
Optimizing Equivalence Checking for Behavioral
Synthesis

Kecheng Hao and Fei Xie
Department of Computer Science

Portland State University
Portland, OR 97207

{kecheng,xie}@cs.pdx.edu

Sandip Ray
Department of Computer Sciences

University of Texas at Austin
Austin, TX 78712

sandip@cs.utexas.edu

Jin Yang
Strategic CAD Labs, DTS

Intel Corporation
Hillsboro, OR 97124
jin.yang@intel.com

Abstract—Behavioral synthesis is the compilation of an Elec-
tronic system-level (ESL) design into an RTL implementation. We
present a suite of optimizations for equivalence checking of RTL
generated through behavioral synthesis. The optimizations exploit
the high-level structure of the ESL description to ameliorate ver-
ification complexity. Experiments on representative benchmarks
indicate that the optimizations can handle equivalence checking
of synthesized designs with tens of thousands of lines of RTL.

I. I NTRODUCTION

Recent years have seen a gradual migration away from
hand-crafted RTL towards the Electronic System Level (ESL)
designs specified at high level (e.g., with SystemC). Conse-
quently, there has been interest in behavioral synthesis,i.e.,
compilation of an ESL specification to RTL.

In a previous paper [1], we proposed a framework for
certifying behaviorally synthesized RTL. The key idea was
to ameliorate equivalence checking complexity by compar-
ing the RTL with the design representation after high-level
compiler and scheduling transformations have already been
applied to the ESL description. Consequently, a theorem
proving approach was developed to pre-verify these high-
level transformations. The framework introducedClocked
Control/Data Flow Graph(CCDFG), a formalization of design
specification that augments the traditional Control/Data Flow
Graph (CDFG) with a schedule. Each compiler and scheduling
transformation is viewed as a CCDFG manipulation. Theorem
proving cost is amortized by the reuse of the same high-level
transformations over different designs, while the semantic
closeness between the “post-scheduling” CCDFG and the RTL
facilitates sequential equivalence checking (SEC) between the
two by permitting effective mappings of internal operations.

In this paper, we present a suite of optimizations for the SEC
step above, which exploit both the explicit control and data
flow representations in the CCDFG and the module structures
in the ESL description. We have applied these optimizations
in verification of RTL synthesized by AutoPilot [2], a state-of-
the-art behavioral synthesis tool. Our experiments show that
they scale SEC to tens of thousands of lines of synthesized
RTL from complex behavioral specifications (e.g., unbounded
loops, modules, etc.), making it viable for industrial designs.
We know of no other SEC framework that can handle behav-
iorally synthesized RTL of such complexity.

II. BACKGROUND

A. Behavioral Synthesis

A behavioral synthesis tool applies a sequence of transfor-
mations to an ESL specification to transform it into RTL. As
a simple illustrative example, consider the synthesis of the
Tiny Encryption Algorithm (TEA) [3]. Fig. 1 shows the C
specification and the circuit synthesized by AutoPilot. The
following transformation phases are involved in the synthesis.

• First, compiler transformationsare applied to the ESL
description. For instance, constant propagation is used in
the example to remove unnecessary variables.

• The second phase isscheduling, which determines the
clock step for each operation. Scheduling transformations
include chaining operations across conditional blocks and
decomposing one operation into a sequence of multi-
cycle operations. In the example, the key transformation
performed ispipelining, to enable overlapping execution
of operations from different loop iterations.

• The third phase isresource binding and control synthe-
sis, which binds operations to functional units, allocates
and binds registers, and generates the control circuit to
implement the schedule. For instance, the “+” operation
is bound to a hardware adder, and a finite-state machine
(FSM) module is generated to control circuit operations.

After these transformations, the design can be expressed as
RTL. This design is subjected to further optimizations and
manual tweaks to satisfy performance and power goals.

B. Overall Framework

We implement SEC on top of a certifiedreference flow,
consisting of pre-verified compiler and scheduling transforma-
tions. We refer to these pre-verified transformations asprim-
itive transformations. Examples of primitive transformations
include (1) refinement of operation schedules over multiple
cycles, (2) operation balancing, and (3) pipelining. Each such
transformation isgeneric and independent of the nuances
of a specific design,e.g., correctness of operation balancing
only requires that the operation considered is associative
and commutative. The transformations are culled from a
production synthesis tool (e.g., AutoPilot), and formalized as
CCDFG manipulations. Given an ESL specificationE and

void encryp t (u i n t32 t ∗ v , u i n t32 t ∗ k)
{

/∗ se t up ∗ /
u i n t32 t v0=v [0] , v1=v [1] , sum=0 , i ;
/∗ a key schedule constan t ∗ /
u i n t32 t de l ta =0x9e3779b9 ;
/∗ cache key ∗ /
u i n t32 t k0=k [0] , k1=k [1] ,

k2=k [2] , k3=k [3] ;

/∗ basic cyc le s t a r t ∗ /
for (i =0; i < 32; i ++) {

sum += de l ta ;
v0 += ((v1<<4)+k0) ˆ (v1 + sum)

ˆ ((v1>>5)+k1) ;
v1 += ((v0<<4)+k2) ˆ (v0 + sum)

ˆ ((v0>>5)+k3) ;
}

/∗ end cyc le ∗ /
v [0]= v0 ; v [1]= v1 ;

}

V
1
_
0
p

tmp
39

Phi

newPhi

newbin

1

Phi

V
1
_
0

==
 32

sum
0

0
x

9
e

3
7

7

9
b

9

Phi

V
0
_
0

tmp
26

tmp
49

tmp
41

out
= ((
i
0
<<
4
) +
i
1
)
̂
i
2

i
0
 i
1
 i
2

out

FSM

0

out
=(
i
0
+
i
1
)
̂
((
i
0
>>
5
)+
i
2
)

i
0
 i
1
 i
2

out

V
[
1
]
k
2

k
0
 k
1

k
3

V
[
0
]

V
[
1
]

V
[
0
]

Pipeline

logic

out
= ((
i
0
<<
4
)

+
i
2
)
̂
(
i
0
+
i
1
)
̂
((
i
0
>>
5
)+
i
3
)

i
0
 i
1
 i
2
 i
3

out

(A) (B)

Fig. 1. (A) C code for TEA encryption function. (B) Schema of RTL synthesized by AutoPilot.

the corresponding RTLD, the overall verification framework
involves the following automatic steps:

• Extract the initial CCDFGC from E .
• Apply primitive transformations from the reference flow,

following their application sequence in the synthesis tool.
The result is a CCDFGC′ that is close toD in abstraction.

• Apply SEC betweenC′ andD.

In addition to transformations, a production synthesis tool im-
plements heuristics to control their application order. However,
since such heuristics typically affect only performance, not
correctness, the reference flow is oblivious to them.

C. CCDFG

A CCDFG is a CDFG augmented with a schedule. Fig. 2
shows three CCDFGs for TEA. In our framework, CCDFGs
provide a uniform abstraction of internal design representa-
tions used in different behavioral synthesis tools (e.g., Au-
toPilot, Spark [4], etc.). This enables us to view synthesis
transformations uniformly as CCDFG manipulations.

The formalization of CCDFG assumes that the underlying
language provides the semantics forprimitive operations(e.g.,
arithmetic operations, comparison, etc.). The key components
of the formalization are (1) control and data flow graphs,
(2) microstep partition, and (3) schedule. Following standard
conventions, the control flow is broken up into of basic
blocks; correspondingly data dependencies follow the “read
after write” paradigm:opj is dependent onopi if opj occurs
after opi in a control path and computes an expression over
some variablev that is assigned most recently byopi in the
path. Amicrostep partitionis a partitioning of operations in a
basic block such that ifopi andopj are in the same partition
then their execution order is irrelevant to control and data
dependencies. Each component of a microstep partition is a
microstep. A scheduleis agroupingof microsteps; informally,

or Execution up to Given BoundMapping
Eqivalence

Constraints
Input Yes. Fixed Point Computation No

CCDFG
Simulation of CCDFG

Single Clock Cycle

Simulation of Circuit
Single Clock Cycle

Equivalent?

Circuit

Fig. 4. Dual-Rail simulation scheme for SEC between CCDFG and circuit.

if m0 and m1 belong to the same scheduling step then they
are executed within the same clock cycle. A CCDFG execution
is formalized through state-based semantics. ACCDFG state
(resp.,CCDFG input) is a valuation of the state (resp., input)
variables. Given a sequence of inputs, anexecutionof a
CCDFG G with microstep partitionM and scheduleT is a
sequence of CCDFG states that corresponds to an evaluation
of the microsteps ofM respectingT .

III. E QUIVALENCE CHECKING

Since the CCDFGG represents the design after compiler
and scheduling transformations, there is direct correspondence
between operations inG and their implementations in the
synthesized circuitM . To exploit this, we define a mapping
EMap from the operations inG to combinational nodes inM :
each operation is mapped to the node that implements it. Fig.3
shows the mapping for the synthesized circuit of TEA. Given
EMap, we implement SEC as a dual-rail symbolic simulation
(Fig. 4), with the two rails synchronized by clock cycle. The
following steps are performed at clock cyclek.

1) For the current CCDFG statexk and circuit statesk we
check whether for inputik, the inputs to each operation

newPhi = phi (0, newbin);

v1_0 = phi (v[1], tmp56);

v0_0 = phi (v[0], tmp41)

newPhi == 32

Input

newbin = newPhi + 1

sum0 = newPhi*delta0

v[0] = v0_0;

v[1] = v1_0

return

tmp26 = sum0+delta0

tmp39 = (v1_0 << 4) + k0) ^

(tmp26 + v1_0) ^ ((v1_0>>5)

+ k1))

tmp41 = tmp39+v0_0

tmp49 = (tmp41+tmp26)

^((tmp41>>5)+k3)

tmp54 = ((tmp41 << 4 + k2) ^

tmp49)

tmp56 = tmp54+v1_0

Y

N

Scheduling

Step

Microstep delta0 = 0x9e3779b9

newPhi = phi (0, newbin);

v1_0 = phi (v[1],tmp56);

v0_0 = phi (v[0], tmp41)

newPhi == 32

Input

newbin = newPhi + 1

sum0 = newPhi*0x9e3779b9

v[0] = v0_0

v[1] = v1_0

return

tmp26 = sum0+0x9e3779b9

tmp39 = (v1_0 << 4) + k0) ^

(tmp26 + v1_0) ^ ((v1_0>>5)

+ k1))

tmp41 = tmp39+v0_0

tmp49 = (tmp41+tmp26)

^((tmp41>>5)+k3)

tmp54 = ((tmp41 << 4 + k2) ^

tmp49)

tmp56 = tmp54+v1_0

Y

N

Scheduling

Step

Microstep
pl_start = 0

tmp54 = (tmp41 << 4 + k2) ^

tmp49

tmp56 = tmp54 + v1_0

newPhi = phi (0, newbin);

v1_0 = phi (v[1],tmp56);

v0_0 = phi (v[0], tmp41)

newPhi == 32

newbin = newPhi + 1

sum0 = newPhi*0x9e3779b9

pl_start = 1

tmp26 = sum0+0x9e3779b9

tmp39 = ((v1_0 << 4) + k0) ^

(tmp26 + v1_0) ^ ((v1_0>>5)

+ k1))

tmp41 = tmp39 + v0_0

tmp49 = (tmp41 + tmp26) ^

((tmp41 >> 5) + k3)

v[0] = v0_0

v[1] = v1_0

return

pl_start == 1

Input

N

Y

Y

N

(A) (B) (C)

Fig. 2. (A) Initial CCDFG of TEA encryption function. (B) Transformed CCDFG after constant propagation. (C) Further transformed CCDFG after pipelining.
The shaded regions represent scheduling steps, and white boxes represent microstep partitions. For brevity, only the control flow is shown.

pl_start = 0

tmp54 = (tmp41 << 4 + k2) ^

tmp49

tmp56 = tmp54 + v1_0

newPhi = phi (0, newbin);

v1_0 = phi (v[1],tmp56);

v0_0 = phi (v[0], tmp41)

newPhi == 32

newbin = newPhi + 1

sum0 = newPhi*0x9e3779b9

pl_start = 1

tmp26 = sum0+0x9e3779b9

tmp39 = ((v1_0 << 4) + k0) ^

(tmp26 + v1_0) ^ ((v1_0>>5)

+ k1))

tmp41 = tmp39 + v0_0

tmp49 = (tmp41 + tmp26) ^

((tmp41 >> 5) + k3)

v[0] = v0_0;

v[1] = v1_0

return

pl_start == 1

V1_0p

tmp39

Phi

newPhi

newbin

1

Phi

V1_0

== 32

sum0

0
x
9
e
3
7
7
9
b
9

Phi

V0_0

tmp26

tmp49

tmp41

out = ((i0<<4) +i1)^i2
i0 i1 i2

out

FSM

0

out =(i0+i1)^((i0>>5)+i2)

i0 i1 i2

out

V[1]k2

k0 k1

k3

V[0]

V[1]

V[0]

Input

Pipeline

logic
N

Y

Y

N

out = ((i0<<4)

+i2)^(i0+i1)^((i0>>5)+i3)

i0 i1 i2 i3

out

Fig. 3. Operation mapping from CCDFG to circuit for TEA; dashed lines represent mapping from CCDFG operations to circuitnodes.

op in the scheduling steptk are equivalent to the inputs
to EMap(op). If yes, continue; else report failure.

2) We simulateG by executingtk on xk underik to obtain
the statexk+1 and recording the outputs of eachop ∈ tk.
We simulateM for one clock cycle fromsk with input
EMap(ik) obtaining statesk+1. The outputs of each
op are checked for equivalence against the outputs of
EMap(op). If yes, continue; else, report failure.

3) The next scheduling steptk+1 is determined based on
the control flow. If tk has multiple outgoing control
edges, the last microstep oftk executed is identified.
The outgoing control edge from this microstep whose
condition evaluates to true leads totk+1.

The simulation proceeds until (i) the equivalence check fails,
(ii) the end of the input sequence is reached (for bounded
check), or (iii) a fixed point is reached (for unbounded check).

The dual-rail scheme is implemented at both bit-level and
word-level. For bit-level, we use the IntelForte environ-

ment [5] where symbolic states are represented using OBDDs.
Our word-level implementation is based on Satisfiability Mod-
ulo Theory (SMT), using the CVC3 SMT engine [6]. Word-
level simulation is viable since word-level mappings between
operations and circuit nodes are explicit. Bit vectors are used
to encode variables in the CCDFG and circuit; CVC3 checks
input/output equivalence and determines the control paths.

The bit-level and word-level checkers are complimentary.
The bit-level checker ensures decidability of SEC, while the
word-level checker is crucial to scalability. Furthermore, we
implement modular analysis, which permits the word-level
checker to compositionally use results from bit-level checking
as follows. SupposeM is a module of modest complexity
but is awkward to check at word-level. Then the bit-level
checker can compare the CCDFG ofM with its circuit
implementation; subsequently, while verifying a module that
invokesM , the word-level checker can treat the CCDFG of
M and its circuit implementation as equivalent black boxes.

IV. OPTIMIZATIONS

The scalability of the SEC algorithm critically depends on
three key optimizations, which exploit the close correspon-
dence between CCDFGs and their synthesized RTL designs.

A. Cutpoints

The cutpoint optimization involves pre-verifying compari-
son of specific CCDFG operations and their circuit implemen-
tations off-line. Subsequently, during SEC, these operations
are replaced in the CCDFG and RTL by equivalent symbols.
Note that only the equivalences (not computations) are relevant
to SEC; if the inputs to a cutpoint are equivalent, their
outputs can be replaced by equivalent symbols, causing only
equivalences (not outputs themselves) to be propagated.

We utilize two types of cutpoints,combinationaland se-
quential. Combinational cutpoints are applicable to combina-
tional portions, and have been studied extensively [7]. RTL
designs with complex combinational circuits are generateddue
to transformations such as loop unrolling: in the TEA example,
AutoPilot can fully unroll thefor loop, creating complex com-
binational circuits by aggregating operations from different
iterations. Sequential cutpoints cut sequential circuitsand keep
complex expressions from propagating across clock cycles.

In the TEA example (Fig. 3), the scheduling step starting
with the conditionalpl start==1 and ending with the assign-
mentpl start=1 is implemented as a combinational block that
can be cut at all operations,e.g., the one computingtmp54;
the equivalence of this operation with the corresponding RTL
is certified separately (e.g., by theorem proving). On the other
hand, the operation that computestmp49 can be used as a
sequential cutpoint since it connects two scheduling steps.

To explain the role of post-scheduling CCDFGs in cutpoint
optimization, note that the ESL specification is unclocked
while the RTL is clocked. Furthermore, after application of
high-level transformations, the RTL has little correspondence
in internal operations with the behavioral description, making
it difficult to identify cutpoints. However, this problem is
eliminated in our framework since there is a readily available
correspondence with the post-scheduling CCDFG,e.g., the
operation-to-resource mapping, which provides natural can-
didates for cutpoints.

B. Cut-loop optimization

A major challenge in SEC is termination, which typically
requires expensive fixed-point computation. Termination be-
comes a problem when the input description contains un-
bounded loops. Consider the CCDFG of the Greatest Common
Divisor (GCD) algorithm shown in Fig. 5. The bit-level
symbolic simulation for GCD, even for 8-bit integers, involves
more than 6850 seconds and 1197606 BDD nodes. A naive
fixed-point computation at word-level is also expensive. Even
for designs with deep bounded loops (e.g., TEA), full unrolling
is too expensive for both bit-level and word-level simulations.

Our solution is thecut-loop optimization, which “cuts” the
loop, reducing the fixed-point computation to three checks,i.e.,
at the entry, body, and exit. At entry, we check equivalence

i n t gcd (i n t a , i n t b)
{

i n t t ;
do {

i f (a >= b) a=a−b ;
else { t =a ; a=b ; b= t ;}

} while (b != 0) ;
return a ;

}

t=a;a=b;b=t

a=A

b=B

a=a-b

True

False

a >= b

return a

b!=0

False

True

Micro Step

Scheduling

Step

Fig. 5. C source code and CCDFG for GCD

t
=
a
;
a
=
b
;
b
=
t

a
=
A

b
=
B

a
=
a
-
b

True

False

a
>
=
b

return a

b
!=
0

False

True

a
=
A

b
=
B

t
=
a
;
a
=
b
;
b
=
t

a
=
a
-
b

True

False

a
>
=
b

b
!=
0

t
=
a
;
a
=
b
;
b
=
t

b
!=
0

a
=
a
-
b

True

False

a
>
=
b

return a

False

Loop Entry

Loop Body

Loop Exit

True

Fig. 6. Cut-loop optimization for GCD example

between the CCDFG and the RTL for the path to the initial
loop entry. For the body, we check that if (1) equivalence is
maintained at the loop join point, and (2) the loop does not
exit, then equivalence is maintained after one iteration. For
the exit, we check that if (1) equivalence is maintained at
the loop join point, and (2) the loop exits, then equivalence
is maintained at the loop exit. The loop structure and entry
point information are available from the synthesis tool. The
checks above are inspired by inductive assertions in software
verification [8], [9]: the three checks are essentially the proof
obligations discharged by a verification condition generator, if
we think of equivalence with RTL as the invariant maintained
by the loop. Using ACL2, we proved that the checks guarantee
word-level equivalence over the entire loop execution.

We illustrate cut-loop optimization on the GCD example in
Fig. 6. At the loop entry, the check thata andb are equivalent
to their RTL counterparts is trivially true since they are inputs.
For the body check the conditionb! = 0 is applied to ensure
the iteration does not exit, and for the exit check the condition
b = 0 is applied to ensure the loop exits. For both body and
exit checks, the condition being checked is that ifa andb are
equivalent before executinga >= b then they are equivalent
after one iteration. With this optimization, word-level SEC on
GCD finishes within two seconds. The cut-loop optimization
is also useful for deep bounded loops,e.g., we achieved major
speed-up for word-level SEC on TEA (cf. Section V).

Note that loop detection is greatly simplified since CCDFGs
are derived from ESL designs by applying primitive transfor-
mations. Nested loops are handled by recursive loop reduction.

des_crypt

FSM

data_control s
ta

rt

re
s
e
t

d
o
n
e

tmp12

data_out

data_in

key

data_out

FSM

start

reset

start

reset

done

IP f InvIP
data_out

done

data_control

key

date_in

des_crypt

three_des_crypt

Input

tmp12 = data_in | tmp13

data = call des_crypt (tmp12, key)

Input

tmp32= data_in^ tmp56

tmp15 = call IP (key, tmp32)

..
.

..
.

three_des_crypt

des_crypt

CCDFG Circuit

Fig. 7. Modular SEC for 3DES

C. Modular analysis

Synthesized RTL is often large and complex,e.g., for
3DES design, AutoPilot generates 18053 lines of Verilog.
Behavioral synthesis reduces RTL size via modular reuse:
without modules, the RTL for 3DES would be 128K lines.

Modules may be present in input description or introduced
by behavioral synthesis. To support modules, CCDFGs are
extended with function calls. An example function invocation
in the 3DES CCDFG is shown in Fig. 7. With modules, a
given behavioral description corresponds to several CCDFGs
(each corresponding to a module). A module can be either
combinational or sequential. A combinational module returns
in the same clock cycle in which it is invoked, while a
sequential module takes several cycles. Note that the top-
level CCDFG may not capture all the scheduling steps since
some are in other sequential modules. In the synthesized
RTL, there is a module for each CCDFG. In addition to RTL
code implementing functionality, there is additional codefor
interfaces,e.g., a module commonly needsreset, start,
andready signals besides input/output data signals.

One naive approach to handle modules is to unfold them,
causing each module to be analyzed at each invocation. We
prefer compositional analysis of each module separately. Our
scheme works as follows.

• For each moduleM , the CCDFG and RTL forM are
checked for equivalence separately.

• When verifying a moduleM ′ that invokesM , the invo-
cation ofM in the CCDFG and RTL ofM ′ are replaced
by equivalent uninterpreted functions.

The equivalence between function invocation in CCDFG and
module interfacing mechanism in RTL is pre-certified. Mod-
ular analysis is possible because of explicit correspondence
between the CCDFG and the RTL of a module: since we use
the same module structure used in the synthesis, the decompo-
sition does not introduce over-approximations. Currently, we
do not handle recursive modules since recursions in ESL de-
scriptions are typically removed by compiler transformations;
however, modular analysis can be extended to recursion by
replacing the callee with a “module summary”, analogous to
procedure summaries in software verification [10].

TABLE I
DESIGNS, FEATURES, AND OPTIMIZATIONS

Designs Features Optimizations

GCD Unbounded Loop Cut-Loop
DCT Sequential without Loop Cutpoint
TEA Bounded Loop Cut-Loop

Unrolled Loop Cutpoint
DES Bounded Loop Cut-Loop

Unrolled Loop Cutpoint
High Sequential Complexity

3DES Bounded Loop Cut-Loop
Unrolled Loop Cutpoint
High Sequential Complexity Modular Analysis

3DES key Bounded Loop Cut-Loop
Unrolled Loop Cutpoint
High Sequential Complexity Modular Analysis
High Combinational Complexity

TABLE II
BIT-LEVEL EQUIVALENCE CHECKING STATISTICS

Bit Width # of Circuit Nodes Time (Sec.) BDD Nodes

2 96 0.02 503
3 164 0.05 4772
4 246 0.11 42831
5 342 0.59 16244
6 452 12.50 39968
7 576 369.31 220891
8 714 6850.56 1197604

V. EXPERIMENTAL RESULTS

Table I illustrates the designs used to evaluate our approach.
Each design is synthesized by AutoPilot. The designs are
selected carefully to exercise different facets of our framework.
GCD, albeit simple, is included to illustrate unbounded loops

that demand the cut-loop optimization. DCT (Discrete Cosine
Transform) requires handling a long sequential computation
without loop. We additionally use a number of increasingly
elaborated cryptographic encryption algorithms,e.g., TEA,
DES, 3DES, and 3DESkey (3DES with key generation).
DES, 3DES and 3DESkey contains bounded loops and
benefit from cut-loop; their sequential and combinational
complexities also illustrate the role of cutpoints. 3DES and
3DES key have modular structures and modular analysis is
vital to discharge their SEC. DES was deliberately synthesized
without modules to further investigate the role of modular
analysis. All experiments were conducted on a workstation
with 3GHz Intel Xeon processor with2GB memory.

To establish a baseline, we use the bit-level checker on
the GCD implementation (cf. Table II). Since all operations
are bit-blasted, the running time grows exponentially withbit
width. For8-bit GCD, SEC takes about2 hours. Pure bit-level
SEC is thus not feasible for more complex designs.

Table III shows the results on word-level SEC for all
the designs from Table I. Here, “-” signifies “out of time
or memory”, “CP” for cutpoints, “CL” for cut-loop, and
“MA” for modular analysis. The “NO” column represents “no
optimizations”: it is clear that without the optimizations, SEC
cannot handle long computation sequences or loops. Since
DCT contains only sequential computations and no modules,

TABLE III
WORD-LEVEL EQUIVALENCE CHECKING STATISTICS

Design GCD DCT TEA DES 3DES 3DES key
RTL Size (# Lines) 364 688 1001 11520 18053 79976

Optimizations NO CP CP NO CP NO CP CP NO CP CP NO CP CP NO CP CP
CL CL CL MA MA MA MA

CL CL
Time (Secs) - - 2 71 30.1 - 116 15.6 - 5896 1482 - 872.5 355.7 - 2868.5 2351.7

Memory (MB) - - 4.1 92.16 49.2 - 141.3 24.6 - 614.4 426.4 - 114.7 59.4 - 307.2 307.2

cut-loop and modular analysis are not applicable; however,
cutpoint optimization reduces the symbolic simulation cost to
about half, in both time and memory usage. Cutpoints, together
with modular analysis, can handle long computation sequences
and bounded loops, (e.g., TEA, 3DES, and 3DESkey), but
blows up on fixed-point computation for unbounded loops
(e.g., GCD), underlining the need for cut-loop. The cut-loop
optimization handles unbounded loops, while also reducingthe
time and memory usage for designs with bounded loops. The
savings from cut-loop are relatively less for 3DESkey since
the design contains large combinational computations (for
generating the key) which overshadow loop unrolling cost. The
results on DES highlight the importance of modular analysis
when possible: although the RTL is smaller than 3DES and
3DES key, the time and memory usage is higher due to lack
of modules (and hence, modular analysis); for 3DES and
3DES key, even synthesis by AutoPilot fails without modules.

The results indicate that word-level SEC with our opti-
mizations can scale to realistic designs. Note that each of
DES, 3DES, and 3DESkey is over10, 000 lines of RTL,
and 3DESkey (even with modules) involves about80, 000
lines. We know of no other framework that can apply SEC on
behaviorally synthesized RTL at this scale.

VI. RELATED WORK

Koelbl et al. [11] provide a tutorial introduction on methods
of comparing high-level designs with RTL. There has been
recent work on combinational equivalence checking between
designs in SystemC and RTL [12]. Note that the abstraction
gap between the two models often necessitates cost-prohibitive
symbolic co-simulation for input-output equivalence.

Kunduet al. [13] propose the use of bisimulation correspon-
dence to validate designs generated by behavioral synthesis.
Their approach is implemented for the Spark synthesis tool [4].
However, they do not provide a uniform design representation
across different synthesis tools or implement optimizations
necessary for scaling to design sizes that we handle.

There has also been significant work on SEC between RTL
and gate-level hardware designs [14], [15]. Furthermore, there
have been effort for SEC between software specifications
and hardware implementations [16]: GSTE assertion graphs
were extended so that an assertion graph edge has associated
assignments that update state variables. These extended as-
sertion graphs motivated our formulation of CCDFGs, which
preserve both control/data flows and the schedule. Finally,
there has been work on equivalence checking with other graph
representations,e.g., Signal Flow Graph [17].

VII. C ONCLUSION AND FUTURE WORK

We have presented optimizations enabling a scalable equiva-
lence checking framework for RTL designs generated through
behavioral synthesis. These optimizations target different de-
sign features, which have enabled the use of word-level SEC
for verifying designs with tens of thousands of lines of RTL
synthesized by a state-of-the-art behavioral synthesis tool (e.g.,
AutoPilot). One direction for future research is to check
synthesized RTL that has undergone significant manual tweaks
(for power, performance, etc.), thereby distorting the mapping
with the corresponding CCDFG operations.

ACKNOWLEDGMENT

This research was partially supported by National Science
Foundation Grants #CCF-0916772 and #CCF-0917188 and by
a research grant from Intel Corporation.

REFERENCES

[1] S. Ray, K. Hao, F. Xie, and J. Yang, “Formal verification for high-
assurance behavioral synthesis,” inProc. of ATVA, 2009.

[2] AutoESL, AutoPilot Reference Manual, 2008.
[3] D. J. Wheeler and R. M. Needham, “Tea, a tiny encryption algorithm,”

in Fast Software Encryption, 1994.
[4] D. Gajski, N. D. Dutt, A. Wu, and S. Lin,High Level Synthesis:

Introduction to Chip and System Design. Kluwer Academic Publishers,
1993.

[5] C.-J. Seger, R. Jones, J. O’Leary, T. Melham, M. Aagaard,C. Barrett,
and D. Syme, “An industrially effective environment for formal hardware
verification,” TCAD, vol. 24, no. 9, 2005.

[6] C. Barrett and C. Tinelli, “CVC3,” inCAV, 2007.
[7] A. Kuehlman and K. F, “Equivalence Checking Using Cuts and Heaps,”

in DAC, 1997.
[8] R. Floyd, “Assigning Meanings to Programs,” inMathematical Aspects

of Computer Science, Proc. of Symposia in Applied Mathematics, 1967.
[9] C. A. R. Hoare, “An Axiomatic Basis for Computer Programming,”

Communications of the ACM, vol. 12, no. 10, 1969.
[10] T. Ball and S. K. Rajamani, “Automatically Validating Temporal Safety

Properties of Interfaces,” inSPIN, 2001.
[11] A. Koelbl, Y. Lu, and A. Mathur, “Formal Equivalence Checking

between System-level Models and RTL,” inICCAD, 2005.
[12] A. J. Hu, “High-level vs. RTL combinational equivalence: An introduc-

tion,” in ICCD, 2006.
[13] S. Kundu, S. Lerner, and R. Gupta, “Validating High-Level Synthesis,”

in CAV, ser. LNCS, A. Gupta and S. Malik, Eds., vol. 5123. Springer,
2008, pp. 459–472.

[14] J. Baumgartner, H. Mony, V. Paruthi, R. Kanzelman, and G. Janssen,
“Scalable sequential equivalence checking across arbitrary design trans-
formations,” in ICCD, 2006.

[15] D. Kaiss, S. Goldenberg, Z. Hanna, and Z. Khasidashvili, “Seqver: A
sequential equivalence verifier for hardware designs,” inICCD, 2006.

[16] X. Feng, A. J. Hu, and J. Yang, “Partitioned model checking from
software specifications,” inASP-DAC, 2005.

[17] L. Claesen, M. Genoe, and E. Verlind, “Implementation/specification
verification by means of SFG-Tracing,” inCHARME, 1993.

