introduction on methods

of comparing high-level designs with RTL. Chauhan et al. [2]
propose a technique for SEC between non-cycle-accurate de-
signs by constructing a pair of normalized cycle-accurate de-
signs from the original designs. Kundu et al. [9] propose the
use of bisimulation correspondence to validate designs gen-
erated by behavioral synthesis. However, neither approach
provides pipelining-specific equivalence checking strategies
that effectively integrate with behavioral synthesis flows.

There is a significant literature on verifying pipelined mi-
croprocessors [1, 7, 10, 15], which has parallels with our
work. However, there has been very little published work
on formal verification of pipelines generated by behavioral
synthesis. Nevertheless, any viable SEC framework for be-
havioral synthesis (e.g., Synopsys Hector tool) must handle
loop pipelining. To our knowledge current implementations
either involve cost-prohibitive input-output comparison or
require the user to provide the requisite mappings.

7. CONCLUSIONS AND FUTURE WORK
We have presented an approach to equivalence checking

of pipelined designs generated by behavioral synthesis. Its
efficiency and scalability has been attested by application
to industrial-size case studies. The key insight is that a
parameterized, synthesis-guided reference transformation on
CCDFG permits comparison with RTL even after mappings
with the original sequential specification has been destroyed
by an aggressive transformation such as pipelining. Fur-
thermore, the approach permits smooth integration with
pipeline-oblivious transformations such as cut-loop.

In future work, we plan to handle more industrial exam-
ples. We also plan to handle more diverse pipelines, includ-
ing function pipelines and pipelines for nested loops.

Acknowledgment
This research was partially supported by National Science
Foundation Grants #CCF-0916772 and #CCF-0917188 and
by a research grant from Intel Corporation. We sincerely
thank Disha Gandhi, Naren Narasimhan, Jin Yang, and
Zhenkun Yang for their help.

8. REFERENCES
[1] J. R. Burch and D. L. Dill. Automatic verification of

pipelined microprocessor control. In Proc. of CAV,
1994.

[2] P. Chauhan, D. Goyal, G. Hasteer, A. Mathur, and
N. Sharma. Non-cycle-accurate sequential equivalence
checking. In Proc. of DAC, 2009.

[3] J. Cong, Y. Fan, G. Han, W. Jiang, and Z. Zhang.
Behavioral and Communication Co-Optimizations for
Systems with Sequential Communication Media. In
Proc. of DAC, 2006.

[4] Forte Design Systems. Cynthesizer Manual, 2011.

[5] D. Gajski, N. D. Dutt, A. Wu, and S. Lin. High Level
Synthesis: Introduction to Chip and System Design.
Kluwer Academic Publishers, 1993.

[6] K. Hao, F. Xie, S. Ray, and J. Yang. Optimizing
equivalence checking for behavioral synthesis. In Proc.
of DATE, 2010.

[7] R. B. Jones, D. L. Dill, and J. R. Burch. Efficient
validity checking for processor verification. In Proc. of
ICCAD, 1995.

[8] A. Koelbl, Y. Lu, and A. Mathur. Formal Equivalence
Checking between System-level Models and RTL. In
Proc. of ICCAD, 2005.

[9] S. Kundu, S. Lerner, and R. Gupta. Validating
High-Level Synthesis. In Proc. of CAV, 2008.

[10] J. Levitt and K. Olukotun. A scalable formal
verification methodology for pipelined
microprocessors. In Proc. of DAC, 1996.

[11] Y.-L. Lin. Recent developments in high-level synthesis.
ACM Trans. Des. Autom. Electron. Syst., 2(1), 1997.

[12] Mentor Graphics. Catapult C Reference Manual, 2011.

[13] A. Pnueli, M. Siegel, and E. Singerman. A Survey of
High-Level Synthesis Systems. Kluwer Academic
Publishers, 1991.

[14] S. Ray, K. Hao, F. Xie, and J. Yang. Formal
verification for high-assurance behavioral synthesis. In
Proc. of ATVA, 2009.

[15] M. N. Velev and R. E. Bryant. Verification of pipelined
microprocessors by correspondence checking in
symbolic ternary simulation. In Proc. of ACSD, 1998.

[16] R. Walker and R. Camposano. A Survey of High-Level
Synthesis Systems. Kluwer Academic
PublishersBoston, MA, USA, 1991.

[17] Xilinx. AutoESL Reference Manual, 2011.

