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ABSTRACT
We present a method for selecting trace messages for post-silicon
validation of Systems-on-a-Chips (SoCs) with diverse usage sce-
narios. We model specifications of interacting flows in typical ap-
plications. Our method optimizes trace buffer utilization and flow
specification coverage. We present debugging and root cause anal-
ysis of subtle bugs in the industry scale OpenSPARC T2 processor.
We demonstrate that this scale is beyond the capacity of current
tracing approaches. We achieve trace buffer utilization of 98.96%
with a flow specification coverage of 94.3% (average). We local-
ize bugs to 21.11% (average) of the potential root causes in our
large-scale debugging effort.

CCS CONCEPTS
• Hardware → Bug detection, localization and diagnosis;
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1 INTRODUCTION
Post-silicon validation is a crucial component of the validation
of a modern System-on-Chip (SoC) design, is performed under
highly aggressive schedules, and accounts for more than 50% of the
validation cost [9, 16].

An expensive component of post-silicon validation is applica-
tion level use-case validation. In this activity, a validator exercises
various target usage scenarios of the system (e.g., for a smartphone,
playing videos or surfing theWeb, while receiving a phone call) and
monitors for failures (e.g., hangs, crashes, deadlocks, overflows, etc.).
Use case validation forms a key part of compatibility validation [8],
and often takes weeks to months of validation time. Consequently,
it is crucial to determine techniques to streamline this activity.

Each usage scenario involves interleaved execution of several
protocols among IPs in the SoC design, e.g., a usage scenario that
entails receiving a phone call in a smartphone when the phone is
asleep may constitute protocols among the antenna, power man-
agement unit, CPU, etc. To debug such a scenario, the validator
typically needs to observe and comprehend the messages being sent
by the constituent IPs. An effective way to do that is to use hardware
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tracing, where a small set of signals are monitored continuously
during system execution.

Unfortunately, the effectiveness of hardware tracing is limited
by the signals being selected for tracing. Note that the omission
of a critical signal (e.g., a critical interface register) manifests only
during post-silicon debug when it is too late for a new silicon spin.

In this paper, we develop a method for message selection that
specifically targets use case validation. Given a collection of usage
scenarios and the system-level protocols they activate (and the con-
stituent messages), our algorithm computes the messages that are
valuable for debug and error localization.We also develop heuristics
for maximizing utilization of the available trace observability (trace
buffer) in the context of message selection.

There has been significant research on post-silicon signal selec-
tion [2, 3, 5, 7, 10]. Most of these approaches analyze the gate level
design and optimize a metric called State Restoration Ratio (SRR),
that values signal reconstruction ability. However, a high restora-
bility (SRR) of gate level signals may not correspond to crucial
message buffers for the application use-cases. In our experiments
on a USB controller design, we found that existing signal selec-
tion techniques could reconstruct no more than 26% of required
interface messages across various design blocks. Analyzing at the
application level provides our method the context to select 100%
of the messages required for debug. 1 This underlines the need
for a focused approach for message selection that accounts
for flows induced during use-case validation. Further, many
of the SRR-based algorithms suffer severely from scalability issues.

To show scalability and viability of our approach, we perform our
experiments on a publicly availablemulticore SoC designOpenSPARC
T2 [12]. The design contains several heterogeneous IPs and reflects
many complex design features of an industrial SoC design. The
scale and complexity is orders of magnitude more than traditional
ISCAS89 benchmarks used to demonstrate signal selection tech-
niques. We inject complex and subtle bugs, with each bug symptom
taking several hundred observed messages (up to 457 messages) and
several hundred thousands of clock cycles (up to 21290999 clock
cycles) to manifest. Our analysis shows that we can achieve up to
100% trace buffer utilization (average 98.96%) and up to 99.86% flow
specification coverage (average 94.3%). Our messages are able to
localize each bug to no more than 6.11% of the total paths that could
be explored. Our selected messages helped eliminate up to 88.89%
of potential root causes (average 78.89%) and localize to a small set
of root causes.

Our method needs a priori definition of system-level protocols
at transaction level. Our framework uses protocol formalizations as
sequences of transactions or flows. There is an increasing trend to
generate transaction-level models specifically with formalizations
like flows, to enable early validation, prototyping, and software de-
velopment activities [1, 4, 11, 13]. Our work shows how to leverage
this collateral for post-silicon trace selection.

1SRR based algorithms typically select flip-flops internal to the design for tracing
whereas our method selects interface registers (either incoming or outgoing) for the
relevant IPs for tracing.



This paper makes three important contributions. First, we ex-
ploit available architectural collateral (e.g., messages, transaction
flows, etc.) to develop a targeted message selection for hardware
tracing targeted towards post-silicon use-case validation. Second,
we provide a technique based on mutual information gain to select
messages at the application level. Third, in addition to high qual-
ity and high information content in selected messages, we make
scalability an objective of the post-silicon debug solution. In doing
so, we operate at a higher level of abstraction (application level),
as opposed to the RTL/gate level signal tracing seen hitherto in
literature. We demonstrate post-silicon debug on an industrial scale
design, which is a massive engineering effort involving many man
months.

2 PRELIMINARIES
Conventions. In SoC designs, a message can be viewed as an as-
signment of Boolean values to the interface signals of a hardware IP.
In our formalization below, we leave the definition of message im-
plicit, but we will treat it as a pair ⟨C,w⟩ wherew ∈ Z+. Informally,
C represents the content of the message andw represents the num-
ber of bits required to represent C. Given a messagem = ⟨C,w⟩,
we will refer tow as bit-width ofm, denoted by width(m) or |m |.
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Figure 1: 1a shows a flow for an exclusive line access request
for a toy cache coherence flow [13] along with participating
IPs. 1b shows two legally indexed instances of cache coher-
ence flow.

Definition 1. A flow is a directed acyclic graph (DAG) defined
as a tuple, F = ⟨S,S0,Sp , E,δF ,Atom⟩ where S is the set of flow
states,S0 ⊆ S is the set of initial states,Sp ⊆ S andSp∩Atom = ∅ is
called the set of stop states, E is a set of messages, δF ⊆ S × E ×S is
the transition relation and Atom ⊂ S is the set of atomic states of the
flow.

We use F .S,F .E etc. to denote the individual components of
a flow F . A stop state of a flow is its final state after its successful
completion.Atom is amutex set of flow states i.e.any two flow states
in Atom cannot happen together. Other components of F are self-
explanatory. In Figure 1a, we have shown a toy cache coherence
flow along with the participating IPs and the messages. In Figure 1a,
S = {Init, Wait, GntW, Done}, S0 = {Init}, Sp = {Done}, Atom =
{GntW}. Each of the messages in the cache coherence flow is 1 bit
wide, hence E = {⟨ReqE, 1⟩, ⟨GntE, 1⟩, ⟨Ack, 1⟩}.

Definition 2. Given a flow F , an execution ρ is an alternating
sequence of flow states and messages ending with a stop state. For
flow F , ρ = s0 α1 s1 α2 s2 α3 . . . αn sn such that si

αi+1
−→ si+1,∀0 ≤

i < n, si ∈ F .S, αi+1 ∈ F .E, sn ∈ F .Sp . Trace of an execution ρ
is defined as trace(ρ) = α1 α2 α3 . . . αn .

An example of an execution of the cache coherence flow of
Figure 1a would be ρ = {n, ReqE, w, GntE, c, Ack, d} and trace(ρ) =
{ReqE, GntE, Ack}.
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Figure 2: Two instances of cache coherence flow of Figure 1a
interleaved

Intuitively, a flow provides a pattern of system execution. A
flow can be invoked several times, even concurrently, during a
single run of the system. To make precise the relation between
an execution of the system with participating flows, we need to
distinguish between these instances of the same flow. The notion of
indexing accomplishes that by augmenting a flow with an “index".

Definition 3. An indexed message is a pair α = ⟨m, i⟩ where
m is the message and i ∈ N, referred to as the index of α . An indexed
state is a pair ŝ = ⟨s, j⟩ where s is a flow state and j ∈ N, referred as
the index of ŝ . An indexed flow ⟨f ,k⟩ is a flow consisting of indexed
messagem and indexed state ŝ indexed by k ∈ N.

Figure 1b shows two instances of the cache coherence flow of
Figure 1a indexed with their respective instance number. In our
modeling, we ensure by construction that two different instances
of the same flow do not have same indices. Note that in practice,
most SoC designs include architectural support to enable tagging,
i.e., uniquely identifying different concurrently executing instances
of the same flow. Our formalization simply makes the notion of
tagging explicit.

Definition 4. Any two indexed flows ⟨F , i⟩, ⟨G, j⟩ are said to be
legally indexed either if F , G or if F = G then i , j.

Figure 1b shows two legally indexed instances of the cache co-
herence flow of Figure 1a. Indices uniquely identify each instance
of the cache coherence flow.

A usage scenario is a pattern of frequently used applications.
Each such pattern comprises multiple interleaved flows correspond-
ing to communicating hardware IPs.

Definition 5. Let F ,G be two legally indexed flows. The inter-
leaving F 9G is a flow called interleaved flow defined asU = F 9
G = ⟨F .S×G.S,F .S0×G.S0,F .Sp×G.Sp ,F .E∪G.E,δU ,F .Atom∪

G.Atom⟩ where δU is defined as:

i)
s1

α
−→s ′1 ∧ s2<G .Atom

⟨s1,s2 ⟩
α
−→⟨s ′1,s2 ⟩

and ii)
s2

β
−→s ′2 ∧ s1<F.Atom

⟨s1,s2 ⟩
β

−→⟨s1,s ′2 ⟩

where s1, s ′1 ∈ F .S, s2, s ′2 ∈ G.S, α ∈ F .E, β ∈ G.E. Every path in
the interleaved flow is an execution of U and represents an interleav-
ing of the messages of the participating flows.

Rule i) of δU says that if s1 evolves to the state s ′1 when message
α is performed and if д has a state s2 which is not atomic/indivisible,
then in the interleaved flow, if we have a state (s1, s2), it evolves to
state (s ′1, s2) when message α is performed. A similar explanation
holds good for Rule ii) of δU . For any two concurrently executing
legally indexed flow F and G, J = F 9 G, for any s ∈ F .Atom
and for any s ′ ∈ G.Atom, (s, s ′) < J .S. If one flow is in one of its
atomic/indivisible state, then no other concurrently executing flow
can be in its atomic/indivisible state.

Figure 2 shows partial interleaving U of two legally indexed
flow instances of Figure 1b. Since c1 and c2 both are atomic state,



state (c1, c2) is an illegal state in the interleaved flow. δU and the
Atom set make sure that such illegal states do not appear in the
interleaved flows.

Trace buffer availability is measured in terms of bits thus render-
ing bit width of a message important. In Definition 6, we define a
message combination. Different instances of the same message i.e.
indexed messages are not required while computing the bit width
of the message combination.

Definition 6. Amessage combinationM is an unordered set
of messages. The total bit widthW of a message combination M is
the sum total of the bit width of the individual messages contained in
M i.e.W (M) =

∑k
i=1width(mi ) =

∑k
i=1wi ,mi ∈ M,k = |M|.

We introduce a metric called flow specification coverage to
evaluate the quality of a message combination.

Definition 7. In a flow, every transition is labeled with a message.
For a given message, the visible state is defined as the set of flow
states reached on the corresponding transition. The flow specifica-
tion coverage of a message combination is defined as the union
of the visible flow states of all the messages, expressed as a fraction of
the total number of flow states.

Mutual information gain measures the amount of information
that can be obtained about one random variable by observing an-
other. The mutual information gain of X relative to Y is given by
I (X ;Y ) =

∑
x,y p(x ,y) loд(p(x ,y)/p(x)p(y)), where p(x) and p(y)

are the associated probability mass function for two random vari-
ables X and Y respectively.

Maximizing information gain is done in order to increase flow
specification coverage during post-silicon debug of usage scenarios.
Themessage selection procedure considers themessage combination
M for tracing, whereas to calculate information gain over U, it
uses indexed messages.

Given a set of legally indexed participating flows of a usage sce-
nario, bit widths of associated messages, and a trace buffer width
constraint, our method selects a message combination such
that information gain ismaximized over the interleavedflow
U and the trace buffer is maximally utilized.

3 MESSAGE SELECTION METHODOLOGY
For the cache coherence flow example of Figure 1a, we assume
a trace buffer width of 2 bits and concurrent execution of two
instances of the flow. ReqE, GntE, andAckmessages happen between
1-Dir, Dir-1, and 1-Dir IP pairs respectively. ReqE, GntE, and Ack
consist of req, gnt and ack signal and each of the messages is 1-bit
wide. Let B = {0, 1} be the set of Boolean values. C(ReqE) = B |r eq | ,
C(GntE) = B |дnt | , and C(Ack) = B |ack | denote respective message
contents.

3.1 Step 1: Finding message combinations
In Step 1, we identify all possible message combinations from the
set of all messages of the participating flows in a usage scenario.

While we find different message combinations, we also calculate
the total bit width of each such combination. Any message combi-
nation that has a total bit width less than or equal to the available
trace buffer width is kept for further analysis in Step 22. Each such
message combination is a potential candidate for tracing.

In the example of Figure 1a, there are 3 messages and
∑3
k=1

(3
k
)
=

7 different message combinations. Of these, only one (ReqE, GntE,
Ack) has a bit width more than trace buffer width (2). We retain the
remaining six message combinations for further analysis in Step 2.
2For multi-cycle messages, the number of bits that can be traced in a single cycle is
considered as the message bit width
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Figure 3: Block diagram of OpenSPARC T2 processor. NCU:
Non-cacheable unit, MCU: Memory Controller Unit [12]

3.2 Step 2: Selecting a message combination
based on mutual information gain

In this step, we compute the mutual information gain of message
combinations computed in step 1 over the interleaved flow. We
then select the message combination that has the highest mutual
information gain for tracing.

We use mutual information gain as a metric to evaluate the qual-
ity of the selected set of messages with respect to the interleaving
of a set of flows. We associate two random variables with the in-
terleaved flow namely X and Yi . X represents the different states
in the interleaved flow i.e. it can take any value in the set S of
the different states of the interleaved flow. LetM =

⋃
i Ei be the

set of all possible indexed messages in the interleaved flow. Let
Y ′
i be a candidate message combination and Yi be a random vari-
able representing all indexed messages corresponding to Y ′

i . All
values of X are equally probable since the interleaved flow can be
in any state and hence pX (x) = 1

|S |
. To find the marginal distribu-

tion of Yi , we count the number of occurrences of each indexed
message in the set M ′ over the entire interleaved flow. We define
pYi (y) =

# of occurrences of y in flow
# of occurrences of all indexed messages in flow . To find the joint

probability, we use the conditional probability and the marginal
distribution i.e. p(x ,y) = p(x |y)p(y) = p(y |x)p(x). P(x |y) can be
calculated as the fraction of the interleaved flow states x is reached
after the message Yi = y has been observed. In other words, p(x |y)
is the fraction of times x is reached, from the total number of
occurrences of the indexed message y in the interleaved flow i.e.
pX |Yi (x |y) =

# occurrence of y in flow leading to x
total # occurrences of y in flow . Now we substitute

these values in I (X ;Y ) to calculate the mutual information gain of
the state set X w.r.t Yi .

In Figure 2, pX (x) = 1
15∀x ∈ S. Let Y ′

1 = {GntE,ReqE} be a
candidate message combination and Y1 = {1:GntE, 2:GntE, 1:ReqE,
2:ReqE}. For I (X ;Y1), we have p(y = yi ) = 3

18 ,∀yi ∈ Y1. Therefore,
pX |Y1 (x |1 : GntE) = {1/3 i f x = (c1,n2), 1/3 i f x = (c1,w2), 1/3 i f x =
(c1,d2)} andpX ,Y1 (x , 1 : GntE) = {1/18 i f x = (c1,n2), 1/18 i f x =
(c1,w2), 1/18 i f x = (c1,d2)}.

Similarly, we calculate pX ,Y1 (x , 2 : GntE), pX ,Y1 (x , 1 : ReqE)
and pX ,Y1 (x , 2 : ReqE). The mutual information gain is given by:
I (X ,Y1) =

∑
x,y p(x ,y)loдp(x ,y)/p(x)p(y) = 1.073.

Similarly, we calculate the mutual information gain for the re-
maining five message combinations. We then select the message
combination that has the highest mutual information gain, which
is I (X ,Y1) = 1.073 thereby selecting the message combination
Y ′
1 = {ReqE, GntE} for tracing. Intuitively, in an execution of U of
Figure 2, if the observed trace is {1:ReqE, 1:GntE, 2:ReqE}, immedi-
ately we are able to localize the execution to two paths shown in
red in Figure 2 among many possible paths of U.
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Table 1: Usage scenarios and participating flows in T2. PIOR: PIO
Read, PIOW: PIOWrite, NCUU: NCUUpstream, NCUD: NCUDown-
stream and Mon: Mondo Interrupt flow. ✓indicates Scenario i exe-
cutes a flow j and ✗ indicates Scenario i does not execute a flow j .
Flows are annotated with (No of flow states, No of messages)

Usage Participating Flows Patici- Potential
Scenario PIOR

(6, 5)
PIOW
(3, 2)

NCUU
(4, 3)

NCUD
(3, 2)

Mon
(6, 5)

pating
IPs root causes

Scenario 1 ✓ ✓ ✗ ✗ ✓
NCU,
DMU,
SIU

9

Scenario 2 ✗ ✗ ✓ ✓ ✓
NCU,
MCU,
CCX

8

Scenario 3 ✓ ✓ ✓ ✓ ✗

NCU,
MCU,
DMU,
SIU

9

Table 2: Representative bugs injected in IP blocks of
OpenSPARC T2. Bug depth indicates the hierarchical depth
of an IP block from the top. Bug type is the functional im-
plication of a bug.
Bug Bug Bug Bug Buggy
ID depth category type IP

1 4 Control wrong command generation by data
misinterpretation DMU

2 4 Data Data corruption by wrong address generation DMU
3 3 Control Wrong construction of Unit Control Block resulting

in malformed request DMU

4 4 Control Generating wrong request due to incorrect
decoding of request packet from CPU buffer NCU

3.3 Step 3: Packing the trace buffer
Message combinations with the highest mutual information gain
selected in Step 2 may not completely fill the trace buffer. To maxi-
mize trace buffer utilization, in this step we pack smaller message
groups which are small enough to fit in the leftover trace buffer
width. Usually, these smaller message groups are part of a larger
message that cannot be fit into the trace buffer, e.g. in OpenSPARC
T2, dmusiidata is 20 bits wide message whereas cputhreadid a
subgroup of dmusiidata is 6 bits wide. We select a message group
that can fit into the leftover trace buffer width, such that the in-
formation gain of the selected message combination in union with
this smaller message group is maximal. We repeat this step until
no more smaller message groups can be added in the leftover trace
buffer. Benefits of packing are shown empirically in Section 5.1.

In our running example, the trace buffer is filled up by the set
of selected message combination. The flow specification coverage
achieved with Y ′

1 is 0.7333.

4 EXPERIMENTAL SETUP
Design testbed:We primarily use the publicly available OpenSPARC
T2 SoC [12] to demonstrate our result. Figure 3 shows an IP level
block diagram of T2. Three different usage scenarios considered
in our debugging case studies are shown in Table 1 along with
participating flows (column 2-6) and participating IPs (column 7).
We also use the USB design [15] to compare with other methods
that cannot scale to the T2.

Table 3: Trace buffer utilization flow specification coverage
and path localization of traced messages for 3 different us-
age scenarios. FSP Cov: Flow specification coverage (Defini-
tion 7), WP: With packing, WoP: Without Packing. 32 bits
wide trace buffer assumed.

Case Usage Trace Buffer FSP Cov Path
study Scenario Utilization Localization

WP WoP WP WoP WP WoP
1

Scenario 1 96.88% 84.37% 99.86% 97.22%
0.13% 3.23%

2 0.31% 6.11%
3 Scenario 2 100% 71.87% 99.69% 93.75% 0.26% 5.13%
4 0.10% 2.47%
5 Scenario 3 100% 93.75% 83.33% 77.78% 0.11% 2.65%

Table 4: Comparison of signals selected by our method with
SigSeT [2] and PRNet [7] for the USB design. P: Partial bit

Signal USB Sig PR Info
Name Module SeT Net Gain
rx_data UTMI ✗ ✓ ✓
rx_valid line speed ✗ ✓ ✓

rx_data _valid Packet ✗ ✗ ✓
token _valid decoder ✗ ✗ ✓
rx_data _done ✗ ✗ ✓

tx_data Packet ✗ ✗ ✓
tx_valid assembler ✗ ✓ ✓

send_token Protocol ✗ ✗ ✓
token_pid _sel engine P P ✓
data_pid _sel P ✗ ✓
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Figure 5: Correlation analysis betweenmutual information
gain and flow specification coverage for different message
combinations for three different usage scenarios.

Testbenches: We used 5 different tests from fc1_all_T2 regression
environment. Each test exercises 2 or more IPs and associated
flows. We monitored message communication across participating
IPs during simulation and recorded the messages into an output
trace file. We use System-Verilog monitors shown in Figure 4 to
convert the RTL signals of OpenSPARC T2 into flow messages
during execution for our large scale debugging effort.
Bug injection: We created 5 different buggy versions of T2, that
we analyze as five different case studies. Each case study comprises
5 different IPs. We injected a total of 14 different bugs across the
5 IPs in each case. The injected bugs follow two sources, i) sani-
tized examples of communication bugs received from our industrial
partners, ii) “bug model" developed at Stanford University in the
QED [6] project capturing commonly occurring bugs in an SoC
design. A few representative injected bugs are detailed in Table 2.
Table 2 shows that the set of injected bugs are complex, subtle and
realistic. It took upto 457 observed messages and upto 21290999
clock cycles for each bug symptom tomanifest. These demonstrate
complexity and subtlety of the injected bugs. Following [12] and
Table 2, we have identified several potential architectural causes
that can cause an execution of a usage scenario to fail. Column 8 of
Table 1 shows number of potential root causes per usage scenario.

5 EXPERIMENTAL RESULTS
In this section, we provide insights into our large scale debugging
effort of five different (buggy) case studies across 3 usage scenarios
of the T2.



Table 5: Selection of important messages by our method
Message Affecting Bug Message Selected

Bug IDs coverage importance Y / N Usage
scenario

m1 8, 33, 36 0.21 4.76 Y 1, 2
m2 8, 33, 34, 36 0.28 3.57 Y 1, 2
m3 33, 36 0.14 7.14 Y 1, 2
m4 8, 29, 33 0.21 4.76 Y 1, 3
m5 18, 33 0.14 7.14 Y 1, 2
m6 - - N -
m7 - - Y 1, 3
m8 33 0.07 14.28 Y 2
m9 1, 33 0.14 7.14 N -
m10 24 0.07 14.28 Y 2
m11 1, 24 0.14 7.14 Y 2
m12 24 0.07 14.28 Y 2
m13 8 0.07 14.28 Y 2
m14 1, 17, 33 0.21 4.76 Y 2
m15 1, 17, 18, 33 0.28 3.57 N -
m16 1, 17, 18, 33 0.28 3.57 Y 2, 3

5.1 Flow specification coverage and trace buffer
utilization

Table 3 demonstrates the value of the traced messages with respect
to flow specification coverage (Definition 7) and trace buffer utiliza-
tion. These are the two objectives for which our message selection
is optimized. Messages selected without packing achieve up to
93.75% of trace buffer utilizationwith up to 97.22% flow spec-
ification coverage. With packing, message selection achieves
up to 100% of trace buffer utilization and up to 99.86% flow
specification coverage. This shows that we can cover most of the
desired functionality while utilizing the trace buffer maximally.

5.2 Path localization during debug of traced
messages

In this experiment, we use buggy executions and traced messages to
show the extent of path localization per bug. Localization is calcu-
lated as the fraction of total paths of the interleaved flow. In Table 3,
columns 7 and 8 show the extent of path localization. We needed
to explore no more than 6.11% of interleaved flow paths using
our selected messages. With packing, we needed to explore no
more than 0.31% of the total interleaved flow paths during
debugging. Even with packing, subtle bugs like NCU bug of buggy
design 3 and buggy design 2 needed more paths to explore.

5.3 Validity of information gain as message
selection metric

We select messages per usage scenario. In Figure 5 we analyze the
correlation between flow specification coverage and the mutual
information gain of the selected messages. Flow specification cov-
erage (Definition 7) increases monotonically with the mutual
information gain over the interleaved flow of the corresponding
usage scenario. This establishes that increase in mutual infor-
mation gain corresponds to higher coverage of flow specifi-
cation, indicating that mutual information gain is a good metric
for message selection.

5.4 Comparison of our method to existing
signal selection methods

To demonstrate that existing Register Transfer Level signal selection
methods cannot select messages in system level flows, we compare
our approach with an SRR-based method [2] and a PageRank based
method [7].We could not apply existing SRR based methods
on the OpenSPARC T2, since these methods are unable to
scale. We use a smaller USB design for comparison with our
method. In the USB [15] design we consider a usage scenario con-
sisting of two flows. Table 4 shows that our (mutual information
gain based) method selects all of token_pid_sel, data_pid_sel
and other important interface signals for system level debugging.
SigSeT, on the other hand selects signals which are not useful for
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Figure 7: Selected messages-cause pruning distribution for
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system level debugging. Ourmessages are composed of interface sig-
nals, and achieve a flow specification coverage of 93.65%, whereas
messages composed of interface signals selected by SigSeT and
PRNet have a low flow specification coverage of 9% and 23.80%
respectively.

5.5 Selection of important messages by our
method

For evaluation purposes, we use bug coverage as a metric, to de-
termine which messages are important. A message is said to be
affected by a bug if its value in an execution of the buggy design
differs from its value in an execution of the bug free design. Intu-
itively, if multiple bugs are affecting a message, it is highly likely
that message is a part of multiple design paths. The bug coverage of
a message is defined as the total number of bugs that affects a mes-
sage, expressed as a fraction of the total number of injected bugs.
From debugging perspective, a message is important if it is affected
by very few bugs implying that the message symptomizes subtle
bugs. Table 5 confirms that post-Silicon bugs are subtle and tend to
affect no more than 4 messages each. Column 4, 5 and 6 of Table 5
show that our method was able to select important messages from
the interleaved flow to debug subtle bugs.

Table 5 shows that message m15 is affected by four bugs and
message m9 is affected by two bugs, but due to their size being
wider than 32 bits trace buffer, our method does not select them.

5.6 Effectiveness of selected messages in
debugging usage scenarios

Everymessage is sourced by an IP and reaches a destination IP. Bugs
are injected into specific IPs (Table 2). During debug, sequences of
IPs are explored from the point a bug symptom is observed, to find
the buggy IP. An IP pair (<source IP, destination IP>) is legal if a
message is passed between them. We use the number of legal IP
pairs investigated during debug as a metric for selected messages.
Table 6 shows that we investigated an average of 54.67% of the



Table 6: Diagnosed root causes and debugging statistics for our case studies on OpenSPARC T2.

Case Study
No
of.

Flows
Legal IP
Pairs

Legal IP
pairs

investigated

Messages
investigated Root caused architecture level function

1 3 12 5 25 An interrupt was never generated by DMU due to wrong interrupt generation logic
2 3 6 67 Wrong interrupt decoding logic in NCU / Corrupted interrupt handling table in NCU
3 3 10 8 142 Malformed CPU request from Cache Crossbar to NCU / Erroneous CPU request decoding logic of NCU
4 3 6 199 Erroneous interrupt deque logic after interrupt is serviced
5 4 12 5 65 Erroneous decoding logic of CPU requests in memory controller

Table 7: Representative potential root causes for one case study. Rest of the root causes are omitted due to lack of space.
Remaining case studies are available in [14]

Selected Messages Potential Causes Potential Implication
reqtot,grant,
mondoacknack,

siincu, piowcrd
1. Mondo request forwarded from DMU to SIU’s bypass queue instead of ordered queue 1. Mondo interrupt not serviced

dmusiidata.
cputhreadid

2. Invalid Mondo payload forwarded to NCU from DMU via SIU 2. Interrupt assigned to wrong CPU ID and Thread ID
siincu, 3. Non-generation of Mondo interrupt by DMU 3. Computing thread fetches operand from wrong memory location

total legal IP pairs, implying that our selected messages help us
focus on a fraction of the legal IP pairs.

To debug a buggy execution, we start with the traced message
in which a bug symptom is observed and backtrack to other traced
messages. The choice of which traced message to investigate is
pseudo-random and guided by the participating flows.

Figure 6(a) plots the number of such investigated tracedmessages
and the corresponding candidate legal IP pairs that are eliminated
with each traced message. Figure 6(b) shows a similar relationship
between the traced messages and the candidate root causes, i.e.
the architecture level functions that might have caused the bug to
manifest in the traced messages. Both graphs show that with more
traced messages, more candidate legal IP pairs as well as candidate
root causes are progressively eliminated. This implies that every
one of our traced messages contributes to the debug process.

Figure 7 shows that traced messages were able to prune out a
large number of potential root causes in all five case studies. Our
traced messages pruned out an average of 78.89% (max. 88.89%)
of candidate root causes.

5.7 Debugging case study
It is illuminating to understand the debugging process for one case
study to appreciate the role of the selected messages.
Symptom: In this experiment we used traced messages from Ta-
ble 7. The simulation failed with an error message FAIL: Bad Trap.
Debugwith selectedmessages:We consider bug symptom causes
of Table 7 to debug this case. From the observed trace messages,
siincu and piowcrd, we identify NCU got back correct credit ID
at the end of the PIO read and PIO write operation respectively.
This rules out two causes out of 9. However, we cannot rule out
causes related to PIO payload since a wrong payload may cause
computing thread to catch BAD Trap by requesting operand from
wrong memory location. Absence of trace messages mondoacknack
and reqtot implies that NCU did not service any Mondo inter-
rupt request and SIU did not request a Mondo payload transfer
to NCU respectively. Further, there is no message corresponding
to dmusiidata.cputhreadid in the trace file, implying that DMU
was never able to generate a Mondo interrupt request for NCU to
process. This rules out all causes except cause 3 (1 cause out of 9,
pruning of 88.89% of possible causes) to explore further to find
the root cause.
Root Cause: From [12], we note that an interrupt is generated only
when DMU has credit and all previous DMA reads are done. We
found no prior DMA read messages and DMU had all its credit avail-
able. Absence of dmusiidatamessage correct CPUID and ThreadID
implies that DMU never generated a Mondo interrupt request. This
makes DMU a plausible location of the root cause of the bug.

6 CONCLUSIONS
We have demonstrated the scalability and effectiveness of our trace
message selection approach on the OpenSPARC T2 processor for
root causing bugs in system-level usage scenarios. This is the most
large-scale application of a hardware signal tracing approach in
published literature.
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