
Scalable Certification Framework for
Behavioral Synthesis Front-End

Zhenkun Yang1, Kecheng Hao1, Kai Cong1, Li Lei1, Sandip Ray2 and Fei Xie1

1Dept. of Computer Science, Portland State University, Portland, OR 97207, USA
{zhenkun, kecheng, congkai, leil, xie}@cs.pdx.edu

2Strategic CAD Labs, Intel Corporation, Hillsboro, OR 97124, USA
sandip.ray@intel.com

ABSTRACT
Behavioral synthesis entails application of a sequence of trans-
formations to compile a high-level description of a hardware
design (e.g., in C/C++/SystemC) into a register-transfer
level (RTL) implementation. In this paper, we present a
scalable equivalence checking framework to validate the cor-
rectness of compiler transformations employed by behavioral
synthesis front-end. Our approach makes use of dual-rail
symbolic simulation of the input and output of a transforma-
tion, together with identification and inductive verification
of their loop structures. We have evaluated our framework
on transformations applied by an open source behavioral
synthesis tool to designs from the CHStone benchmark. Our
tool can automatically validate more than 75 percent of the
total of 1008 compiler transformations applied, taking an
average time of 1.5 seconds per transformation.

1. INTRODUCTION
Behavioral synthesis is the process of compiling an Elec-

tronic System Level (ESL) design to register-transfer level
(RTL). ESL specifications define the design functionality at
a high level of abstraction (e.g., with C/C++ or SystemC),
and thus provide a promising approach to address the exact-
ing demands to develop feature-rich, optimized, and complex
hardware systems within aggressive time-to-market sched-
ules. However, the adoption of the approach critically de-
pends on our ability to ensure that the synthesized design
indeed correctly implements the ESL specifications.

A behavioral synthesis flow can be roughly divided into
two phases: front-end and back-end. The front-end primarily
entails compiler transformations; the goal is to reduce code
complexity of the generated design, maximize data locality,
etc. [4], and transform the design into a form more suitable
for resource allocation and control synthesis. The back-end
entails local, sometimes manual, optimizations for a number
of metrics, e.g., performance, power consumption, etc.

Previous work [8,20] developed a scalable sequential equiv-
alence checking (SEC) tool for behavioral synthesis back-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
DAC ’14 June 01 - 05 2014, San Francisco, CA, USA
Copyright 2014 ACM 978-1-4503-2730-5/14/06 ...$15.00.

end. The tool performs dual-rail symbolic simulation be-
tween RTL and the internal representation (IR) extracted
after the compiler and scheduling transformations have been
applied. The key observation is that SEC can exploit the
operation-to-resource mappings employed by the synthesis
tool: these mappings provide a liberal source of internal sig-
nals for use as cutpoints. The tool could certify synthesized
hardware designs with tens of thousands of lines of RTL.

However, the above framework is meaningful only if front-
end transformations are also certified. Front-end transfor-
mations constitute the majority of synthesis transformations
e.g., more than a hundred such transformations are applied
to a design. Furthermore, they are applied aggressively un-
der delicate, implicit invariants, and tend to be complex
and error-prone. Unfortunately, the SEC approach for the
back-end is ineffective for front-end transformations. Back-
end SEC relies on operation-to-resource mappings to cor-
relate internal signals of IR and RTL; such mappings are
not available between IRs during front-end transformations.
Consequently, a näıve SEC approach would require cost-
prohibitive input-output equivalence checking of different
IRs. Recent work [19] developed a technique for certifying
compiler transformations by symbolically exploring corre-
sponding paths of the IRs before and after each front-end
transformation, but this approach was also found prohibitive
for most practical designs, e.g., designs with loop structures.

In this paper, we develop a tool for certifying front-end
transformations. As in previous work [19], our approach
entails symbolic execution of IRs. However, we augment
it with optimizations to handle path explosion. Our tool
has been used to certify compiler transformations applied
by the LegUp behavioral synthesis tool [3] on the CHStone
benchmark [9]. CHStone is a publicly available C-based ESL
benchmark suite; some designs have over 1200 lines of C,
and generate over 53, 000 lines of RTL. Our tool can auto-
matically certify more than 75% of the 1008 compiler trans-
formations involved. The suite includes designs with com-
plex branching structures and unbounded loops. We are not
aware of any other SEC framework that can certify front-end
compiler transformations of such diversity and scale.

Our optimizations include a compositional strategy for
containing path explosion, and an inductive assertions ap-
proach for reasoning about loops. While the strategies are
well-known, their application to front-end transformations is
a challenge. For example, the inductive assertions strategy
entails “cutting the loop” for the IRs, reducing the fixpoint
computation to checks at the entry, body, and exit. The idea
is derived from classic works in program verification [5, 10],

B
eh

av
io

ra
l S

yn
th

es
is

 T
oo

l Compiler Front-end

RTL

Scheduling & Binding

Code Generation

IR0

C/C++/SystemC

Compiler
Transformations

IRn

Front-end

Back-end C
er

tif
ic

at
io

n
Fl

ow

IRs

Figure 1: Behavioral synthesis and certification flow

and has been applied before for the back-end [8]. However,
it requires identification of corresponding loop structures of
two IRs and corresponding variables in the IRs affected by
loop iterations. Identifying such variables is easy for back-
end by operation-to-resource mappings. However, in the ab-
sence of such mappings, we need more elaborate algorithms
and heuristics for enabling cut-loop on front-end. Our key
contribution is to integrate such strategies by exploiting in-
formation from the synthesis tool.

2. BACKGROUND

2.1 Behavioral Synthesis
Figure 1 shows the overall working of a behavioral syn-

thesis tool. Similar to a generic compiler, it first performs
lexical, syntax and semantic analysis, and builds an IR of
the ESL description. The IR is then subjected to a sequence
of transformations which can be categorized into phases.

1. Front-end transformations include generic compiler op-
timizations, e.g., constant propagation, loop unrolling,
code motion, etc.

2. Back-end involves scheduling the operations of the de-
sign to specific clock cycles, binding operations to func-
tional units, allocating resources, synthesis of control
circuit to implement schedule, and generating RTL.
Further manual tweaks are also implemented to opti-
mize for timing, power, etc.

2.2 Back-end Certification Framework
Previous work [8, 16, 20] developed an SEC framework to

certify RTL designs generated by behavioral synthesis. The
key observation is that SEC via dual-rail symbolic simu-
lation is effective for comparing RTL with the IR obtained
after scheduling and binding transformations (viz., IRs). Re-
cent work [7] extended it to scheduling transformations, e.g.,
loop and function pipelining.

2.3 Front-end Certification and Complexity
Unfortunately, a direct dual-rail SEC does not work for

front-end. The dissimilarity in structure between the in-
put ESL description (IR0 and the IR IRn generated after
front-end transformations) makes it difficult to find direct
mappings between internal variables. The back-end exploits

Program S

Program T

Symbolic
Executor

Execution
Controller

Yes

Evidence of
Inequivalences

No

Symbolic
Executor

C
om

m
an

d

Equivalent?

P
at

h
P

at
h

C
om

m
an

d

Transformation T S ∼ T

SE1

SE2

Figure 2: Framework of checking equivalence between program S and
T , which are the input and output of transformation T respectively.

operation-resource mappings of the synthesis tool to iden-
tify cutpoints; such mappings are not available for front-
end. Finally, transformation implementations are typically
closed-source (in addition to being highly complex), which
precludes certifying the implementations by code analysis.

Recent work [19] extended the certification framework to
front-end by decomposing it into a series of checks, one for
each transformation applied. The key observation is that
while the transformation implementations may be closed-
source, it is possible to obtain from most tools the IRs after
application of each front-end transformation. Thus, an SEC
methodology was developed to compare each pair of consec-
utive IRs, as shown in Figure 2. The idea is to symbolically
execute the two IRs (referred to as S and T) and check
that each pair of corresponding program paths is equiva-
lent. A program path is uniquely specified by the sequence
of branch conditions that must hold for the control flow to
execute the instructions in the path. The approach was used
on some cryptographic applications. Unfortunately, the ap-
proach does not scale to other practical programs. In par-
ticular, it requires effective enumeration of all paths in S
and T ; in practice, this can lead to path explosion. Two key
sources of path explosion in practice are subroutine calls and
loops. In the next two sections we discuss optimizations to
address these problems.

3. MODULAR REASONING ACROSS FUNC-
TIONS

Why do subroutine calls contribute to path explosion?
The näıve approach of symbolically executing the program
treats each function as if it were inlined: the function body
is symbolically executed at each call site. When a function f
having a number of branches in its body (and hence program
paths) is invoked many times, each invocation contributes a
multiplicative factor to the number of paths explored.

Our approach to address this problem is to develop a com-
positional approach to symbolic execution [6], which permits
equivalence checking on a per-function basis. Suppose func-
tions f and f ′ invoke functions g and g′ respectively. Then
(1) we separately check the equivalence of g and g′; and
(2) when checking the equivalence of f and f ′, we replace g
and g′ with the same uninterpreted function symbols.

Of course the above näıve scheme only works for side ef-
fect free functions. If g and g′ update some global variables
or pass-by-reference arguments, then replacing g and g′ with
the same uninterpreted function on the explicit arguments
will be unsound since the effect on the global variable or
pass-by-reference arguments is not accounted for. To ad-

dress this, we use a notion of “extended signature”. The
idea is to extend the type signature of a function explicitly
accounting for the side effects. Let g be a sub-function; we
use τ = g(~αv, ~αr) to represent the signature of g, where
τ denotes the return value, ~αv denotes pass-by-value argu-
ments, and ~αr denotes pass-by-reference arguments. Then,
in addition to the function arguments, suppose function g

reads globals ~βr and updates globals ~βw. The extended type
signature of g is:

〈τ, ~α′
r, ~β′

w〉 = g(~αv, ~αr, ~βr),

where ~α′
r and ~β′

w are updated versions of ~αr and ~βw respec-
tively, mimicking the notion that they may be arbitrarily
changed by function g. 1

1 char A; // global variable
2 int B; // global variable
3 int C[2]; // global variable
4 void f(int d[4]) {
5 int i = 8;
6 g(i, d);
7 }
8 void g(int x, int y[4]) {
9 B = A + x; // side effect on global B

10 C[1] = C[0] + x; // side effect on global C
11 y[1] = y[0] + x; // side effect on arguments
12 }

Figure 3: Global variable usage with sub-function call example.

Figure 3 shows an example of a sub-function with side
effects. Function f invokes function g which updates the
globals B and C, and pass-by-reference argument y.

Extended signatures are exploited to replace function calls
with uninterpreted functions symbols. Suppose that func-
tion g has been certified; when certifying function f, we
replace g with an uninterpreted function (say G) of four ar-
guments, and the effect of the invocation of g on the globals
(B and C) and argument y is given by:

〈d, B, C〉 = G(i, d, A, C).

Since each invocation of sub-functions is replaced by an
uninterpreted function symbol, we alleviate path-explosion
problem introduced by subroutine calls. It is worth noting
that this can generate false alarms, and we need to take
special care to handle common false negatives. We discuss
this issue when describing our experiments.

4. HANDLING LOOPS
Loops are the second major contributors to path explosion

(and, in case of unbounded ones, non-termination) in sym-
bolic simulation of software programs. The reason is that
symbolic simulation of a loop induces (at least) two branches
for each loop iteration simulated: (1) the branch where the
loop test holds (and hence the body is executed) and (2) the
branch where the test is false.2

1Pass-by-reference arguments are pointers, and most behav-
ioral synthesis tools restrict the usage of pointers to compile-
time determinable ones, which makes this approach works
in finding which variable a pointer points to.
2The branching may be limited if the value of the loop test
can be computed concretely during symbolic execution of
the loop. However, this is not possible for most non-trivial
loops in practice.

1 int f(int x) {
2 int i=0, sum=0;
3 int y = x + 100;
4 for(i=0; i<y; i++){
5 sum += i * 4;
6 }
7 return sum + x;
8 }

t1 := x + 100

t2 := ϕ [0, B1] [t7, B3]

t3 := ϕ [0, B1] [t6, B3]

t4 := t2 < t1

if t4 goto B3

t8 := t3 + x

return t8

t5 := t2 × 4

t6 := t5 + t3

t7 := t2 + 1

B1

B2

B3B4

(a) (b)
Figure 4: A simple function with a loop in C and its IR. (a) Function f
has an unbounded for loop. (b) The IR of f, with boxes representing
basic blocks, and arrows representing control flow. Control flow merge
is implemented via φ-instructions in basic block B2.

We handle equivalence of loops by an approach called cut-
loop optimization. Our approach borrows ideas from a cor-
responding one for back-end SEC between high-level IR and
RTL [8], and is an adaptation of classic inductive assertions
approach [5, 10] to program equivalences. The idea is to
“cut” the loop, which reduces equivalence of loop execution
to equivalence checks at entry, body, and exit. To illustrate
the idea, consider the example in Figure 4. Figure 4 (a)
shows a simple unbounded loop in C. Figure 4 (b) shows
the IR of function f.3 If the input x is symbolic, then the
symbolic expansion of the loop (and hence the symbolic ex-
ecution of f) will not terminate.4 We assume loops are in
natural loop form in the IRs. A natural loop must have a
single entry point (header) and at least one back edge lead-
ing the control flow from the loop body back to the loop
header. Figure 4 (b) is an example of a natural loop, where
B2 is the loop header, and edge (B3, B2) is the back edge.

As pointed out in Section 2.3, back-end SEC [8] exploits
mappings of variables provided by behavioral synthesis tool.
For simplicity, suppose each basic block is a scheduling step
in Figure 4 (b). At the end of execution of each scheduling
step, we check the equivalence of all mapped variables. If
they are equivalent, we replace every pair of mapped vari-
ables with the same symbolic symbol (with cut-point opti-
mization). Suppose the loop is entered from B1, after exe-
cuting of B3, variables t5, t6 and t7 are checked equivalence
with their mapped variables in RTL, and then will be re-
placed with symbolic variables. Till this point, we checked
the first iteration of the loop. The subsequent iterations of
the loop are all led by the back edge. Since we made t5, t6
and t7 symbolic, executing the subsequent iterations once
will cover all possible cases. All we need to do is to avoid
multiple entrance of a loop through the same back edge.

However, variables mappings between two IRs are not
available during front-end transformations. Suppose a loop
consists of a list of basic blocks; then we must identify a

3Control flow merge is implemented via φ-instructions in
basic block B2. A φ-instruction v = φ [α, Bi] [β, Bj] in basic
block B means that v has the value α if B is reached from
Bi, and β if reached from Bj .
4Technically, symbolic simulation can terminate when a fix-
point is reached, i.e., when all reachable states have been ex-
plored. But achieving such fixpoint requires the restriction
that all the variable types are finite, as well as an expensive
fixpoint computation through symbolic simulation.

minimum set of variables that need to be mapped between
the two IRs. In particular, we need to identify mappings for
loop-carried variables. The reason is that we want to make
them symbolic, so that we only need to execute the loop
once through each back edge (see below).

We achieve the above through use-definition chains analy-
sis [1]. In the example shown in Figure 4 (b), loop L consists
of basic blocks B2 and B3, variable t6 and t7 are loop-carried
variables. For example, execution of loop L is done as fol-
lows:

1. Loop L is entered from B1:

• path 1: B1 → B2 → B4: we check the equivalence
of return variable t8;
• path 2: B1 → B2 → B3: we check the equivalence

of loop-carried variables t6 and t7, and make them
symbolic afterwards.

2. Loop L is entered from B3 through the back edge:

• path 1: B3 → B2 → B4: we check the equivalence
of return variable t8;
• path 2: B3 → B2 → B3: we check the equivalence

of loop-carried variables t6 and t7, and terminate
L.

The above approach requires detecting the loop structure
(e.g., loop header, exit, back edge, etc.) in the IRs. Once
the loop-carried variables are identified, equivalence of loop
computation can be verified by checking the first iteration
(entered from entry) and one subsequent symbolic iteration
(entered through back edge) for each back edge; since we
made loop-carried variables symbolic after first iteration,
this covers all possible cases for the subsequent iterations.
The sufficiency of these checks was mechanically proven in
previous work using the ACL2 theorem prover [17].

Finally, cut-loop requires that when the corresponding
loops in the two IRs being compared have the same struc-
ture, and perform equivalent computation at each iteration,
e.g., it is inapplicable if the transformation entails partial
loop unrolling. However, as our experiments indicate, most
behavioral synthesis transformations are structure-preserving,
making the optimization widely applicable.

5. EXPERIMENTAL RESULTS
We applied our framework to CHStone [9], a publicly

available behavioral synthesis benchmark suite containing
12 ESL designs (in C). We used LegUp [3] to synthesize
these designs. We conducted our experiments on a work-
station with Debian 7.1 running on a 2.93 GHz Intel Xeon
X3470 processor with 8 GB of memory. We focused on intra-
procedural transformations. The experiments were run with
a cutoff time of 90 seconds: certifications taking longer than
this time are classified as failures. The reason for this cutoff
is that in our experience, most successful transformation cer-
tifications that complete in any reasonable time finish within
a few seconds for examples of this size; if symbolic execution
takes more than 90 seconds, it is unlikely to finish. Thus we
believe that the impact of making the cutoff longer on the
number of successful transformations will be insignificant.
Our tool supports a number of SMT solvers. The results on
this benchmark use Z3 since it outperforms others.

Table 1 shows the statistics of the experiments, e.g., the
number of transformations applied by the synthesis tool,5

5Some transformations are applied more than once.

 0%

 20%

 40%

 60%

 80%

 100%

B
L

O
W

F
IS

H

S
H

A

G
S

M

JP
E

G

A
D

P
C

M

M
IP

S

A
E

S

M
O

T
IO

N

D
F

D
IV

D
F

M
U

L

D
F

S
IN

D
F

A
D

D

S
u
cc

es
s

R
at

e

without cut−loop

 with cut−loop

Figure 5: Comparison of success rate on designs of CHStone bench-
mark without and with cut-loop optimization. The x axis is ordered
by the success rate with cut-loop.

the number of transformations checked successfully, as well
as time and memory usages. In all successful cases, time and
memory usages are modest. With compositional execution
and cut-loop optimization, we successfully validated 75.69
percent of transformations (763 out of 1008).

Figure 5 compares the success without and with cut-loop
optimization. Without cut-loop, we can validate only 52.88
percent of transformations (533 out of 1008). Thus cut-loop
provides an improvement of 22 percent. The improvement is
most significant for AES, JPEG, GSM, and BLOWFISH since they
have more loops. The transformations that fail certification
(about 25 percent) typically do so for two reasons: (1) the
transformation changes loop structure making cut-loop in-
applicable; or (2) symbolic expressions for corresponding
variables in source and target programs may become too
complex, causing blow-up for the SMT solver.

Since we focus on intra-procedural transformations, we
check the designs compositionally; this may sometimes in-
troduce subtle false alarms. Furthermore, false alarms can
arise in surprising ways, e.g., if the extended signature of a
sub-function is different in the source and target programs.
As an example 6, suppose that a function foo has a sub-
function legup_memcpy that is invoked as follows.

r = legup_memcpy(a, b, c)

This sub-function has a return value, but the value is never
used subsequently. Similarly, suppose that a function bar

invokes the same sub-function legup_memcpy as follows:

legup_memcpy(a, b, c)

This invocation treats legup_memcpy as if it returns void.
The problem is when we compositionally check foo and bar,
we abstract sub-function legup_memcpy with uninterpreted
function. Since the extended signatures are different for two
invocations of the sub-function, (one with a return value
and the other one without), a näıve approach will report
an inequivalence due to type mismatch. Since the result of
return value r in foo is not used, this inequivalence is a false
alarm. However, it can be easily eliminated, by excluding
from the extended signature the types of return values that
are not subsequently used.

6This is a real example in function Fill_Buffer in MOTION
design. The transformation is called “Combine Redundant
Instructions”

Table 1: Summary of Evaluation on CHStone Benchmark

App. Domain Design Lines of
C Code

Lines
of RTL

of
Functions

of Checked
Transformations

of Successful
Checks

Success
Rate (%)

Avg.
Time (s)

Memory
(MB)

Arithmetic DFADD 542 12933 17 62 62 100.00 0.78 159.86
DFDIV 452 10948 19 62 78 79.49 0.95 161.22
DFMUL 392 7100 16 47 48 97.92 0.93 155.93
DFSIN 772 22949 31 113 115 98.26 0.88 187.70

Microprocessor MIPS 256 7237 1 10 13 76.92 2.32 15.01
Media Processing ADPCM 521 33706 15 69 101 68.32 3.33 123.85

GSM 388 22816 12 53 86 61.63 0.26 122.94
JPEG 1031 53584 30 158 237 66.67 1.55 694.76
MOTION 414 13770 13 59 74 79.73 0.49 52.50

Security AES 699 40014 11 67 85 78.82 4.22 120.56
BLOWFISH 1241 23490 6 27 48 56.25 3.28 93.58
SHA 1284 12491 8 36 61 59.02 0.05 106.14

6. RELATED WORK
There has been research on formally proving compiler

transformations correct by theorem prover. CompCert [12]
is the first formally verified compiler. Similar to CompCert,
Vellvm [22] project formalizes LLVM’s intermediate repre-
sentation, and develops a framework for reasoning about
programs. Ray et al. propose an sequential equivalence
checking framework for certifying behaviorally synthesized
RTL [16]. This framework uses theorem proving to certify
high-level transformations. However, using theorem prov-
ing to prove all transformations requires enormous manual
effort; it also requires knowledge about internal algorithm
of each transformation, which is often not available because
most behavioral synthesis tools are closed source.

Pnueli et al. proposed the notion of translation valida-
tion [14] for validating the transformations during compi-
lation. Instead of verifying a transformation once and for
all, they show how to generate a proof of correspondence
between the source and target programs for each individ-
ual transformation. However, it restricts the source and
target programs each consists of one single loop. Zuck et
al. extended this approach to support structure-modifying
transformations [23]. Necula used symbolic evaluation tech-
niques from proof-carrying code to tackle translation vali-
dation [13]. However, this approach only handled transfor-
mations where source and target programs have the same
branch conditions. Zaks and Pnueli proposed a framework
to construct the cross product of the source and target pro-
gram [21]. This reduces the problem of checking the equiva-
lence of two programs to verification of a single program.
Peggy [18] performs translation validation for the LLVM
compiler using equality saturation. It builds Program Ex-
pression Graphs for the source and target programs of a
transformation and then reasons about equalities among
nodes. If output nodes of two programs are shown equal,
the two programs are equivalent. To our knowledge, these
approaches do not scale to programs of the size we consider
in this paper. Note that a key reason for the difference in
scalability is that the aim of the above line of research is
to check the correctness of generic compiler transformations
while we focus on transformations in behavioral synthesis.
In particular, the programs being synthesized are finite state
and many language features such as dynamic memory allo-
cation are prohibited.

There has also been recent research on applying symbolic
techniques to checking the equivalence of two arbitrary pro-
grams. uc-klee [15] proposes a smart stub function that
invokes two routines that need to be verified for equiva-
lence, and leverages klee [2] to symbolically execute the

stub function. Upon finding a path, uc-klee checks if the
two routines behave the same. uc-klee enumerates path
with best efforts; thus it suffers from path explosion and
does not terminate when executing unbounded loops. sym-
diff [11] is a symbolic differentiation tool, which symboli-
cally executes two programs with same symbolic inputs, and
checks if the two programs have identical outputs. sym-diff
handles loops by unrolling them to a user-specified depth;
consequently it cannot certify equivalence between programs
whose loops iterations are long or controlled by input vari-
ables; we can handle such programs with cut-loop optimiza-
tion.

7. CONCLUSION AND FUTURE WORK
We have presented a scalable SEC framework to validate

the correctness of front-end compiler transformations in be-
havioral synthesis. We use symbolic execution technique
to explore (possibly all) paths of the source and target pro-
grams of each transformation. We showed how to ameliorate
path explosion and non-termination in symbolic simulation
through compositionality and cut-loop optimization. Our
framework can fully automatically certify results of more
than 75 percent of 1008 transformations employed by a syn-
thesis tool on designs from the CHStone benchmark. We are
not aware of any SEC framework that can handle compiler
transformations at such diversity and scale.

Our results underline the importance of aligning verifica-
tion methodology with the design flow in the development
of a scalable verification framework. SEC for behavioral
synthesis transformations at the scale achieved here has not
been done before because extant tools focused on input/out-
put equivalence between the high-level ESL description and
synthesized RTL; such efforts are ineffective because of the
high abstraction gap. On the other hand, pre-certified com-
piler transformation via theorem proving as proposed in
previous work [16] was not successful both because of the
number and complexity of such transformations and the re-
luctance of synthesis tool vendors to expose transformation
implementation for formal analysis. Our key insights are
that (1) design IRs before and after each transformation ap-
plication can be made available from a commercial synthesis
flow even if the transformations themselves are proprietary,
and (2) restrictions in program features enforced by behav-
ioral synthesis from the need to eventually generate hard-
ware circuit from the design description make it possible to
use “black-box” SEC techniques effectively to certify these
IRs. The key take-away from our paper is that once the
right verification methodology has been identified, it is pos-
sible with insight of the source of verification complexity of

the domain to adapt well-known analysis ingredients into an
end-to-end certification solution in a complex domain.

One possible argument against our framework is the re-
quirement that IRs after each transformation application be
available to the tool. In particular, if the validation is per-
formed by a third party, this requirement may provide ex-
posure to confidential design intellectual property (IP). In
practice, we have not seen that to be a problem for two rea-
sons. First, in many industrial contexts, the validation is
performed by personnel who have access to the original ESL
and RTL designs anyhow (e.g., by a validation group in the
same organization that designed the ESL). Second, most ex-
tant commercial behavioral synthesis tools already provide
the information on IRs; we do not require any additional
information to perform our analysis. Nevertheless, the po-
tential of IP leakage is an important one, and we plan to look
at the constraints and data available to third-party evalua-
tors during design certification in future work to determine
how our framework can be made usable in that context.

In future work, we also plan to extend our SEC framework
to handle more aggressive transformations. The fact that we
still cannot certify 25 percent of the transformations in CH-
Stone shows that there is significant room for improvement.
Our planned future extensions include equivalence checking
for transformations spanning multiple procedures or func-
tions. We are also planning to handle transformations that
modify structures of loops, perhaps through domain-specific
SEC optimizations. Recall that a key reason for our in-
ability to handle the transformations where SEC fails is the
inapplicability of cut-loop, which requires equivalence for
each iteration of corresponding loops of the two programs.
We are looking for ways to loosen that restriction so that
transformations such as partial loop unrolling can be certi-
fied. Last but not least, we are also looking at certifying
scheduling and resource binding operations to complete the
certification flow.

8. REFERENCES
[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers:

Principles, Techniques, and Tools. Addison Wesley,
1st edition, Jan. 1986.

[2] C. Cadar, D. Dunbar, and D. Engler. KLEE:
unassisted and automatic generation of high-coverage
tests for complex systems programs. In Proc. of OSDI,
pages 209–224, 2008.

[3] A. Canis, J. Choi, M. Aldham, V. Zhang,
A. Kammoona, J. H. Anderson, S. Brown, and
T. Czajkowski. Legup: high-level synthesis for
FPGA-based processor/accelerator systems. In Proc.
of FPGA, pages 33–36, 2011.

[4] J. Cong, B. Liu, S. Neuendorffer, J. Noguera,
K. Vissers, and Z. Zhang. High-level synthesis for
FPGAs: from prototyping to deployment.
Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, 30(4):473–491, April
2011.

[5] R. Floyd. Assigning Meanings to Programs. In
Mathematical Aspects of Computer Science,
Proceedings of Symposia in Applied Mathematcs,
volume XIX, pages 19–32. American Mathematical

Society, 1967.

[6] P. Godefroid. Compositional dynamic test generation.
In Proc. of POPL, pages 47–54. ACM, 2007.

[7] K. Hao, S. Ray, and F. Xie. Equivalence checking for
behaviorally synthesized pipelines. In Proc. of DAC,
pages 344–349, 2012.

[8] K. Hao, F. Xie, S. Ray, and J. Yang. Optimizing
equivalence checking for behavioral synthesis. In Proc.
of DATE, pages 1500–1505, 2010.

[9] Y. Hara, H. Tomiyama, S. Honda, and H. Takada.
Proposal and quantitative analysis of the CHStone
benchmark program suite for practical c-based
high-level synthesis. Information and Media
Technologies, 4(4):740–752, 2009.

[10] C. A. R. Hoare. An Axiomatic Basis for Computer
Programming. Communications of the ACM,
12(10):576–583, 1969.

[11] S. K. Lahiri, C. Hawblitzel, M. Kawaguchi, and
H. Rebêlo. Symdiff: a language-agnostic semantic diff
tool for imperative programs. In Proc. of CAV, pages
712–717, 2012.

[12] X. Leroy. A formally verified compiler back-end. J.
Autom. Reason., 43(4):363–446, Dec. 2009.

[13] G. C. Necula. Translation validation for an optimizing
compiler. In Proc. of the ACM SIGPLAN on PLDI,
pages 83–94, 2000.

[14] A. Pnueli, M. Siegel, and E. Singerman. Translation
validation. In Proc. of TACAS, pages 151–166, 1998.

[15] D. A. Ramos and D. R. Engler. Practical, low-effort
equivalence verification of real code. In Proc. of CAV,
pages 669–685, 2011.

[16] S. Ray, K. Hao, Y. Chen, F. Xie, and J. Yang. Formal
verification for high-assurance behavioral synthesis. In
Proc. of ATVA, pages 337–351, 2009.

[17] S. Ray, W. A. Hunt, Jr., J. Matthews, and J. S.
Moore. A Mechanical Analysis of Program Verification
Strategies. Journal of Automated Reasoning,
40(4):245–269, May 2008.

[18] R. Tate, M. Stepp, Z. Tatlock, and S. Lerner. Equality
saturation: a new approach to optimization. In Proc.
of POPL, pages 264–276. ACM, 2009.

[19] Z. Yang, K. Hao, K. Cong, S. Ray, and F. Xie.
Equivalence checking for compiler transformations in
behavioral synthesis. In Proc. ICCD, 2013.

[20] Z. Yang, K. Hao, S. Ray, and F. Xie. Handling design
and implementation optimizations in equivalence
checking for behavioral synthesis. In Proc. DAC, pages
117:1–117:6, 2013.

[21] A. Zaks and A. Pnueli. CoVaC: compiler validation by
program analysis of the cross-product. In Proc. of FM,
pages 35–51, 2008.

[22] J. Zhao, S. Nagarakatte, M. M. Martin, and
S. Zdancewic. Formalizing the LLVM intermediate
representation for verified program transformations.
SIGPLAN Not., 47:427–440, Jan. 2012.

[23] L. Zuck, A. Pnueli, Y. Fang, and B. Goldberg. VOC: a
methodology for the translation validation of
optimizing compilers. Journal of Universal Computer
Science, 9:2003, 2003.

