
Correctness and Security at Odds:
Post-silicon Validation of Modern SoC Designs

Sandip Ray Jin Yang
Strategic CAD Labs, Intel Corporation

Hillsboro, OR 97124. USA
{sandip.ray, jin.yang}@intel.com

Abhishek Basak Swarup Bhunia
EECS Dept., Case Western Reserve University

Cleveland, Ohio 44106. USA
{axb594, skb21}@case.edu

Invited Paper

ABSTRACT
We consider the conflicts between requirements from secu-
rity and post-silicon validation in SoC designs. Post-silicon
validation requires hardware instrumentations to provide ob-
servability and controllability during on-field execution; this
in turn makes the system prone to security vulnerabilities,
resulting in potentially subtle security exploits. Mitigating
such threats while ensuring that the system is amenable to
post-silicon validation is challenging, involving close collab-
oration among security, validation, testing, and computer
architecture teams. We examine the state of the practice in
this area, the trade-offs and compromises made, and their
limitations. We also discuss an emerging approach that we
are contemplating to address this problem.

1. INTRODUCTION
Recent years have seen the emergence of System-on-Chip

(SoC) design technology as a centerpiece in computing sys-
tem architecture. These systems encompass a diverse range
of platforms and form factors, including smartphones, tablets,
automotive controls, medical instruments, etc. The trend
is towards even higher proliferation and diversification as
we move towards a future with Internet of Things, wear-
ables, implants, and smart sensors. A consequence of these
pervasive and personalized applications is that modern SoC
designs include a large amount of highly sensitive assets
that must be protected from unauthorized and malicious
access. Examples of assets included in a typical SoC de-
signs are cryptographic keys, firmware, operation modes,
programmable fuses, etc. Unauthorized access to secure as-
sets can have catastrophic consequences, including loss of
billions of dollars in economy, threats to personal and na-
tional security, even large-scale destruction of human life [1].
Furthermore, malicious attacks themselves are becoming in-
creasingly sophisticated and diverse, including attacks on
the underlying hardware, exploitation of system-level bugs
through software or firmware, and reverse-engineering infor-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
DAC ’15 June 07 – 11, 2015, San Francisco, CA, USA
http://dx.doi.org/10.1145/2744769.2747917
Copyright 2015 ACM 978-1-4503-3520-1/15/06 ...$15.00.

mation from communication of the device with other sys-
tems. Consequently, security validation is a key component
of the SoC verification and validation flow. Indeed, many
security requirements (e.g., data integrity, authentication,
privacy requirements, access control policies, etc.) are con-
sidered part of the correctness specification and form key
targets for functional validation. Furthermore, security ar-
chitectures often form a cooperative counterpoint to valida-
tion, providing built-in resiliency to vulnerabilities.

However, there is one critical situation where security
constraints are at odds with validation requirements, viz.,
post-silicon validation and debug. Post-silicon validation
entails executing tests and applications on a fabricated, pre-
production silicon implementation; the goal is to ensure that
the fabricated silicon operates correctly under actual oper-
ating conditions with real applications. The goal is to detect
errors that are missed in pre-silicon validation (e.g., simula-
tion and emulation of RTL and software models), check for
compatibility with software and applications, identify elec-
trical noise margins, determine frequency ranges for reliable
operations, etc. Post-silicon validation is a critical and com-
plex activity performed under aggressive schedules. It rep-
resents more than 50% of the validation cost of a modern IC
design [2]. Perhaps more importantly, mass production of
the design can start only after the product has been “vetted”
by post-silicon validation; delays in post-silicon schedule can
result in a company missing product release deadlines or
even having to cancel the production due to missed market
opportunities, with consequent loss in revenues, reputation,
and market share [3]. It is therefore critical to enable fast,
streamlined workflow in post-silicon validation.

Why are security constraints at odds with post-silicon val-
idation requirements? Post-silicon validation requires in-
strumentation of the design with a significant amount of ad-
ditional circuitry, often referred to as Design-for-Debug or
DfD circuitry, to provide requisite observability and control
during silicon execution. Unfortunately, instrumentations
can also account for significant security vulnerabilities. In
particular, access to security assets are governed by com-
plex, subtle, and often ambiguous system-level policies in-
volving multiple IPs1 in the SoC design, and it is tricky to
determine whether an innocuous instrumentation has com-

1For the purpose of this paper, an “IP” or “intellectual
property” is a hardware or software block designed to pro-
vide a specific functionality. SoC design architectures typi-
cally involve composition of a number of IPs, many of them
standardized and pre-designed, interacting with one another
through an interface of communication fabrics.

promise some of these policies. To exacerbate the problem,
some of the DfD circuitry must remain enabled even after
post-silicon validation, e.g., when the product is shipped to
customers. This is done to ensure correlation of timing and
power characteristics between the shipped product and that
used for validation, and to provide “hooks” for debugging
or patching problems discovered on-field. Unfortunately, it
also means that any security vulnerability that remains un-
detected from DfD is also available for exploitation on-field.

In this paper, we discuss trade-offs between security and
post-silicon validation in modern SoC designs. We examine
the state of the industrial practice and its inadequacy, and
discuss some current and emerging approaches.

In spite of its importance, trade-offs between validation
and security have received scant attention of researchers in
academia or in industrial research. Much of the solutions
that exist in the industrial practice today are ad hoc, point
solutions based on designers’ experience and expertise. We
believe that a viable approach to this problem will require a
collaborative enterprise between security, debug, and com-
puter architecture research. A key goal of this paper is to
bring the problem to the attention of these communities,
explain its criticality, and explain the constraints that must
be satisfied for the solution to be viable.

The remainder of the paper is organized as follows. Sec-
tion 2 provides the relevant background on post-silicon vali-
dation, DfD, and SoC security policies, and describe some se-
curity vulnerabilities arising from conflicts with post-silicon
debug. In Section 3, we expand upon the problem, identi-
fying the key questions involved in the trade-offs between
security and validation. In Section 4, we discuss some ap-
proaches used in current industrial practice, and their limi-
tations. Section 5 discusses some of the challenges that need
to be addressed in developing an effective solution, account-
ing for the different stake-holders involved and constraints
from each stake-holder. Section 6 covers some emerging ap-
proaches, and Section 7 concludes the paper.

2. BACKGROUND

2.1 SoC Security
Modern SoC designs include a large number of critical

assets which must be protected from unauthorized or ma-
licious access. Some examples of security assets common
in most modern computing systems are cryptographic and
DRM keys, premium content, programmable fuses, firmware
execution flows and private information of the end user. Un-
fortunately, recent years have also seen significant sophisti-
cation diversity of security attacks on these systems. Fig-
ure 1 illustrates the diversity of potential security attacks
in a modern smartphone. Unsurprisingly, security is a crit-
ical parameter in the architecture and design of a modern
SoC design. Security considerations in an SoC design can
be broadly divided into the following three categories.

Hardware Security: This refers to security issues aris-
ing from problems in the underlying hardware. In particu-
lar, malicious hardware can be introduced during the sys-
tem development or fabrication by a participant in the SoC
supply chain either inadvertently or with malicious intent.
Examples of malicious hardware include hardware Trojans
[4] introduced by a malicious IP vendor or system integra-
tor (possibly through a malicious design automation tool)

Figure 1: Some Potential Attacks on a Modern Smartphone

which can leak secret information, counterfeit or cloned ICs
from the foundry [5], etc.

System or Platform Security: This refers to vulnera-
bilities resulting from functional or performance bugs in the
system that can be exploited by a malicious third party dur-
ing execution [6]. Examples of such vulnerabilities include
functional bugs in security-critical IPs (e.g., cryptographic
engine), information leakage due to unanticipated behavior
when the system encounters inputs of unexpected types, in-
formation leakage from system power profile, etc.

Cloud Security: This refers to vulnerabilities arising from
communication of an embedded computing system either
with other embedded systems in the Internet or with servers
and data centers in the cloud. It includes eavesdropping or
“man in the middle” attacks, breach of confidentiality in the
stored data in the cloud, etc.

For this paper, we will primarily focus on issues related
to system and platform security, although much of the dis-
cussion can be generalized to other categories.

What does a “security vulnerability” mean? At a high
level, the definition of security requirement for assets in a
SoC design follows the well-known “CIA” paradigm, devel-
oped as part of information security research [7]. In this
paradigm, accesses and updates to secure assets are subject
to the following three requirements:

• Confidentiality: An asset cannot be accessed by an
agent unless authorized to do so.

• Integrity: An asset can be mutated (e.g., the data in
a secure memory location can be modified) only by an
agent authorized to do so.

• Availability: An asset must be accessible to an agent
that requires such access as part of correct system func-
tionality.

Of course, mapping these high-level requirements to con-
straints on individual assets in a system is non-trivial. This
is achieved by defining a collection of security policies that
specify which agent can access a specific asset and under
what conditions. Following are two examples of represen-
tative security policies. Note that while illustrative, these
examples are made up and do not represent security policy
of a specific company or system.

Example 1: During boot time, data transmitted by the
cryptographic engine cannot be observed by any IP
in the SoC other than its intended target.

Example 2: A programmable fuse containing a secure key
can be updated during manufacturing but not after
production.

Example 1 is an instance of confidentiality, while Example 2
is an instance of integrity; however, the policies are at a lower
level of abstraction since they are intended to be translated
to “actionable” information, e.g., architectural or design fea-
tures. The above examples, albeit hypothetical, illustrate
an important characteristic of security policies: the same
agent may or may not be authorized access (or update) of
the same security asset depending on (1) the phase of the ex-
ecution (i.e., boot or normal), or (2) the phase of the design
life-cycle (i.e., manufacturing or production). These factors
make security policies difficult to implement. Exacerbating
the problem is the fact that there is typically no central
documentation for security policies; documentation of poli-
cies can range from microarchitectural and system integra-
tion documents to informal presentations and conversations
among architects, designers, and implementors. Finally, the
implementation of a policy is an exercise in concurrency,
with different components of the policy implemented in dif-
ferent IPs (in hardware, software, or firmware), that coordi-
nate together to ensure adherence to the policy.

Given the above factors, validation is a crucial aspect of
SoC security policy. Security validation encompasses the
entire design life-cycle, including both pre-silicon and post-
silicon phases. Security validation encompasses a variety of
activities, including threat modeling, fuzzing, penetration
testing, and hackathons.

2.2 Post-silicon Validation and DfD
Post-silicon validation is another crucial activity in a SoC

designs. It entails running tests and software on a fabri-
cated, pre-production silicon. The goal is to ensure that the
system works under actual operating conditions. Since the
silicon operates at target clock speed, its execution speed
is about a billion times that of RTL simulation, and even
several orders of magnitude higher than hardware accelera-
tors, emulators, etc. This permits exploration of deep design
states and running real applications (e.g., booting and exe-
cuting an operating system or software applications) which
are infeasible during pre-silicon validation. Indeed, a signifi-
cant amount of security properties are validated during post-
silicon validation through penetration testing or hackathon.
Furthermore, it provides an opportunity to explore and val-
idate non-functional behaviors of the design, e.g., power,
performance, frequency limitations, noise margins, etc.

Unfortunately, post-silicon validation is also a and com-
plex activity, requiring elaborate planning and involving a
large number of stake-holders. Figure 2 illustrates the num-
ber of complex activities that must be performed throughout
the design cycle to enable post-silicon validation.

In this paper we confine ourselves to one of its critical
requirements, e.g., on-chip instrumentation, or DfD. Its pri-
mary goal is to provide observability and control of internal
design states during silicon execution. Limited observability
and control are fundamental challenges in post-silicon vali-
dation: due to limitations in the number of output pins and
area/power overhead of internal trace buffers, only a few

Figure 2: Activities Pertaining to Post-silicon Validation Throughout
a System Design Life-cycle. The validation activity occurs in the time-
frame between the First Silicon and PRQ. However, planning for the
activity starts much earlier, aligned with the product planning itself.
PRQ or or “Product Release Qualification” is the decision point to
initiate mass production.

Figure 3: Basic JTAG architecture. The basic operations include
capturing the value of a register, shifting out the value on TDO,
shifting in a new value from TDI, and updating the register with this
new value. The bypass register is used for bypassing the update when
boundary scan is not used.

hundreds among the millions of internal signals of the de-
sign can be observed during silicon execution. Furthermore,
for a signal to be observed, the design must be instrumented
a priori with appropriate control hardware that routes the
signal to an observation point. Consequently, the DfD ar-
chitecture must be determined early in the design flow, typi-
cally through analysis of the functional architecture and the
available RTL implementation of some of the component
IPs. Indeed, a significant amount of recent research in post-
silicon validation has focused on approaches to identifying,
through analysis of pre-silicon design collaterals, signals to
be observed and controlled during silicon execution [8–10].
The DfD architecture is defined based on this analysis, and
realized as a collection of IPs which are integrated with the
system as part of the SoC integration process.

In addition to internal instrumentation for observability
and controllability, DfD also governs the interface through
which data is transported off-chip. One critical transport
interface is the IEEE Standard Test Access Port and Bound-
ary Scan Architecture, commonly referred to as JTAG [11].

It is part of the IEEE Std. 1149.1-1990 and was originally
devised to perform board-level testing for printed circuits
using boundary scan. However, because of its standard-
ization and extensive documentation, it is one of the most
important components for off-chip data transport available
in virtually all digital ICs, and has therefore found extensive
application in post-silicon validation. Figure 3 shows the ba-
sic JTAG architecture. It includes a test access port (TAP)
used by the tester or external host to interact with the in-
ternal scan network of the design, together with facilities
for state switching, shifting data in and out of scan regis-
ters, and executing the system from a specific state under
the control of a customized instruction set. In addition to
supporting standard JTAG, many microprocessor and SoC
design vendors have their own extensions, in the form of an
extended instruction set. In addition to JTAG, modern SoC
designs carry several other transport mechanisms [12].

2.3 Security Exploits through Debug
There have been several attacks on SoC designs that ex-

ploit the debug interface. One well-advertised attack was a
hack on XBOX 360 gaming control: using the JTAG inter-
face, it was possible to upload a buggy firmware that permit-
ted execution of unauthorized code [13]. Indeed, exploiting
JTAG to install buggy or malicious firmware is a well-known
approach to circumvent system security; similar approaches
have been demonstrated for jail-breaking smartphones or
unlocking premium services without authorization [14].

In addition to the above, it is possible to exploit instru-
mentation for observability and control to thwart system
security. Such exploits can be very subtle and difficult to
determine in advance, while having a devastating impact to
the product and company reputation once carried out. Con-
sequently, a “knee-jerk” reaction is to restrict DfD features
available in the design. On the other hand, lack of DfD
may mean making post-silicon validation difficult, long, and
even intractable. This may mean delay in product launch;
with aggressive time-to-market requirement, a consequence
of such delay can be loss of billions of dollars in revenue or
even missing the market for the product altogether.

3. TRADE-OFF CHALLENGES BETWEEN
SECURITY AND DEBUG

The trade-off challenge between security and validation is
the following. For post-silicon validation, we must to observe
internal design behaviors during system execution; however,
security policies on certain assets may disallow their observ-
ability. Put this way, the challenge may appear to be an
instance of inconsistency between requirements from avail-
ability and confidentiality/integrity as follows. The DfD ar-
chitecture is, after all, a collection of IPs that need access
to some internal data as part of its correct functionality at
different points of system execution; this need may be ap-
propriately viewed as an availability requirement. On the
other hand, a security policy that denies observability is an
instance of a confidentiality or integrity requirement. Such
trade-offs are abound in SoC designs, e.g., an analogous
trade-off is between (1) the need for two IPs to commu-
nicate data across the fabric in an SoC to satisfy some pro-
tocol (Availability); and (2) the requirement to restrict the
communication when there is a possibility of eavesdropping
in the channel by an unauthorized third IP (Confidentiality).

Indeed, debug requirements can be specified as security poli-
cies protecting specific assets. Consider a third-party IP A
that includes secret keys from an IP vendor. Then the fol-
lowing security policy may be imposed to protect the keys
from being exposed to the SoC design house during system-
level post-silicon validation. As with all previous policy ex-
amples, this one is also hypothetical albeit reasonable.

Key Protection Policy: If the system operates in debug
mode then A responds to key request with a dummy
key; otherwise A responds with the actual key.

If the restriction on DfD is indeed specified as a security
policy as above, then clearly it can be treated and validated
like any other security policy. Unfortunately, several factors
make the trade-off between security and debug more chal-
lenging than a general conflict between confidentiality and
availability. Here we discuss some of the key factors.

Ambiguity: Observability requirements are rarely as clear-
cut as requirements arising from functionality. A key reason
is that it is unclear a priori which component of the system
would exhibit a bug and therefore should be a target for ob-
servability. Indeed, much of DfD is designed in an ad hoc
manner based on experience of the designers and validators
on past systems. Furthermore, DfD decisions are made by
validators and designers having relatively little familiarity
with security policies. Consequently, observability architec-
tures tend to focus primarily on functionality. When secu-
rity constraints are imposed, often late in the design, one
of the following two situations is likely: (1) some critical
observability or control is inadvertently removed as a con-
servative measure; or (2) some subtle security flaw remains.

Feed-through: Security requirements may affect observ-
ability indirectly. Consider a signal s in IP A that we wish
to observe during post-silicon. Assume further that observ-
ing s does not compromise any security policy. However, in
order for s to be observed, its value must be routed to an
observation point, e.g., an output pin or system memory. If
this route includes a high-security IP B then confidentiality
requirement may cause B to be unobservable during system
execution, thereby making s unobservable as well. On the
other hand, the placement of IPs A and B in the system
layout, and consequently, the route of signal s, may only
be determined at an advanced stage of the design life-cycle
making it impossible to account for that consideration when
defining the signals to trace.

Lack of Centralization: Both DfD and security compo-
nents are sprinkled across a large number of IPs in the SoC
design. This, coupled with the lack of a rigorous documen-
tation or specification of DfD requirements (and in many
cases, also security policies), implies that it is sometimes
unclear what the purpose of a specific feature is, how it is
excited, and what vulnerabilities it exposes. This makes it
extremely hard to analyze or determine security risks arising
from DfDs. Consequently, depending on the target market
segment, SoC design products tend to be either too conser-
vative (i.e., secure, difficult to debug) or too aggressive (i.e.,
a significant amount of DfD, risking security).

4. STATE OF THE PRACTICE
In spite of the murky situation painted above, obviously

SoC designs with security collaterals are being created, de-

signed, implemented, and produced for mass-market. Tradi-
tionally, a general principle regarding the trade-off between
security and validation for IC design has been to progres-
sively increase security features (and decrease DfD) as the
design progresses along its life-cycle, from design to manu-
facturing, and production. Disabling DfD is possible per-
manently through blowing fuses during manufacturing and
production. The situation is more complex for modern SoC
designs, with the need to keep DfD features available for
patching the product on-field. Nevertheless, the progressive
increase is still a valid principle with a few adjustments.
The first adjustment is that one cannot permanently disable
DfD features because of the need to address this principle.
Second, when such reversal is needed it is only for specific
stake-holders with special authentication (e.g., an entity au-
thorized to patch a design functionality). Finally, the rever-
sal must be temporary, and once the activity needing the
reversal (e.g., fixing an on-field bug) is complete, the system
reverts to its default “higher security” state appropriate for
the current phase of its design life-cycle.

The above approach requires identification of security as-
sets, their default security needs at specific points of the
design life-cycle, and authentication requirements for rever-
sal. This is typically achieved by understanding (manually)
and deconstructing the intended modes of operation of the
system, identifying the assets that need protection at each
mode, and ensuring that the accesses to those assets, even
through debug interface, follow authentication. Authenti-
cation requirements are typically imposed at the transport
interfaces (e.g., JTAG), rather than at individual IPs. In
particular, since JTAG is a common data transport archi-
tecture there has been several recent efforts on developing
authentication mechanisms for JTAG, including challenge-
response schemes [15] and multi-level authentication [16].

Note that the approach can leave open the possibility for
an unauthorized IP to snoop the debug information in the
system’s internal fabric and obtain unauthorized informa-
tion about a classified security asset. Addressing such issues
is typically left to creativity of individual architects and de-
signers, and their solutions are validated (or broken) through
penetration testing or hackathons.

5. CONSIDERATIONS FOR DEVELOPING
A COMPREHENSIVE SOLUTION

The approaches discussed above are at best pragmatic
workarounds. A key problem in developing a viable, compre-
hensive solution is that both post-silicon validation and secu-
rity definition and architecture for modern SoC designs are
complex and elaborate processes, involving significant plan-
ning and a large number of stake-holders. Consequently, any
solution to their trade-off problem must necessarily address
a large number of parameters. In this section, we highlight
some of these parameters. The goal is not to be complete,
but to provide the reader a flavor of the diversity of con-
straints and requirements involved.

HVM Considerations. High-volume manufacturing test
is the process of identifying manufacturing defects during
production. This is done by placing the fabricated silicon
in a tester, where it is exercised with a large number of test
vectors. The test patterns are generated by accounting for
the functional definition of the design under test, the target
faults, a fault model, the fabrication process technology, etc.

The accuracy of coverage inferred from the results of these
tests is highly sensitive to the test patterns being applied and
the fidelity of the silicon design with respect to its pre-silicon
netlist model. Consequently, it is important that irrespec-
tive of security constraints and access control restrictions,
the test patterns work the same way as much as possible
on silicon designs as expected from pre-silicon models, and
their results accurately observed.2 Furthermore, it must be
possible to have a simple access to the IP being exercised
with the test, without requiring too many workarounds.

Reusability: A key source of complexity in the current
state of the practice discussed in Section 4 is the need to
manually identify assets and accesses for different products
and usage scenarios. This job is highly tedious and error-
prone. Consequently, solution to the problem must provide
a reusable infrastructure for systematically identifying and
classifying assets and analyzing usage scenarios.

Late Variability: DfD is notorious for late changes in re-
quirements and implementation. Indeed, DfD requirements
can change during IP design, SoC integration, or even after
a silicon stepping; the latter can happen on realization that
observability or control of certain signals is critical for a fu-
ture stepping. Consequently, any solution for addressing se-
curity challenges with DfD must be easy to adapt with such
changing requirements. In particular, it should be possible
to quickly validate an updated DfD architecture against a
given set of security policies and identify vulnerabilities.

Self-Securability It is obvious that any architecture in-
troduced to address the security-validation trade-off must
be self-securing and must not introduce additional security
back-doors (or complexity with debug).

Architecture: It is critical for any architecture that per-
mits the trade-off to be centralized. The reason is that a
decentralized architecture (both for security and DfD) is dif-
ficult to follow and can accidentally break or introduce vul-
nerability. To circumvent this possibility, it is critical that
the architecture can be viewed as a centralized IP which can
itself be effectively analyzed for possible violation of either
security or debug requirements.

6. EMERGING APPROACH: IIPS
We are working on an architecture, named Infrastructure

IP for Security or IIPS, to address the security-validation
trade-offs. Here we briefly discuss IIPS and how we contem-
plate its use to address the problem. Note that the archi-
tecture is preliminary and a work in progress. We discuss it
not to put it forward as a complete solution but to illustrate
our thinking regarding potential approaches to the problem.

The goal of IIPS is to provide an easy-to-integrate, scal-
able infrastructure IP that serves as a centralized resource
for SoC designs to protect against diverse security threats at
minimal design effort and hardware overhead. The central-
ized IP serves as a plug-and-play reusable IP for SoC design-
ers. It interfaces with functional IPs in the system through
an IEEE 1500 Standard Embedded Core Test (SECT) in-
terface, which forms a standard interface for communication
among IP blocks in most SoC designs. Current application

2We say “as much as possible” since it is not possible to
have exact equivalence, e.g., if the system uses dummy keys
in debug mode and test result depends on value of keys.

Figure 4: Schematic of architecture for the proposed secure debug
framework in a representative SoC model.

target for IIPS is to protect the SoC design against hardware
security attacks possibly from rogue or counterfeit IPs [17].
However, we are contemplating extension to implement se-
cure post-silicon debug. In particular, we are currently ex-
tending the paradigm into a centralized, firmware-controlled
framework to implement system level security policies. A
representative schematic of the debug controller with dis-
tributed debug interfaces on individual IP blocks is illus-
trated in Figure 4. The policies include requirements for
debug and security during normal, test, and boot modes.
Since the extended framework is firmware-upgradeable, an
identified vulnerability or an update to security or debug
requirement can be fixed through a firmware update rather
than hardware modifications or silicon respin. The firmware
code is stored in an embedded non-volatile memory in the
IIPS module and upgrades to secure debug policies is per-
formed only through a strong authentication process to pre-
vent any unauthorized access. We anticipate the architec-
ture to eventually provide a systematic, formal approach to
SoC security policies and enable automated synthesis of in-
strumentation based on these policies both during the SoC
design phase and post-silicon validation.

7. CONCLUSION
We have discussed trade-offs arising from conflicting re-

quirements from security and post-silicon debug in modern
SoC designs. We discussed the scale of the problem, the
challenges involved, the state of the practice, and some of
the factors to be considered for a comprehensive solution.

One may ask whether this trade-off is new during the SoC
era. The answer is “no”. Clearly, similar trade-offs needed
to be addressed for servers, desktops, and laptops. How-
ever, heterogeneity of constituent IPs and high integration
complexity on the one hand, and the diversity of both secu-
rity assets and debug requirements on the other, make the
problem significantly more challenging for SoC designs.

We have not put forward any solution to the problem in
this paper. Our goal has been to bring the problem to the
attention of a broad audience in the research community. We
believe a comprehensive solution to the problem can only
be achieved through close collaboration among architects,
security experts, validators, and VLSI testers.

8. ACKNOWLEDGMENT
The work is supported in part by Semiconductor Research

Corporation (SRC) grant 2014-HJ-2507 and National Sci-
ence Foundation Grants 1054744, 1245756, and 1441705. We
thank our colleagues in Intel Labs and Intel Security Center

of Expertise for suggestions and advice.

9. REFERENCES
[1] NIST. Computer Security Division 2005 Annual

Report. Technical report, NIST Technology
Administration, US Department of Commerce, 2005.

[2] A. Nahir, A. Ziv, R. Galivanche, A. J. Hu,
M. Abramovici, A. Camilleri, B. Bentley, H. Foster,
V. Bertacco, and S. Kapoor. Bridging Pre-silicon
Verification and Post-silicon Validation. 47th Design
Automation Conference, pages 94–95, 2010.

[3] S. Yerramili. Addressing Post-silicon Validation
Challenge: Leverage Validation and Test Synergy.
International Test Conference, 2006.

[4] R.S. Chakraborty, F. Wolff, S. Paul, C. Papachristou,
and S. Bhunia. MERO: A Statistical Approach for
Hardware Trojan Detection. Cryptographic Hardware
and Embedded Systems, pages 396–410, 2009.

[5] U. Guin and D. DiMase and M. Tehranipoor.
Counterfeit Integrated Circuits: Detection, Avoidance,
and the Challenges Ahead. Journal of Electronic
Testing, 30(1):25–40, 2014.

[6] John Rushby. Noninterference, Transitivity, and
Channel-Control Security Policies. Technical report,
SRI, dec 1992.

[7] S. J. Greenwald. Discussion Topic: What is the Old
Security Paradigm. In Workshop on New Security
Paradigms, pages 107–118, 1998.

[8] K. Basu, P. Mishra, and P. Patra. Efficient
Combination of Trace and Scan Signals for
Post-silicon Validation and Debug. In International
Test Conference, pages 1–8, 2011.

[9] D. Chatterjee, C. McCarter, and V. Bertacco.
Simulation-based Signal selection for State
Restoration in Silicon Debug. In IEEE/ACM
International Conference on Computer-Aided Design,
pages 595 –601, 2011.

[10] K. Rahmani, P. Mishra, and S. Ray. Scalable Trace
Signal Selection Using Machine Learning. 31st IEEE
International Conference on Computer Design, pages
384–389, 2013.

[11] IEEE Joint Test Action Group. IEEE Standard Test
Access Port and Boundary Scan Architecture. IEEE
Std., 1149(1), 2001.

[12] E. Ashfield, I. Field, P. Harrod, S. Houlihane,
W. Orme, and S. Woodhouse. Serial Wire Debug and
the CoreSightTM Debug and Trace Architecture, 2006.

[13] Homebrew Development Wiki. JTAG-Hack.
http://dev360.wikia.com/wiki/JTAG-Hack.

[14] L. Greenemeier. iPhone Hacks Annoy AT&T but Are
Unlikely to Bruise Apple. Scientific American, 2007.

[15] C. J. Clark. Anti-tamper JTAG TAP design enables
DRM to JTAG registers and P1687 on-chip
instruments. In Hardware-Oriented Security and
Trust, pages 19–24, 2010.

[16] L. Pierce and S. Tragoudas. Enhanced Secure
Architecture for Joint Action Test Group Systems.
IEEE Transactions on VLSI Systems,
21(7):1342–1345, 2012.

[17] X. Wang, Y. Zheng, A. Basak and S. Bhunia. IIPS:
Infrastructure IP for Secure SoC Design. IEEE
Transaction on Computers, 2014, ISSN: 0018-9340.

