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Abstract—Behavioral synthesis is the compilation of an Elec- II. BACKGROUND

tronic system-level (ESL) design into an RTL implementatio. We A Behavioral Svnthesi
present a suite of optimizations for equivalence checkingfdQRTL - behavioral syntnesis

generated through behavioral synthesis. The optimizationexploit A pehavioral synthesis tool applies a sequence of transfor-
the high-level structure of the ESL description to ameliorde ver-  ations to an ESL specification to transform it into RTL. As

ification complexity. Experiments on representative bencharks a simple illustrative example. consider the svnthesis @f th
indicate that the optimizations can handle equivalence chaking impie 1iu lve example, : y !

of synthesized designs with tens of thousands of lines of RTL ~ Tiny Encryption Algorithm (TEA) [3]. Fig. 1 shows the C
specification and the circuit synthesized by AutoPilot. The

. INTRODUCTION following transformation phases are involved in the sysihe

Recent years have seen a gradual migration away frome First, compiler transformationsare applied to the ESL
hand-crafted RTL towards the Electronic System Level (ESL) description. For instance, constant propagation is used in

designs specified at high leveb.¢, with SystemC). Conse- the example to remove unnecessary variables_.
quently, there has been interest in behavioral synthesis, e« The second phase ischeduling which determines the
compilation of an ESL specification to RTL. clock step for each operation. Scheduling transformations

In a previous paper [1], we proposed a framework for include chaining operations across conditional blocks and
certifying behaviorally synthesized RTL. The key idea was decomposing one operation into a sequence of multi-
to ameliorate equivalence checking complexity by compar- cycle operations. In the example, the key transformation
ing the RTL with the design representation after high-level performed ispipelining to enable overlapping execution
compiler and scheduling transformations have already been of operations from different loop iterations.
applied to the ESL description. Consequently, a theoreme The third phase isesource binding and control synthe-
proving approach was developed to pre-verify these high- Sis which binds operations to functional units, allocates

level transformations. The framework introduce&locked and binds registers, and generates the control circuit to
Control/Data Flow Grapi(CCDFG), a formalization of design implement the schedule. For instance, the bperation
specification that augments the traditional Control/DatawF is bound to a hardware adder, and a finite-state machine

Graph (CDFG) with a schedule. Each compiler and scheduling (FSM) module is generated to control circuit operations.
transformation is viewed as a CCDFG manipulation. Theoreafter these transformations, the design can be expressed as
proving cost is amortized by the reuse of the same high-le\@TL. This design is subjected to further optimizations and
transformations over different designs, while the sentantinanual tweaks to satisfy performance and power goals.
closeness between the “post-scheduling” CCDFG and the RTL
facilitates sequential equivalence checking (SEC) betvibe B. Overall Framework
two by permitting effective mappings of internal operaon ~ We implement SEC on top of a certifiedference flow

In this paper, we present a suite of optimizations for the SEg@nsisting of pre-verified compiler and scheduling transfa-
step above, which exploit both the explicit control and dations. We refer to these pre-verified transformationpas-
flow representations in the CCDFG and the module structuiiége transformations Examples of primitive transformations
in the ESL description. We have applied these optimizatioimgclude (1) refinement of operation schedules over multiple
in verification of RTL synthesized by AutoPilot [2], a staié- cycles, (2) operation balancing, and (3) pipelining. Eaeths
the-art behavioral synthesis tool. Our experiments shat thransformation isgeneric and independent of the nuances
they scale SEC to tens of thousands of lines of synthesizafda specific designe.g, correctness of operation balancing
RTL from complex behavioral specifications.§, unbounded only requires that the operation considered is associative
loops, modules, etc.), making it viable for industrial des. and commutative. The transformations are culled from a
We know of no other SEC framework that can handle behaproduction synthesis took(g, AutoPilot), and formalized as
iorally synthesized RTL of such complexity. CCDFG manipulations. Given an ESL specificati6nand
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Fig. 1. (A) C code for TEA encryption function. (B) Schema oflIRsynthesized by AutoPilot.

. . . Single Clock Cycls
the corresponding RTID, the overall verification framework (conre}——| st ot ————
involves the following automatic steps: ! ‘

« Extract the initial CCDFGC from &. ! ! o »

« Apply primitive transformations from the reference flow, e comnts o T Cunalent>—
following their application sequence in the synthesis.tool ! ! N
The resultis a CCDF@’ that is close td in abstraction. ! !

» Apply SEC betweed” andD. | D v ——
In addition to transformations, a production synthesid ime
plements heuristics to control their application ordemeaer,
since such heuristics typically affect only performancef n
correctness, the reference flow is oblivious to them.

Fig. 4. Dual-Rail simulation scheme for SEC between CCDF®& @ircuit.

C. CCDFG if mo andm, belong to the same scheduling step then they

A CCDFG is a CDFG augmented with a schedule. Fig. aye executed within the same clock cycle. A CCDFG execution
shows three CCDFEGs for TEA. In our framework CCDFGisS formalized through state-based semanticsC@DFG state
provide a uniform abstraction of internal design represent/eSP-CCDFG inpu) is a valuation of the state (resp., input)

tions used in different behavioral synthesis tocsg( Au- variables. Given a sequence of inputs, executionof a

toPilot, Spark [4], etc.). This enables us to view synthes%CDFG G with microstep partition} and scheduld” is a

transformations uniformly as CCDFG manipulations. sequence of CCDFG states that corresponds to an evaluation
The formalization of CCDFG assumes that the underlyin(g the microsteps ofl/ respecting!”.
language provides the semantics oimitive operationge.g, n
arithmetic operations, comparison, etc.). The key compt:ne
of the formalization are (1) control and data flow graphs, Since the CCDFGH represents the design after compiler
(2) microstep partition, and (3) schedule. Following stod and scheduling transformations, there is direct corredpoce
conventions, the control flow is broken up into of basifetween operations idz and their implementations in the
blocks; correspondingly data dependencies follow the dregynthesized circui\/. To exploit this, we define a mapping
after write” paradigmop, is dependent omp; if op; occurs EMap from _the_operatmns i to comblnatl(_)nal nodes Iz
after op; in a control path and computes an expression ov@fch operation is mapped to the node that implements it3Fig.
some variabley that is assigned most recenﬂy bpz in the shows the mapplng for the Synthesized circuit of TEA. Given
path. Amicrostep partitionis a partitioning of operations in a £Map, we implement SEC as a dual-rail symbolic simulation
basic block such that ifp; andop; are in the same partition (Fig. 4), with the two rails synchronized by clock cycle. The
then their execution order is irrelevant to control and dafgllowing steps are performed at clock cydie
dependencies. Each component of a microstep partition is d) For the current CCDFG statg, and circuit states;, we
microstep A schedulas agroupingof microsteps; informally, check whether for input, the inputs to each operation

. EQUIVALENCE CHECKING
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Fig. 2. (A) Initial CCDFG of TEA encryption function. (B) Tresformed CCDFG after constant propagation. (C) Furthesttamed CCDFG after pipelining.
The shaded regions represent scheduling steps, and whiés bbepresent microstep partitions. For brevity, only toetwl flow is shown.
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Fig. 3. Operation mapping from CCDFG to circuit for TEA; dadhines represent mapping from CCDFG operations to cimoites.

op in the scheduling step, are equivalent to the inputs ment [5] where symbolic states are represented using OBDDs.
to EMap(op). If yes, continue; else report failure. Our word-level implementation is based on Satisfiabilitydvio
2) We simulate by executing,, onxj, underi to obtain ulo Theory (SMT), using the CVC3 SMT engine [6]. Word-
the stater;,; and recording the outputs of eagh € ¢;,. level simulation is viable since word-level mappings betwe
We simulate)M for one clock cycle frons;, with input operations and circuit nodes are explicit. Bit vectors asedu
EMap(i)) obtaining states;;. The outputs of each to encode variables in the CCDFG and circuit; CVC3 checks
op are checked for equivalence against the outputs iofput/output equivalence and determines the control paths
EMap(op). If yes, continue; else, report failure. The bit-level and word-level checkers are complimentary.
3) The next scheduling stefa1 is determined based onThe bit-level checker ensures decidability of SEC, while th
the control flow. If ¢, has multiple outgoing control word-level checker is crucial to scalability. Furthermovee
edges, the last microstep of executed is identified. implement modular analysis, which permits the word-level
The outgoing control edge from this microstep whosghecker to compositionally use results from bit-level dtieg
condition evaluates to true leads#p;;. as follows. Supposé/ is a module of modest complexity
The simulation proceeds until (i) the equivalence checlsfaibut is awkward to check at word-level. Then the bit-level
(ii) the end of the input sequence is reached (for boundelecker can compare the CCDFG &f with its circuit
check), or (iii) a fixed point is reached (for unbounded checkmplementation; subsequently, while verifying a modulatth
The dual-rail scheme is implemented at both bit-level andvokes M, the word-level checker can treat the CCDFG of
word-level. For bit-level, we use the Intdorte environ- M and its circuit implementation as equivalent black boxes.



IV. OPTIMIZATIONS m
Micro Step-~1-_ ‘

The scalability of the SEC algorithm critically depends onint ged (int a, int b)

three key optimizations, which exploit the close correspon{

dence between CCDFGs and their synthesized RTL designs. égt{t;
if (a >=b) a=a—b; .
else {t=a;a=b;b=t;}

The cutpoint optimization involves pre-verifying compari ~} While (b != 0);

A. Cutpoints

son of specific CCDFG operations and their circuit implemen-} return a;

tations off-line. Subsequently, during SEC, these openati seheding -~ False
are replaced in the CCDFG and RTL by equivalent symbols.
Note that only the equivalences (not computations) areaelte Fig. 5. C source code and CCDFG for GCD

to SEC; if the inputs to a cutpoint are equivalent, their
outputs can be replaced by equivalent symbols, causing only
equivalences (not outputs themselves) to be propagated.

We utilize two types of cutpointssombinationaland se-
guential Combinational cutpoints are applicable to combina-
tional portions, and have been studied extensively [7]. RTL

Loop Entry Loop Exit

designs with complex combinational circuits are generdtesd
: L o
to transformations such as loop unrolling: in the TEA exaampl [Faabibt] [ acab | rase
AutoPilot can fully unroll thefor loop, creating complex com-
binational circuits by aggregating operations from difer [ o0 ] |
iterations. Sequential cutpoints cut sequential circaits keep Fobe
complex expressions from propagating across clock cycles.

In the TEA example (Fig. 3), the scheduling step starting
with the conditionabpl_start==1 and ending with the assign- Fig. 6. Cut-loop optimization for GCD example
mentpl_start=1 is implemented as a combinational block that
can be cut at all operations,g, the one computingmp54
the equivalence of this operation with the corresponding R1between the CCDFG and the RTL for the path to the initial
is certified separatelye(g, by theorem proving). On the otherloop entry. For the body, we check that if (1) equivalence is
hand, the operation that computesp49 can be used as amaintained at the loop join point, and (2) the loop does not
sequential cutpoint since it connects two scheduling steps exit, then equivalence is maintained after one iteraticor. F

To explain the role of post-scheduling CCDFGs in cutpoirihe exit, we check that if (1) equivalence is maintained at
optimization, note that the ESL specification is unclockede loop join point, and (2) the loop exits, then equivalence
while the RTL is clocked. Furthermore, after application df maintained at the loop exit. The loop structure and entry
high-level transformations, the RTL has little correspemce point information are available from the synthesis tooleTh
in internal operations with the behavioral descriptionking checks above are inspired by inductive assertions in sodtwa
it difficult to identify cutpoints. However, this problem isVverification [8], [9]: the three checks are essentially theop
eliminated in our framework since there is a readily avaédabobligations discharged by a verification condition germrat
correspondence with the post-scheduling CCDREGy, the We think of equivalence with RTL as the invariant maintained
operation-to-resource mapping, which provides natural cady the loop. Using ACL2, we proved that the checks guarantee
didates for cutpoints. word-level equivalence over the entire loop execution.

We illustrate cut-loop optimization on the GCD example in
Fig. 6. At the loop entry, the check thatandb are equivalent

A major challenge in SEC is termination, which typicallyto their RTL counterparts is trivially true since they arpuits.
requires expensive fixed-point computation. Terminatiea bFor the body check the conditidh = 0 is applied to ensure
comes a problem when the input description contains uthe iteration does not exit, and for the exit check the caolit
bounded loops. Consider the CCDFG of the Greatest Commipga- 0 is applied to ensure the loop exits. For both body and
Divisor (GCD) algorithm shown in Fig. 5. The bit-levelexit checks, the condition being checked is that dndb are
symbolic simulation for GCD, even for 8-bit integers, inve$  equivalent before executing >= b then they are equivalent
more than 6850 seconds and 1197606 BDD nodes. A naafter one iteration. With this optimization, word-level SBn
fixed-point computation at word-level is also expensiveelty GCD finishes within two seconds. The cut-loop optimization
for designs with deep bounded loogsd, TEA), full unrolling is also useful for deep bounded loopsy, we achieved major
is too expensive for both bit-level and word-level simwdas. speed-up for word-level SEC on TEA (cf. Section V).

Our solution is thecut-loop optimizationwhich “cuts” the Note that loop detection is greatly simplified since CCDFGs
loop, reducing the fixed-point computation to three cheicks, are derived from ESL designs by applying primitive transfor
at the entry, body, and exit. At entry, we check equivalenceations. Nested loops are handled by recursive loop remtucti

B. Cut-loop optimization



CCDFG Circuit TABLE |
DESIGNS, FEATURES, AND OPTIMIZATIONS

| Designs [ Features | Optimizations
GCD Unbounded Loop Cut-Loop
DCT Sequential without Loop Cutpoint
TEA Bounded Loop Cut-Loop
Unrolled Loop Cutpoint
{ Gesompi | DES Bounded Loop Cut-Loop
: 1 oy | Unrolled Loop Cutpoint
. | High Sequential Complexity
b T P 3DES Bounded Loop Cut-Loop
I e B A Unrolled Loop Cutpoint
: 1 : High Sequential Complexity Modular Analysis
[ o | 3DES key | Bounded Loop Cut-Loop
Unrolled Loop Cutpoint
High Sequential Complexity Modular Analysis
Fig. 7. Modular SEC for 3DES High Combinational Complexity|
TABLE Il
C. Modular analysis BIT-LEVEL EQUIVALENCE CHECKING STATISTICS
Synthesized RTL is often large and complexg, for [ Bit Width | # of Circuit Nodes][ Time (Sec.)] BDD Nodes ]
3DES design, AutoPilot generates 18053 lines of Verilog. 2 96 0.02 503
Behavioral synthesis reduces RTL size via modular reuse: 3 164 0.05 4772
without modules, the RTL for 3DES would be 128K lines. ‘5‘ gig 8'2; iggii
Module_s may be present in input description or introduced 5 757 1250 39968
by behavioral synthesis. To support modules, CCDFGs are 7 576 369.31 220891
extended with function calls. An example function invooati 8 714 6850.56 1197604

in the 3DES CCDFG is shown in Fig. 7. With modules, a
given behavioral description corresponds to several CCDFG
(each corresponding to a module). A module can be either V. EXPERIMENTAL RESULTS

combinational or sequential. A combinational module me$ur  Taple | jllustrates the designs used to evaluate our approac
in the same clock cycle in which it is invoked, while asach design is synthesized by AutoPilot. The designs are
sequential module takes several cycles. Note that the tQRqected carefully to exercise different facets of our amrk.
level CCDFG may not capture all the scheduling steps singgcp, albeit simple, is included to illustrate unboundedp®o
some are in other sequential modules. In the synthesizgdt demand the cut-loop optimization. DCT (Discrete Cesin
RTL, there is a module for each CCDFG. In addition to RT'Transform) requires handling a long sequential computatio
code implementing functionality, there is additional cdde \yithout loop. We additionally use a number of increasingly
interfaces.e.g, a module commonly needseset , start, ejaporated cryptographic encryption algorithnesy, TEA,
andr eady signals besides input/output data signals. DES, 3DES, and 3DE%ey (3DES with key generation).
One naive approach to handle modules is to unfold themgs 3pES and 3DE%ey contains bounded loops and
causing each module to be analyzed at each invocation. Wanefit from cut-loop; their sequential and combinational
prefer compositional analysis of each module separately. Q:omplexities also illustrate the role of cutpoints. 3DESI an

scheme works as follows. 3DES key have modular structures and modular analysis is
« For each moduleV/, the CCDFG and RTL forM are vital to discharge their SEC. DES was deliberately synitessi
checked for equivalence separately. without modules to further investigate the role of modular

« When verifying a modulé\/’ that invokes)M, the invo- analysis. All experiments were conducted on a workstation

cation of M in the CCDFG and RTL of\/’ are replaced with 3GHz Intel Xeon processor withGB memory.

by equivalent uninterpreted functions. To establish a baseline, we use the bit-level checker on
The equivalence between function invocation in CCDFG artde GCD implementation (cf. Table II). Since all operations
module interfacing mechanism in RTL is pre-certified. Modare bit-blasted, the running time grows exponentially viith
ular analysis is possible because of explicit correspooelerwidth. For8-bit GCD, SEC takes abodthours. Pure bit-level
between the CCDFG and the RTL of a module: since we uS&C is thus not feasible for more complex designs.
the same module structure used in the synthesis, the deecompdable Il shows the results on word-level SEC for all
sition does not introduce over-approximations. Currently the designs from Table |. Here, “-" signifies “out of time
do not handle recursive modules since recursions in ESL d&- memory”, “CP” for cutpoints, “CL" for cut-loop, and
scriptions are typically removed by compiler transforroasi; “MA” for modular analysis. The “NO” column represents “no
however, modular analysis can be extended to recursion dgytimizations”: it is clear that without the optimizatiQrSEC
replacing the callee with a “module summary”, analogous tannot handle long computation sequences or loops. Since
procedure summaries in software verification [10]. DCT contains only sequential computations and no modules,



TABLE Il
WORD-LEVEL EQUIVALENCE CHECKING STATISTICS

Design GCD DCT TEA DES 3DES 3DES key
RTL Size (# Lines) 364 688 1001 11520 18053 79976

Optimizations || NO|CP|CP| NO | CP |[NO] CP [ CP ||[NO|] CP | CP |[NO| CP | CP |[|[NO| CP CP

CL CL CL MA | MA MA MA

CL CL
Time (Secs) - -1 2 71 | 301 - | 116 | 156] - | 5896 | 1482 || - | 872.5]| 355.7|| - | 2868.5| 23517
Memory (MB) - | - | 41]9216| 49.2|] - | 141.3| 246 - | 614.4| 4264 - | 114.7] 59.4 || - | 307.2 | 307.2

cut-loop and modular analysis are not applicable; however, VII. CONCLUSION AND FUTURE WORK

cutpoint optimization reduces the symbolic simulationtdos e have presented optimizations enabling a scalable equiva

about half, in both time and memory usage. Cutpoints, t@ethence checking framework for RTL designs generated through

with modular analysis, can handle long computation se(R®Ngehavioral synthesis. These optimizations target diffeck-

and bounded loopse(g, TEA, 3DES, and 3DESkey), but sign features, which have enabled the use of word-level SEC

blows up on fixed-point computation for unbounded loopgy verifying designs with tens of thousands of lines of RTL

(.9, GCD), underlining the need for cut-loop. The cut-loogynthesized by a state-of-the-art behavioral syntheslgéog,

optimization handles unbounded loops, while also redutiieg Autopilot). One direction for future research is to check

time and memory usage for designs with bounded loops. Thgnthesized RTL that has undergone significant manual tveak

savings from cut-loop are relatively less for 3DK8y since (for power, performance, etc.), thereby distorting the piag

the design contains large combinational computations (fgfitn the corresponding CCDFG operations.

generating the key) which overshadow loop unrolling coke T

results on DES highlight the importance of modular analysis ACKNOWLEDGMENT
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The results indicate that word-level SEC with our opti-
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