Exploiting Design-for-Debug for Flexible SoC Security
Architecture

Abhishek Basak
Dept. of EECS
Case Western Reserve Univ.
Cleveland, OH, USA
axb594@case.edu

ABSTRACT

Systematic implementation of System-on-Chip (SoC) secu-
rity policies typically involves smart wrappers extracting lo-
cal security critical events of interest from Intellectual Prop-
erty (IP) blocks, together with a control engine that com-
municates with the wrappers to analyze the events for pol-
icy adherence. However, developing customized wrappers
at each IP for security requirements may incur significant
overhead in area and hardware resources. In this paper, we
address this problem by exploiting the extensive design-for-
debug (DfD) instrumentation already available on-chip. In
addition to reduction in the overall hardware overhead, the
approach also adds flexibility to the security architecture it-
self, e.g., permitting use of on-field DfD instrumentation,
survivability and control hooks to patch security policy im-
plementation in response to bugs and attacks found at post-
silicon or changing security requirements on-field. We show
how to design scalable interface between security and debug
architectures that provides the benefits of flexibility to secu-
rity policy implementation without interfering with existing
debug and survivability use cases and at minimal additional
cost in energy and design complexity.

1. INTRODUCTION

Today’s embedded and mobile systems contain a signif-
icant amount of sensitive information and data (often col-
lectively referred to as assets) that must be protected from
unauthorized access. Such assets include private end-user
information, cryptographic and DRM keys, firmware, de-
bug and control modes, defeaturing bits, etc. Consequently,
most system design specifications include a number of secu-
rity policies [1, 2, 3] that define access constraints to these
assets at different phases in the system execution. In cur-
rent industrial System-on-Chip (SoC) design development,
these policies are defined at different phases of design explo-
ration, planning, and development by system architects as
well as different IP and SoC integration teams, and often get
refined or updated across the system development and val-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

DAC 16, June 05-09, 2016, Austin, TX, USA
© 2016 ACM. ISBN 978-1-4503-4236-0/16/06. .. $15.00
DOL: http://dx.doi.org/10.1145/2897937.2898020

Swarup Bhunia
Dept. of ECE
University of Florida
Gainesville, FL, USA
swarup@ece.ufl.edu

Sandip Ray
Strategic CAD Labs
Intel Corporation
Hillsboro, OR, USA
sandip.ray@intel.com

idation phases. Unfortunately, the policies are highly sub-
tle, involving multiple IPs and complex hardware, firmware
and software interactions. Their implementations are inter-
twined with the implementation of the system functionality
through a combination of RTL, firmware, or software com-
ponents. Consequently, it is challenging to validate system
adherence against a set of policies, or update the policies
themselves post production, e.g., in response to changing
customer needs or newly identified attack scenarios.

Previous work attempted to address this problem by de-
veloping a flexible and generic security architecture for im-
plementing SoC security policies [4, 5]. The architecture
constitutes a centralized control engine programmed with
the restrictions imposed by the various security policies. The
system was shown to be flexible for implementing diverse se-
curity policies, including access control, time-of-check time-
of-use (TOCTOU), and system boot policies. However, the
architecture required each individual IP in the SoC to be
augmented with a wrapper customized for security require-
ments; the wrappers identified the security-relevant events,
communications, and data in the IP and coordinated with
the centralized controller to ensure policy adherence. In
a SoC design containing a large number of IPs, the cost
incurred by such approach in terms of area overhead and
design complexity may be prohibitive.

The key insight of this paper is that we can implement
a security policy control system without incurring signifi-
cant additional architecture and design overhead, by exploit-
ing infrastructures already available on-chip. In particular,
modern SoC designs contain a significant amount of Design-
for-Debug (DfD) features to enable observability and con-
trol of the design execution during post-silicon debug and
validation, and provide means to “patch” the design in re-
sponse to errors or vulnerabilities found on-field. On the
other hand, usage of this instrumentation post production,
i.e., for on-field debug and error mitigation, is sporadic and
rare. Consequently, computing systems have a significant
amount of mature hardware infrastructure for control and
observability of internal events, that is available and unused
during normal system usages.

Our main contribution is a flexible architecture that ex-
ploits on-chip DfD features for implementing SoC security
policies. We show how to build efficient, low-overhead se-
curity wrappers by re-purposing the debug infrastructure,
while being transparent to debug and validation usages. We
illustrate some of the design trade-offs involved between
complexity, transparency needs, and energy efficiency. Our
experimental results on a SoC design with illustrative DfD

System Memory

e ——
t —4?
High Performance Bus

I

Debug Access PJH -
[kt s {1
Processor’ Graphics Security
Memory AP | | Core I Engine I’u L—’ Co-Proc.
[t

Debug AP

o

Debug Configuration Bus

Debug Trace Bus

Controller

Peripheral Core Bus

—-I Network card I lusswmuuarl—-ﬁl Sound card l

Trace Sink
L teeww o T

——» Interface from debug f:onﬁg. ———+ Trace ofp from debug
bus to debug logic logic to trace bus

l:l Trace Logic

SoC Boundary

\
AP —Access Port

- IP Debug Wrapper

Figure 1: Simplified SoC DfD Architecture Based
on Coresight™,

Local Debug Instrumentation
(Trace Source)

instrumentation shows that the approach could potentially
provide significant savings in area and hardware overhead
while permitting flexibility in on-field adaptation of security
policies over a dedicated wrapper implementation, without
significant increase in power/energy consumption.

The remainder of the paper is organized as follows. Sec-
tion 2 provides the relevant background on DfD features,
SoC security policies, and security architecture. Section 3
identifies the constraints involved in re-purposing DfD fea-
tures. Section 4 describes some key components of our pro-
posed security architecture. Section 5 defines some illustra-
tive use cases. We provide experimental results on the over-
head of the architecture in Section 6, discuss related work
in Section 7, and conclude in Section 8.

2. BACKGROUND

2.1 On-Chip Debug Infrastructure

Design-for-Debug (DfD) refers to on-chip hardware for fa-
cilitating post-silicon validation [6]. A key requirement for
post-silicon validation is observability and controllability of
internal signals during silicon execution. DfD in modern
SoC designs include facilities to trace critical hardware sig-
nals, dump contents of registers and memory arrays, patch
microcode and firmware, create user-defined triggers and in-
terrupts, etc. Furthermore, DfD architecture is increasingly
getting standardized to enable third-party EDA vendors to
create software APIs for accessing and controlling the hard-
ware instrumentation for system-level debug. As an exam-
ple, ARM Coresight™ architecture [7] (Fig. 1) provides fa-
cilities for tracing, synchronization, and time-stamping hard-
ware and software events, a trigger logic, and facilities for
standardized DfD access and trace transport. The architec-
ture is instantiated into Macrocells that can interact with IP
functionality through standard interfaces. Debug interface
is used not only for post-silicon but to enable workarounds
for bugs and defects found on-field.

2.2 Security Policies and Security Architecture

Security policies govern access to sensitive assets in a SoC
design. Following are two illustrative policies: [1, 4, 8]

1. During boot, keys transmitted by the crypto engine
cannot be observed by any IP other than its intended
target.

2. An on-chip fuse can be updated for silicon validation
but not after production.

Previous work [4] defined a security architecture, called “E-
IIPS” for disciplined, systematic implementation of such poli-
cies. The architecture includes a central security policy con-
troller (SPC) that keeps track of the system security state
and enforces the restrictions imposed by the policies in that
state. SPC communicates with security wrappers for indi-
vidual IP blocks that detect security critical events from IP
operations.

3. DFD RE-PURPOSING CONSTRAINTS

DID is a complex component of SoC design, that is de-
veloped to cater to the needs of validation, debug, and on-
field workarounds. In this section we summarize some of the
constraints and requirements that must be satisfied while re-
purposing this architecture for security.

Transparency to Debug Use Cases. Post-silicon debug
and validation are themselves critical activities performed
under highly aggressive schedules. It is therefore critical
that re-purposing the DfD does not interfere or “compete”
with debug usages of the same hardware. For instance, if
a trace or trigger module is necessary for a debug usage,
then it cannot be simultaneously used for enforcing security
constraints.

Maintaining Power-Performance Profile. On-chip in-
strumentation is optimized for energy and performance in
usages related to debug. For example, since debug traffic
is typically "bursty”; it is possible to incur low penalty in
power consumption even with a high-bandwidth fabric by
power-gating the fabric components during normal execu-
tion; while re-purposing the same infrastructure, one must
ensure that the power profile is not significantly disrupted
by the new usages.

Acceptable Overhead for Interfacing Hardware. A
key motivation for exploiting DfD for security architecture is
reducing hardware overhead. However, this benefit would be
obviously lost if significant hardware is necessary to interface
with the DID and configure it for security needs.

4. DFD-BASED SECURITY ARCHITECTURE

Our architecture is built on top of the E-IIPS frame-
work [4]. We exploit DfD to implement smart security wrap-
pers for IPs that communicate with the centralized policy
controller (SPC), which implements security policies. Fur-
thermore, SPC can program DfD to implement security con-
trols using logic available for on-field upgrades.

4.1 Detection of Security-Critical Events

To avoid potential routing bottlenecks due to high band-
width requirements, IP security wrappers must detect a set
of security-critical events. The events necessary are based
on the policy as well as the IP involved, e.g., for a CPU
we need to detect attempts of privilege escalation and mon-
itor control flow of programs to detect probable presence of
malware as well as prevent fine-grained timing based mas-
querading attacks. Developing IP security wrappers thus re-

Table 1: Security Critical Events detected by DfD
Trace Cell in Processor Core

| Trigger Event | Ex. Security Context

Prog. counter at specific
address, page,
address range

Prevent Malicious prog.
trying to gain
elevated privileges

Verify limited special
register access by
other IPs in kernel mode

System mode traps for
specific interrupts, I/0, file
handle,return from interrupt

High Branch Taken,
Jump Instr. Frequency

Highly branched code
often signs of malware

Invalid instruction opcode,
Frequent div. by 0 exceptions

Un-trusted prog. source;
Apply strict access cntrl.

Read/Write access to
specific data memory page/s

Protect confidentiality,
integrity of security asset

of clock cycles bet-
ween 2 events = threshold

Satisfy resource availa-
bility & avoid deadlock

More than one inter-
communicating threads

Verify TOCTOU policy
in firmware load in uC'

quires custom logic for identification of this event set. How-
ever, the DfD modules already detect the information nec-
essary for many of these events. Table 1 illustrates a few
representative security-critical events that can be detected
through Coresight ™ macrocell for a typical processor core.
Here, the macrocell is assumed to implement standard in-
struction and data value and address comparators, condi-
tion code/status flags match check, performance counters,
event sequencers, etc. Correspondingly, macrocells for NoC
fabric routers detect bulk of the critical events required for
addressing threats such as malicious packet redirection, IP
masquerade, etc.

4.2 Debug-Aware IP Security Wrapper

We architect smart security wrappers for each IP by ex-
ploiting DfD to identify relevant security-critical events; on
detection of such an event, DfD communicates the infor-
mation to the IP security wrapper that communicates it to
the centralized SPC. To enable this functionality without
hampering debug usages for the DfD, we need local (IP-
level) modification of DfD logic and appropriate adaptation
of the security wrapper. Fig. 2 illustrates the additional
hardware requirements. In particular, noninterference with
debug usage especially system energy/power constraints, re-
quires transmission of security data to SPC via a separate
port (instead of re-purposing the debug trace port and bus),
which requires an additional trigger logic. The events of in-
terest for the IP are programmed by the SPC via the config-
uration register interface of the corresponding DfD module.
Since DfD module can be configured to detect a number of
security events (related or disparate) at runtime, SPC must
correctly identify the corresponding event from the commu-
nication frame sent by the security wrapper. We standardize
this interface across all local DfD /security-wrapper pairs, by
tagging event information with the corresponding configura-
tion register address. Note that this standardization comes
at the cost of additional register overhead in IPs where one
or only a few events are detected via debug logic. Trace
packet generation controls can be disabled during SPC ac-
cess (resp., security-debug interface disabled during system
debug) to save leakage power when debug (resp., security)

' High Performance Bus >

Trace Bus

|
2
Il2
=l e Debug AP
HIE==

1
|
Memory AP |
|
Controller :

Debug Access Port

g Debug Configuration Bus

¥ kY

|
= 3 Timer !
8 & §
g Metadata M Debug 5|nls % Even: B %
§ o € Trace Trigger Logic & -
= Processor S 5 §D o—>
S Core & @
5 © : - &
3 Eama = Configuration Registers || =

- gen.

Debug-Security Wrapper Trace Macrocell

—_—
_ Additional H/W Resource
R s

Figure 2: Additional hardware resources for inter-
facing local DfD with IP security wrapper.

architecture is not in use. Besides security critical event trig-
gers and observability of associated information, the local
DfD control hooks can also be re-purposed (by appropriate
SPC configuration) to enforce security controls in the IP via
the existing debug wrapper, during both design and on-field
patch/upgrade phase.

4.3 SPC-Debug Infrastructure Interface

The Security Policy Controller (SPC) must be able to con-
figure the individual local on-chip debug logic to detect rele-
vant security-critical events and assert appropriate controls.
Fig. 3 illustrates the communication between SPC and the
debug interface. As used during system debug, the exist-
ing configuration bus (address and data) is used by SPC
for trace cell programming. As there are usually enough
configuration registers and associated logic in the local DfD
components to monitor all possible security-critical events,
the SPC can configure the trace cells with appropriate val-
ues at boot phase; therefore, the configuration fabric can be
turned off during most times to save leakage power. In some
rare scenarios, SPC cannot configure DfD for detection of
all necessary events at boot; for these cases, SPC interfaces
with the power management module to turn on the Debug
Access Port (DAP) and configuration bus at runtime.

4.4 Design Methodology

A SoC design flow involves integration of a collection of
(often pre-designed) IPs through a composition of NoC fab-
rics. An architectural modification involving communication
among different IPs typically disrupts the SoC integration
flow. We now outline the changes necessary to SoC integra-
tion to adapt to our proposed DfD-security architecture.

IP Designer: The IP provider needs to map security-
critical events to the DfD instrumentation for the IP. The
respective configuration register values are derived from the
debug programming model. Finally, the security wrapper
is augmented with custom logic for events not detected by
DD, and the standardized event frames for communicating

— 1

Fm—————
| Memory AP : (oh

"’: 5 Debug AP 1 Hig
S -l ! Performance Bus
I [
= I
I e ——r |
Debug Debug

Access Port Configuration Bus

Data | Policy
Mem. § Enforcer
DfD Reg. Info
Security Policy Controller

AP — Access Port
F/W - Firmware

2 [| L
= —— Modifications

Figure 3: Interfacing SPC with on-chip debug.

with SPC are created, augmenting with DfD interface.

SoC Integrator: The SoC integrator augments the event
detection logic of the local DfD instrumentation in IPs with
triggers to the DfD /security-wrapper interface for transmis-
sion of event occurrence information, modifies debug access
port incorporating SPC access, and adds necessary secu-
rity and debug access control requirements to ensure debug
transparency in the presence of security requirements. For
the latter use case scenario i.e., ensuring security during
debug, where the DfD may not be re-purposed to detect all
security critical events, the SoC integrator may proceed with
more proactive, stricter security controls for SoC operations
during debug. This includes incorporating coarse-grained
policies not requiring all of the corresponding event infor-
mation to transition to a new security state. All the neces-
sary configuration register addresses/values are stored in the
additional data memory/buffer in SPC to uniquely identify
DID detected security critical events. The SPC is also aug-
mented with firmware instructions to configure these debug
registers, mostly during boot.

5. USE CASES

5.1 An Illustrative Policy Implementation

To illustrate the use of our framework, we consider its use
in implementing the following illustrative policy:

I/O Noninterference. When the CPU is executing in
high-security mode, 1/O devices cannot access protected
data memory.

The policy, albeit hypothetical, is illustrative of representa-
tive security requirements involved in protecting assets from
malicious I/O device drivers. Fig. 4 illustrates the flow of
events involved in the implementation of this policy by SPC
through DfD/security-wrappers. Here the DfD configura-
tion is through a debug access port, CPU has an associated
Embedded Trace Macrocell (ETM), and I/O device requests
are assumed to be based on Direct Memory Access (DMA).
Following are the key steps involved.

1. During boot, SPC configures the required DfD instru-
ments. This includes "program counter within secure
code range” and "write access to protected data mem-
ory” event triggers in the ETM.

CurrentyuP Inst. Pointer

Security Policy Debug Embedded HP Security DMA
Controller Access Port | Trace Macrocell Wrapper Engine
T T 1 T 1
| V 1 From |
Configureall pp y-'==————~— _:Agld_re_ssiD_at_a@c_m:\irgls_ == | boot FAN.
w ETM registers, | | Address/Data | ! ! ! i
o o n
3z incl. event of | Debug Config Bus | i
E £ prog. counterin GrantSPC I~~~ ! !
£z SRR, AP request || Config. Register) | Cﬁ::guerre |
5 nO: write access to to confi glure '| program for : i ;’D !
= secure data page DfD legic)1 security events) ! events/param| |
& secure ranges ! if applicable) !
]]
< | i i
£ .2 ! ! 1 | [
R I I I ! | [
© o
28 v \j (R
fia] - = 1
1
I
|
I
1

1
!e% Pass unique
levent identifjer

to mepel:

1

Form corres. |

frame packet;) !

H De\ﬁce

Update system e — == H
security state :
]
'
]

Secure Program
Execution

DMA Interrupt

Data :Memo y
WR eddress
R]

i
i
|
|
|
i
|
|
i
|
I
|
I
i
!
Update [L a
security state | H
i
I
i
i
!

exec.

Access in

Device driver
Write Req

<
2
-+ ——
1/O Driver

secure data
ange?,

]
I i
i i
Disable | \(Form corres
ﬂ ******* e R frame packet;
Request !

1
| | !
L | Security control signal asserted 1 Nullity DMA
P L A — AR request

Disable till
secure prog.
finish

Figure 4: Use case scenario of security policy imple-
mentation exploiting the local DfD instrumentation.

2. Along with DfD, the SPC configures the IP security
wrappers for the subset of events to detect, frame pro-
tocol to follow, scan chain access etc. DMA engines
are also configured by boot firmware on device-channel
and channel to memory mapping.

3. When a secure program is loaded, the ETM detects the
event, and triggers the security wrapper which commu-
nicates with SPC. The SPC updates the security state.

4. A DMA interrupt is detected by the corresponding se-
curity wrapper and transmitted to SPC. Any write re-
quest from the high-privilege driver to the protected
memory is detected by ETM and transmitted to SPC
via wrapper. The SPC identifies policy violation from
the current security state and enforces controls.

5.2 On-Field Policy Implementation/Patch

Given changing security requirements (e.g., adoption of
system in different market segments) or to address bugs or
attacks detected on-field, new policies may need to be im-
plemented or existing ones need to be upgraded or patched.
These may require new events to be detected (outside what
had been considered in design phase), extraction of more
event information, and control the IP functionality in re-
sponse to a policy. The interface of the security architecture
with DfD allows the possibility of on-field system recon-
figuration and upgrade, — something virtually impossible
to perform with security wrappers customized for specific

DM — Data
Memory

[Jindiviaua e

i
} 128 pt System)
1| FFT Engine Memory :
| (Dsp) |} T i (32 KB)]

ystem Boundary

{77 Testsecurity
-1 wrapper

Processor, 1

DLX uP

1
(core 1) Memory

To & from

SOC cmpts.

Between IPs

i
r'y
= t
Il 3 I A [-~ &t
Control [Power Management || l engine
] (System)] | .]
b | | spi Controller ||
) Debug
|

E-IIPS module § Woore)) " config bus

|
|
|
|
|
|
|
| IM: Instruction
|
|
|
|
|
|
|
A

Trace bus

Enforcer

Firmware (4 KB)
-
S 3
H

local to IP

Figure 5: Block diagram schematic of SoC model
with on-chip debug infrastructure.

security policies. Achieving this requires selection of local
DID at different IPs to identify if the relevant events can
be detected; if so, the corresponding register address and
value are added to SPC memory to be sent through DAP at
boot/execution. With a standardized DID interface with the
IP security and debug wrappers, the corresponding events
can be uniquely detected and control signals asserted in the
IP if applicable.

6. EXPERIMENTAL RESULTS

Due to lack of standard open-source models of studying
SoC architecture, we have been developing our own SoC de-
sign model. Although simpler than an industry design, our
model is substantial and can be used for implementing real-
istic security requirements. Fig. 5 shows the current version
of our model. It includes a DLX microprocessor core (DLX)
with code memory, a 128b FFT engine (FFT), a 128b AES
crypto core (AES), and a SPI controller. The IPs are aug-
mented with security wrappers according to standard secu-
rity critical event set [4]. The SPC incorporates DLX as the
execution engine with policies stored in its instruction mem-
ory. We implemented a representative debug infrastructure,
based on a simplified version of ARM Coresight™ features.
It is functionally validated using Model-Sim [9] for typical
use cases. Necessary interfaces/logic as described in Sec-
tion 4, are added to the model to support DfD reuse for se-
curity policies. The DAP controls memory-mapped accesses
to DfD instrumentation via the configuration bus. It also
contains logic to control simultaneous debug and security re-
quirements. Local DfD, similar to Coresight ETM/ITM are
added for the functional IPs with their features enlisted in
Table 2. Each has 16 32-bit configuration registers (64B ad-
dress space) and support interfaces with the corresponding
IP security wrapper. On security event detection, the con-
figuration register based unique identifier (10 bits) is sent.

Table 3 summarizes the area and power overhead of the
debug access port (DAP) to incorporate SPC access (which
entails modification of DAP). The area estimation is pro-
vided from synthesis at 32nm predictive technology. Note
that with respect to base DAP design, the area and power
numbers are high because of the simple DAP logic in the
model; however, the additional system overhead induced by

Debug
instrumentation

Table 3: Area (um?), Power (uW) of DAP (SoC
Area- ~ 1.42X10°um?; SoC Power- > 30 mW)

DAP Area | New DAP | DAP Pwr | New DAP
(Orig.) Area (Orig.) Pwr
380.2 527.67 12.63 19.82

the modification is negligible since the DAP contribution to
overall SoC die area and power is minimal. The area and
power overheads of DfD Trace Macrocells (TM) with respect
to original TMs (without security wrapper interface) are
enumerated in Table 4. The overheads are typically within
10%, but can be higher for some small IPs (e.g., FFT, SPI).
Table 5 measures the decrease in hardware area overhead
through re-purposing DfD for security wrappers. The mea-
surement is done by comparing the current implementation
with a reference implementation in which the security wrap-
per is responsible for detecting all necessary security-critical
events, with no dependence on DfD. Note that the savings
can be substantial, ranging from 20% to close to 60%. This
is because a comprehensive DfD framework typically cap-
tures a majority of the security-critical events since they are
also likely to be relevant for functional validation and debug.
Finally, Table 6 measures power overhead. This exper-
iment is interesting since DfD reuse has two opposing ef-
fects: power consumption may increase since TMs remain
active to collect security-critical events even when debug is
not active; on the other hand, decreasing hardware overhead
contributes to reduced power consumption. For DLX, the
two effects cancel out, while for SPI and AES there is a net
power overhead. Note that the overhead is minimal with
respect to the overall power consumption of the entire SoC.
We end this section with an observation on interpretation
of results. Note that the numbers provided are based on the
security and DfD infrastructures in our SoC model; while
reflective and inspired by industrial systems and policies,
our implementations are much simpler. Nevertheless, we
believe that the overhead measurements would substantially
carry over to realistic usage scenarios. Perhaps more impor-
tantly, our experiments provide the guidance on parameters
to analyze when considering re-purposing DfD for security
implementation vis-a-vis standalone security wrappers.

7. RELATED WORK

Basak et al. [4] defines an architecture for security poli-
cies, but use dedicated security wrappers for event detec-
tion. Ray et al. [10] discuss trade-offs between security and

Table 4: Area (um?), Power (uW) Overhead of Mod-
ified DfD Trace Macrocells in SoC

DfD TM | Die Area Area Power Power
(Orig.) | Ovrhd.(%) | (Orig.) | Ovrhd.(%)
DLX TM 15617 6.07 512 6.7
AES TM 5918 8.5 165 10.9
FFT TM 2070 18.8 60.6 20.2
SPI TM 2054.6 17.08 57.75 15.8
Mem. TM 4623 7.9 163.3 1.65

Table 2: Example DfD Instrumentation Features by IP Type in SoC Model

DfD by IP type Ex. DfD Inputs

Ex. Trigger Events

Ex. Trace Content

Cycle counter, Configuration register

= desired, acknowledgement error

DLX TM Prog. counter (PC), Inst. opcode, PC in desired range, page, addr., Past, future ‘N’ inst.
Data RD/WR addr. (DA), Special Jump, Branch T/NT, Particular exc- | addr./values, status reg.
register value, condition codes eption, interrupt, DA in specific page | values, next branch inst.

AES TM Plain text(PT),Key,Cipher o/p(CT), | Encrypt/Dec. start/stop, Specific current 16B PT, Key,
Mode, Status, Intermediate round key | round reached, Key = desired All future round keys, CT

SPI TM Parameters, Status, i/p packet, start/stop of operation, Source IP configuration register,

past ‘N’ i/p packets

Memory Cont-
roller TM

Addr., Data, RD/WR, Burst size,
Word/byte granularity, ECC

Addr in specific range, bank,
DMA request, change in row buffer

In/Out Data word/byte,
future ‘N’ data addr.

debug requirements in SoC designs. There have been re-
search on exploiting DfD for protection against software at-
tacks, e.g., Backer et al. [11] analyzes the use of enhanced
DD infrastructure to confirm adherence of software execu-
tion to trusted model. Besides, Lee et al. [12] studies low
bandwidth communication of external hardware with the
processor via the core debug interface, to monitor informa-
tion flow. Methods have also been proposed on securing SoC
during debug/test [13].

8. CONCLUSION

We have developed a SoC security architecture that ex-
ploits on-chip DfD to implement security policies. It pro-
vides the advantage of flexibility and on-field update of se-
curity requirements, while being transparent to debug use
cases. Our experiments suggest that the approach can pro-
vide significant benefit in hardware and area savings with
no substantial energy overhead.

As part of future work, we plan to enable the architec-
ture on complex, industrial SoC models and augment our
architecture for more realistic security policies.

9. ACKNOWLEDGEMENTS

The work is funded in part by National Science Founda-
tion grants 1603475, 1603480 and Semiconductor Research
Corporation grant 2507.001.

10. REFERENCES
[1] J. Goguen and J. Meseguer, “Security Policies and
Security Models,” in Proc. 1982 IEEE Symposium on
Security and Privacy, 1982, pp. 11-20.
[2] M. Miettinen, S. Heuser, W. Kronz, A. Sadeghi, and
N. Ashokan, “ConXsense: automated context

classification for context-aware access control,” in
ASTACCS, 2014, pp. 293-304.

Table 5: Area (um?) Savings of IP Security Wrapper

Wrapper Orig. | New Area
(corres. IP) | Area | Area | Savings(%)

DLX uP 3437 | 2326 32.32
SPI cntrl. 1055 | 842 20.2
AES crypto | 1661 | 702 57.7

Table 6: Power (mW) Analysis in SoC on implemen-

tation of Debug Reuse

1P IP Power Wrapper | Corres. TM
Consumption | Savings Power
DLX uP 6.54 0.52 0.551
SPI cntrl. 0.321 0.024 0.062
AES crypto 5.53 0.03 0.173

[3] M. Conti, B. Crispo, F. Fernandes, and
Y. Zhauniarovich, “CRePE: A system for enforcing
Fine-grained Context-related Policies on Android,”
IEEE Transactions on Information Forensics and
Security, vol. 7, no. 5, pp. 1426-1438, 2012.

[4] A. Basak, S. Bhunia, and S. Ray, “A Flexible
Architecture for Systematic Implementation of SoC
Security Policies,” in IEEE ICCAD, 2015.

[6] X. Wang, Y. Zheng, A. Basak, and S. Bhunia, “IIPS:
Infrastructure IP for Secure SoC Design,” IEEE
Transaction on Computers, 2014.

[6] B. Vermueulen, “Design-for-Debug To Address
Next-Generation SoC Debug Concerns ,” in IEEFE

ITC, 2007.

[7] “CoreSight On-chip Trace & Debug Architecture,

www.arm.com.”

[8] S. Ray and Y. Jin, “Security Policy Enforcement in
Modern SoC Designs,” in IEEE ICCAD, 2015.
[9] “ModelSim - Leading Simulation and Debugging,

www.mentor.com.”

(10]

S. Ray, J. Yang, A. Basak, and S. Bhunia,

“Correctness and Security at Odds: Post-silicon
Validation of Modern SoC Designs,” in ACM DAC,

2015.
(11]

J. Backer, D. Hely, and R. Karri, “On enhancing the

debug architecture of a system-on-chip (SoC) to
detect software attacks,” in IEFE DFTS, 2015.

(12]

J. Lee, 1. Heo, Y. Lee, and Y. Paek, “Efficient dynamic

information flow tracking on a processor with core
debug interface,” in ACM DAC, 2015.

(13]

J. Backer and R. Karri, “Secure Design-for-Debug for

Systems-on-Chip,” in IEEE ITC, 2015.

