
Equivalence Checking for Function Pipelining in

Behavioral Synthesis

Kecheng Hao∗, Sandip Ray† and Fei Xie∗

∗ Dept. of Computer Science, Portland State University, Portland, OR 97207, USA

{kecheng, xie}@cs.pdx.edu
† Strategic CAD Labs, Intel Corporation, Hillsboro, OR 97124, USA

sandip.ray@intel.com

Abstract—Function pipelining is a key transformation in
behavioral synthesis. However, synthesizing the complex pipeline
logic is an error-prone process. Sequential equivalence checking
(SEC) support is highly desired to provide confidence in the
correctness of synthesized pipelines. However, SEC for function
pipelining is challenging due to the significant difference between
the behavioral specification and synthesized RTL. Furthermore,
function pipelines include hardware logic for dynamically insert-
ing “bubbles” (pipeline stalls), which bring additional difficulties
in equivalence checking. We develop an SEC framework for
behaviorally synthesized function pipelines by (1) building a
reference pipeline model with a certified function pipelining
transformation, which faithfully captures bubble insertion; and
(2) checking the equivalence between the reference model and
synthesized RTL. We demonstrate the scalability of our approach
on industry-strength designs synthesized by a commercial tool.

I. INTRODUCTION

With increasing hardware complexity and stringent time-
to-market requirements, recent years have seen a gradual
migration from register transfer level (RTL) hardware designs
towards electronic system level (ESL) designs. Practicality of
the ESL approach crucially depends on correctness of behav-
ioral synthesis, i.e., compilation from the ESL description to
RTL [1]. However, many behavioral synthesis transformations
are complex, depending on subtle design invariants.

Function pipelining (a.k.a. system-level pipelining) is an
important transformation supported by most state-of-the-art
behavioral synthesis tools. It aims to improve quality of syn-
thesized RTL by overlapping executions of multiple successive
invocations of the same function. However, it is a complex
transformation and consequently error-prone. Thus, sequential
equivalence checking (SEC) support for verifying correctness
of the synthesized pipelines is critical for adoption of be-
havioral synthesis. However, function pipelining introduces
overlapped execution, which leads to a significant difference
between the behavioral specification and the RTL. Further-
more, typical bugs are not likely to be exposed by feeding
the pipeline with one transaction: subtle corner cases typically
involve the overlapped execution of multiple transactions at
different pipeline stages; therefore, SEC must account for all
possible input sequences as well as for arbitrary “bubbles”
(pipeline stalls) between successive inputs. A brute-force SEC
approach comparing input/output relations of the behavioral
specification and the RTL does not scale.

We present an approach to certifying behaviorally syn-
thesized function pipelines. We break the certification into
two steps: (1) a reference transformation, which takes certain
pipeline parameters from behavioral synthesis to generate
a pipeline reference model; and (2) equivalence checking
between this reference model and the RTL. The reference
model accounts for arbitrary bubble insertion in the pipelines.
The mapping between behavioral-level operations and RTL
functional units is preserved during SEC, permitting some op-
timizations such as cutpoints [2]. We demonstrate our approach
on industrial designs synthesized by a commercial tool.

While our work has parallels to the significant research on
verification of microprocessor pipelines, there are fundamental
differences. Our reference pipeline can be viewed as a generic,
correct-by-construction abstraction of function pipeline; thus,
instead of developing pipeline-specific reasoning techniques,
our work emphasizes building an abstraction that makes stan-
dard SEC techniques practicable. We compare our approach
with pipeline verification approaches in Section VI.

II. BACKGROUND

A. Behavioral Synthesis

Behavioral synthesis is an automated process to transform
an ESL specification to an RTL implementation. Behavioral
synthesis tools generally accept synthesizable subsets of ANSI
C, C++, or SystemC, and generate an RTL defined in Verilog
or VHDL. Fig. 1(a) illustrates a simple ESL specification.

i n t pipe (i n t in1 , i n t i n2)
{

s ta t ic i n t a = 2;
i n t b , c ;
b = a ∗ i n1 ;
a = b + in2 ;
c = a ∗ b ;
return c ;

}

%b = mul %a_1 %in1

%tmp = add %b %in2

%res = mul %tmp %b

ret %res

%a_1 = load @ a

store %tmp @ a

Fig. 1. (a) C Source Code of a Function. (b) Corresponding CCDFG

Behavioral synthesis flow can be divided into three phases:
1) compiler transformation; 2) scheduling; 3) resource binding
and RTL generation. After the above three phases, the design
is at a level of abstraction that can be expressed in RTL.978-3-9815370-2-4/DATE14 c©2014 EDAA

B. A Certification Framework

In previous work [3], [2], we introduced an SEC framework
for behavioral synthesis. A formalization of design specifi-
cation, called CCDFG, was defined, which is the traditional
Control/Data Flow Graph (CDFG) augmented with a schedule.
High-level transformations are certified offline by the verified
component to preserve CCDFG semantics. The transformed
CCDFG is compared with RTL through SEC via dual-rail
symbolic simulation with several integrated optimizations. The
framework was shown to scale to industrial designs.

C. CCDFG Formalization

Fig. 1(b) illustrates the CCDFG for the C code in Fig. 1(a).
Formal semantics of CCDFG are presented in [3]; they in-
clude (1) state-based semantics for individual operations, and
(2) interpretation of control and data flows and scheduling
constructs. A CCDFG G , 〈GCD,M, T 〉, where GCD is the
control/data flow graph, M is a microstep partition, and T is a
schedule. Operations are partitioned into microsteps; each mi-
crostep includes operations that can be executed concurrently.

For CCDFG G , 〈GCD,M, T 〉 and a set t ∈ T , we
use the term “projection of G on t” to denote the CCDFG
Gt , 〈G′

CD,M ′, {t}〉 where G′

CD and M ′ contain only the
operations in GCD and M respectively, that are members of
t. For set T0 ⊆ T , we use “projection of G on T0” to denote
the following graph G′. The nodes of G′ are given by the set

N , {Gt : t ∈ T0}; given g0, g1 ∈ N , there is an edge from
g0 to g1 if there are operations o1 and o2 such that o1 ∈ g0,
o2 ∈ g1 and there is an edge from o1 to o2 in GCD .

Since a schedule is a partition of microsteps, T0 induces
a partition of GCD such that if t0 6= t1 the partition induced
by t0 is disjoint from that induced by t1. We can describe
CCDFG G , 〈GCD,M, T 〉 uniquely as the triple 〈S,E,M〉
where S and E denote the nodes and edges of the projection
of G on T , and M is the set of microstep partitions refined
by T . We use this view in the reminder of this paper.

III. FUNCTION PIPELINING

Function pipelining allows overlapped execution of succes-
sive function invocations. Fig. 2 compares the executions of
the non-pipelined and pipelined versions of the design shown
in Fig. 1. There are three operations: two muls and one add.
Without function pipelining, the circuit can accept new input
every three clock cycles. However, with function pipelining,
it can accept new input every clock cycle: thus, function
pipelining can dramatically improve the circuit throughput.

Behavioral synthesis generates handshake signals to im-
plement the synchronization between the synthesized pipeline
and its surrounding circuits [4]: these signals include start,
done and allow. The start signal indicates if there are valid
inputs ready for execution in the pipeline and the allow signal
indicates if the pipeline is ready to start a new transaction in
the next clock cycle. The handshake happens when both start
and allow are high. The done signal indicates that the pipeline
produced some valid output data. However, when the pipeline
is ready to accept a new input (i.e., when allow is high), the
upstream circuit may not be able to get the new input data
ready (i.e., start is low); in this case, a bubble is inserted into

MUL ADD MUL

(a) Without Function Pipelining

(b) With Function Pipelining

MUL ADD MUL MUL ADD MUL

MUL ADD MUL

MUL ADD MUL

MUL ADD MUL

3 cycles

1 cycles

Insert bubble

Forwarding

Fig. 2. Difference between Un-Pipelined Version and Pipelined Version

the pipeline as shown in Fig. 2 (b). When there are bubbles in
the pipeline, the pipeline typically disables the corresponding
functional units to save power. Correctly disabling the idle
functional unit without affecting the rest of the pipeline is
challenging and error-prone. Therefore, SEC must carefully
take bubbles into account. In addition to bubbles, complexity of
SEC in function pipelining comes from overlapping execution
of multiple transactions. It leads to a significant difference
in the schedule of operations between the CCDFG of the
sequential design and the RTL implementing the function
pipeline. Function pipelines may have fewer scheduling steps,
but each step executes more operations. Thus, standard SEC
techniques are not effective.

Comparison with loop pipelining: Our top-level approach
for function pipeline verification has analogues to our previ-
ous SEC approach for loop pipelines [5], viz., developing a
reference model for the pipelined CCDFG that is semantically
equivalent to the sequential design and can be used for
SEC with the RTL. However, the reference model generation
for function pipelines is inherently different from loops and
involves subtle challenges not encountered in loop pipelines,
leading to drastically different algorithms. A major difference
between loop and function pipelines is in the logic used for
handling bubbles. In loop pipelining, the pipeline interval
(number of cycles between invocation of two successive loop
iterations) is determined statically during synthesis time and
an FSM is synthesized to control the invocation of a new
iteration. However, for function pipelining, initiation of a new
function transaction is governed by upstream circuit, and is
therefore non-deterministic to the pipeline synthesis algorithm.
Consequently, the pipelined circuit must permit arbitrary de-
lays (and therefore, bubble) between two successive function
invocations. Correspondingly, to certify an implementation of a
functional pipeline, its correctness must be checked for all pos-
sible bubble insertion scenarios. A naı̈ve approach is to build
one pipelined CCDFG for each such scenario and apply SEC
between all possible pipelined CCDFGs and the synthesized
RTL. Unfortunately, the number of such pipelined CCDFGs is
exponential to the number of scheduling steps of the CCDFG
before pipelining, making this approach impractical.

IV. SEC FOR FUNCTION PIPELINING

Our approach entails building a pipelined reference model,
while still avoiding the exponential cost due to bubble insertion

discussed above. Our function pipelining transformation takes
a CCDFG before pipelining G and certain pipeline parameters
to generate a pipelined CCDFG G′. Checking the equivalence
between CCDFG G and RTL is equivalently translated to
equivalence checking between pipelined CCDFG G′ and RTL.
CCDFG G′ allows operations to execute concurrently, closely
corresponding with the RTL through careful modeling of
bubble insertion. Thus, we can leverage the existing SEC
approach to check CCDFG G′ and RTL.

In this paper, we focus on the pipelines which satisfy the
following requirements: (1) all sub-functions have been fully
inlined; (2) all loops have been fully unrolled; (3) there is no
global variable (other than static variables). Our framework
actually supports loops and sub-functions by extending the
approach discussed here with compositional reasoning; we do
not discuss that extension in the paper due to space limitation.
Global variables can be avoided by explicitly rewriting them
as static variables together with corresponding interfaces.

A. Algorithm to Build Reference Model

As a pedagogical simplification, assume there is no branch
among scheduling steps, but allow branches inside scheduling
steps. Note that if CCDFG G has branches, we can merge the
destination scheduling steps into one single scheduling step;
thus the branch between the scheduling steps is equivalently
converted into a branch inside the merged scheduling step.
With this simplification, we can view CCDFG G as a sequence
of scheduling steps from the function entry to the exit.

Task Interval is an important metric to measure the perfor-
mance of function pipelines: it is the number of clock cycles
that must elapse between two transactions. We can partition
CCDFG G into a sequence of sub-CCDFGs according to task
interval I. Each sub-CCDFG is called a pipeline unit, which
is defined in Definition 1. All scheduling steps within one
pipeline unit execute sequentially, and different pipeline units
can execute concurrently. In the example shown in Fig. 2 (b),
because the pipeline can start a new transaction every clock
cycle, each scheduling step is a pipeline unit.

Definition 1 (Pipeline Unit): Given a pipeline task interval
I and a CCDFG G , 〈GCD,M, T 〉, T can be partitioned
into a set of sub-schedule {T0, T1, . . . , Tn}. Each Ti takes I
clock cycles (except possibly the last partitioned schedule Tn

which may be less than I). Therefore, G can be partitioned into
a set of sub-CCDFGs {G0, G1, . . . , Gn}, respectively. Gi ,

〈GCD,M, Ti〉 is called a pipeline unit.

Algorithm 1 BuildPipeline(G = 〈S,E,M〉, I , N)

1: 〈S′

1,M
′

1〉 ← GenerateP ipelineRegs(S,E,M, I)
2: S′

2
← GenerateSchedulingSteps(S′

1
, I, N)

3: E′

1
← GenerateEdges(S′

2
, I)

4: 〈S′

3,M
′

2〉 ← GenerateGuards(S′

2, E
′

1,M
′

1)
5: 〈S′

4
,M ′

3
〉 ← GenerateDataForwarding(S′

3
, E′

1
,M ′

2
, I)

6: return G′ = 〈S′

4
, E′

1
,M ′

3
〉

Algorithm 1 shows the sequence of high-level steps in-
volved in generating a pipelining reference model. It takes
CCDFG G, task interval I , and the number of scheduling
steps N . It involves five steps, viz., (1) inserting pipeline
registers, (2) constructing new scheduling steps, (3) generating

S1

S2

S3

S’1

S3 S2 S1

c3 c2 c1

c3 =c2;

c2 = c1;

Y

N

Y Y

N
N

S’1start

c1= 1 c1= 0

Y

N

exit

Y

N

!c2&!c1

(a) (b) (c)

Fig. 3. Input and Output CCDFGs of Function Pipelining Transformation.
The sequential CCDFG is on the left, and the pipelined CCDFG is on the
right, which has a single scheduling step S1′. The middle figure shows how
S1′ relates to the scheduling steps of the sequential CCDFG.

new control edges, (4) restricting control and data flow through
guard variables, and (5) implementing data forwarding. We
describe these steps in detail below. Fig. 3 illustrates the result
of applying these steps to our simple example in Figure 1. The
CCDFG on the left is the one before pipelining, the CCDFG
on the right is the generated pipelined reference model, and
the figure in the middle shows how the scheduling steps of the
pipeline correspond to those in the original CCDFG.

1) Inserting Pipeline Registers: Since the pipeline can
overlap transactions of more than one function invocation,
it may need extra registers to store the intermediate values
to prevent variables from being overwritten; this is achieved
by pipeline registers. The basic idea of this step is to insert
variables to mimic pipeline registers. For each variable v, we
check the necessity by comparing the life time lv with I . The
life time of a variable is the distance between its producer and
the last consumer. If lv is greater than I , pipeline registers for
v is required, otherwise, not necessary. The number of pipeline
registers required is determined by lv and I .

2) Constructing Scheduling Steps: In the pipelined CCDFG
G′, a scheduling step s′ consists of multiple scheduling steps of
CCDFG G. All steps in s′ can complete within one clock cycle.
A key step for constructing s′ is to correctly group scheduling
steps from G. The grouping result, according to the pipeline
parameters provided by behavioral synthesis, must match the
behavior of the synthesized pipeline. To achieve this, for the
ith scheduling step s′ in G′, we collect the ith scheduling step
from all pipeline units of G. Then s′ maintains the following
invariants. (1) Let α and β be any two scheduling steps in G
collected to execute in s′; then α and β must belong to different
pipeline units. (2) Every pipeline unit (except possibly the last)
must have some scheduling step in s′.

Algorithm 2 constructs the pipelined scheduling steps.
Subroutine getP ipeUnits returns the pipeline units in the
design. Lines 5-9 collect the scheduling steps from the pipeline
units. We then generate the control/data edges between those
steps for the new scheduling step s′ as shown in line 13-
18. The edge is from left to right, because the scheduling
steps in left are running the transactions entered the pipeline
early. Subroutine buildEdge creates the edge between two

Algorithm 2 GenerateSchedulingSteps (S, I , N)

1: P ← getP ipeUnits(); S′ ← ∅
2: /*collect scheduling steps from pipeline units*/
3: for each i in I do
4: s′i ← ∅
5: for each p in P do
6: if length(p) ≥ i then
7: s′i ← s′i ∪ p[i]
8: end if
9: end for

10: S′ ← S′ ∪ s′i
11: end for
12: /*build new edges within one single scheduling step */
13: for each step s′ in S′ do
14: for each consecutive step pair (s′[k], s′[k+1]) in s′ do
15: e′ ← buildEdge(s′[k], s′[k + 1])
16: s′ ← appendEdge(s′, e′)
17: end for
18: end for
19: return S′

scheduling steps and subroutine appendEdge appends the
edge to them in s′. Fig. 4 show the pipelined scheduling steps
for our running example. Here I equals to one; therefore there
is only one scheduling step in G′ and this scheduling step
consists of all the scheduling steps before pipelining.

S1

S2

S3

S3 S2 S1

Fig. 4. Construction of Scheduling Steps and Edges

3) Building Edges: Algorithm 3 shows the construction of
edges governing the control flow of the pipelined CCDFG.
Lines 3-6 show the construction of edges between scheduling
steps of the pipelined CCDFG G′. Besides, a back edge is
generated from the last scheduling step to the first scheduling
step. The pipelined CCDFG G′ is formed as a loop. Fig. 3(b)
shows the edges between scheduling steps in CCDFG G′.

Algorithm 3 GenerateEdges (S, I)

1: E′ ← ∅
2: /*build the edges between new scheduling steps*/
3: for each consecutive step pair(S[i], S[i+ 1]) in S do
4: e′ ← buildEdge(S[i], S[i+ 1])
5: E′ ← E′ ∪ e′

6: end for
7: /*build the back edge*/
8: ssrc ← S[I − 1]; sdst ← S[0]
9: ebackedge ← buildEdge(ssrc, sdst)

10: E′ ← E′ ∪ ebackedge
11: return E′

4) Generating Guard Variables: G′ must be implemented
as a loop since it has to initiate an arbitrary number of

function invocations as determined by the upstream logic.
Guard variables guarantee that the execution of this loop
corresponding to each function invocation follows the con-
trol flow of the original CCDFG G and terminates prop-
erly. Algorithm 4 describes details of guard variable inser-
tion, and Fig. 3(b) illustrates it with our simple example.
First, subroutine createGuardV ariable creates guard vari-
ables c1, c2, . . . , cn for all pipeline units. For each scheduling
step s in CCDFG G, insertGuard inserts a branch operation
before entering it: if the guard variable is true, this scheduling
step is enabled; otherwise it is skipped. After executing one
pipeline unit, we propagate the value of the guard variable to
its successor in the sequence. Recall that the pipelined CCDFG
G′ is a loop; one loop iteration executes all pipeline units. The
assignment of the first guard variable c1 depends on the start
signal. Values of guard variables are propagated immediately
before the back edge. The assignment and propagation of the
guard variables are implemented by genV arAssign. We need
to specially handle the exit of the pipelined CCDFG. It can
only exit when cn is true and c1, . . . , cn−1 are all false,
which indicates the pipeline only has one last transaction
running and this transaction is going to exit. In the pipelined
CCDFG, we refine the semantics of the ret operation (function
return). Operation ret defines the end of one transaction
instead of the whole CCDFG, and generates an output (if not,
returning void). We introduce a new operation exit to denote
the termination of the pipelined CCDFG, which is gated by
guarded variables. Subroutine insertExitOp inserts this gated
exit operation.

Algorithm 4 GenerateGuards (S, E, M)

1: S′ ← S; M ′ ←M
2: P = getP ipeUnits()
3: C = createGuardV ariable(P)
4: /*generate guard condition for each scheduling step*/
5: for each pipeline unit p in P do
6: for each scheduling step s in p do
7: c← getGuardV ar(p)
8: 〈S′,M ′〉 = insertGuard(s, p, C, S′, E,M ′)
9: end for

10: end for
11: /*generate assignments for guard variables*/
12: 〈S′,M ′〉 ← genV arAssign(C, S′, E,M ′)
13: /*insert exit operation*/
14: S′ ← insertExitOp(C, S′, E)
15: return 〈S′,M ′〉

We now discuss how the guard variables maintain sep-
aration of function invocations across different iterations. If
start is present, the first guard variable c1 is assigned true
when entering the loop in G′. During the execution of the first
iteration of the loop body, only scheduling steps guarded by c1
are enabled, and other steps are skipped. In the example shown
in Fig. 3(b) s1 is enabled and s2 and s3 are disabled in the
first iteration. At the end of the first iteration, guard variable c2
receives the enable token propagated from c1, c3 remain false.
In the second iteration, c1 still remains true, because there
is a second start request. Thus s1 and s2 are enabled in the
second iteration. The process continues until all guard variables
c1, . . . , c3 are true, the pipeline enters the full stage. In the full
stage, when a new transaction is started, one early transaction

c1

Start

c1= 1 c1= 0

Y

N

store %tmp @ a

%res = mul %tmp %pipereg %tmp = add %b %in2

%pipereg = %tmp1

S1S2S3

%a_1 = load @ a

%f = select %c2 %tmp %a_1

c2c3

%b = mul %f %in1

exit
c3 = c2;

c2 = c1;

Y

N
!c2&!c1

Forwarding

Y Y Y

N N N

ret %res

Fig. 5. Final Pipelined CCDFG

finishes at the same time. When the pipeline is in full stage
and there is no start signal any more, the pipeline starts to
flush. Guard variable c1 is assigned to false (since there is
no start). Thus, s2 and s3 are enabled and s1 is disabled.
The disable token is propagated between guard variables at
every loop iteration. If all guard variables are false, except
the last one c3, the pipelined CCDFG finishes the execution
by executing exit operation. We can easily insert bubbles into
pipelines by toggling the start signal.

5) Implementing Pipeline Forwarding: In function
pipelines, dependencies between transactions are introduced
by static variables and forwarding can be implemented by
mapping static variables to hardware registers which form
feedback paths. In CCDFG, operations to fetch or store data
to registers are represented by load and store, respectively;
thus all pairs of operations requiring forwarding can be found
by inspecting load and store pairs. However, for performance,
behavioral synthesis may generate a combinational path to
forward data directly. In Fig. 2(b), the output of adder is
forwarded to the next transaction’s multiplier without passing
through the register; otherwise, the RTL cannot accept new
transaction at every clock cycle. To mimic this combinational
path, we check that there is a valid datapath from the
forwarding source to the destination in the pipelined CCDFG.
Absence of such a path is an indication of hazard.

However, the forwarding path may vary depending on
bubbles. If the adder is disabled due to bubbles, the data
forwarded to the multiplier by the combinational path is
invalid. To handle this, we determine the forwarding path by
checking whether the source operation is enabled. This check
can be done through guard variables, and we insert a select
operation to implement the check, as shown in Fig. 5 in the
forwarding between the adder and multiplier.

B. SEC between CCDFGs and RTL

Recall from Section III that handling bubbles is a major
hurdle for certifying function pipelines. Bubbles in function
pipelines affect their behaviors: (1) the idle operations are
disabled; (2) the pipeline forwarding has different paths. These
two are modeled in the pipelined CCDFGs by introducing
guard variables. Recall however, that in order to fully check
the behaviors of the pipelines with bubbles, we need to run
SEC on all input sequence combinations.

To address this problem, we utilize guard variables to
encode all possible input combinations; thus the SEC needs to

run only once. A new transaction can start at an arbitrary state,
with the pipeline full, empty, or containing bubbles. We model
the pipeline at different states by toggling guard variables. For
instance, the execution shown in Figure 2(b) can be modeled
as assigning c1 = true, c2 = true, and c3 = false.

Our SEC then has the following three steps:

• Set the pipelined CCDFG to a symbolic state which
starts a new transaction. Setting the pipeline state is
done by encoding the guard variables. We set c1 to
true and assign symbols to c2, . . . , cn.

• Set the FSM in the RTL implementation to the same
symbolic state as the CCDFG. The structure of the
FSM can be obtained from behavioral synthesis re-
ports; we analyze the reports to determine the corre-
sponding symbolic states for the CCDFG and RTL.

• Feed the same input symbolic data set to the CCDFG
and RTL, then run dual-rail symbolic simulation be-
tween them for one single transaction. The proof
obligation is that the output of pipelined CCDFG and
that of the RTL implementation are equivalent.

SEC checks whether the equivalence is preserved after
executing one transaction by the CCDFG and RTL, when
initiated from equivalent states. No special-purpose checking
is required during SEC. Furthermore, since the mapping be-
tween the CCDFG operations and the RTL functional units is
maintained, we can apply the cutpoint optimization to improve
the scalability.

V. EXPERIMENTAL RESULTS

We have implemented this approach on top of our ex-
isting certification framework [2]. SEC is implemented by a
cycle-by-cycle dual-rail word-level symbolic simulation. The
resulting tool was applied to a suite of designs synthesized
by a commercial behavioral synthesis tool. The designs were
selected from several different application domains, e.g., TEA
and XTEA are cryptographic algorithms with complex bitwise
operations, and FIR is a signal processing application with
an internal feedback path that is optimized by synthesis via
data forwarding. Design sizes reflect typical industrial targets
for pipeline synthesis; many involve several thousand lines of
RTL. We used a workstation with 3GHz Intel Xeon processor
and 2GB memory, and a running time bound of two hours.

Table I shows our experimental results. We first conducted
brute-force SEC between the non-pipelined CCDFG and the
RTL; none of the runs terminated within the time bound.
We then conducted brute-force SEC between the pipelined
CCDFG and the RTL; only the run on FIR finished. With
cutpoint optimization, SEC succeeded on all designs with
modest time and memory usages. Column Cuts shows the num-
ber of cutpoints identified for each design. The experiments
demonstrate our approach of generating reference pipeline is
viable since it preserves the internal mapping between CCDFG
and RTL, enabling cutpoints. Note that the examples include
pipelines with more than 40 stages; thus, a naı̈ve implemen-
tation requiring exponential number of SECs as discussed in
Section III would be impractical.

TABLE I. EXPERIMENTAL RESULTS ON EQUIVALENCE CHECKING FOR FUNCTION PIPELINING

Design
RTL App. Domain Func Info. Pipeline Info. Without Opt. With Opt.
#line Inter- Depth Oper- Forw- Pipeline Mem. Time Mem. Time #Cuts

val ations arding Register (MB) (Sec) (MB) (Sec)

FIR 430 Signal processing 1 5 21 1 5 43 34.8 31 11.5 13

DCT 941 Signal processing 1 4 48 0 1 - - 135 26.37 32

CORDIC 1450 Data processing 1 12 170 0 10 - - 221 38.83 73

XTEA 1777 Cryptography 1 32 192 0 147 - - 114 30.57 32

TEA 2325 Cryptography 1 43 192 0 211 - - 100 40.39 85

YUVTORGB 2412 Image processing 1 5 96 0 4 - - 333 251.62 48

MemoryOp 4106 Memory operation 2 39 96 1 75 - - 43 89.53 75

VI. RELATED WORK

There has been extensive research on verifying pipelined
microprocessors [6], [7], [8] with strong parallels to our
work. However, there are significant differences in goals and
techniques. Microprocessor pipelines include optimized (hand-
crafted) control and forwarding logics, but a static set of
operations based on the instruction set. Function pipelines are
for dynamically overlapping executions of arbitrary transaction
sequences generated by compiling ESL functions; they tend to
be deep with a high complexity at each stage, but control and
forwarding logics are more standardized since they are auto-
matically synthesized. It is hard to adopt SEC techniques for
microprocessor pipelines directly for function pipelining, e.g.,
lack of a standardized instruction set makes it difficult to iden-
tify targets for uninterpreted functions. Finally a critical dif-
ference between our approach and microprocessor verification
is in the decomposition strategy. Microprocessor verification
techniques directly compare a pipelined implementation with
a sequential (ISA) abstraction; our approach targets correct-by-
construction, generic abstraction of the pipeline (viz., reference
model); thus the SEC step comparing the reference model with
RTL can be oblivious to pipelines, and pipeline-independent
optimizations (e.g., cutpoints) are smoothly reused which are
critical to the scalability of our tool.

Koelbl et al. [9] provide a tutorial introduction on methods
of formal equivalence checking between system-level models
and RTL. Kundu et al. [10] presents an approach to validate
the result of behavioral synthesis using insights from transla-
tion validation. Chauhan et al. [11] propose a technique for
SEC between non-cycle-accurate designs by constructing a
pair of normalized cycle-accurate designs from the original
designs. However, neither approach provides SEC for function
pipelining that effectively integrates with behavioral synthesis
flows. Commercial SEC frameworks [12], [13] handle function
pipelining. However, to our knowledge, current implementa-
tions either involve cost-prohibitive input-output comparison
or require the user to provide the requisite mappings.

VII. CONCLUSIONS AND FUTURE WORK

We have presented an approach to equivalence checking of
function pipelines generated by behavioral synthesis. Central
to this approach is the construction of a reference CCDFG
for a function pipeline. The reference CCDFG preserves the
operation mapping to the RTL implementation, enabling SEC
optimizations such as cutpoint, and it carefully models bubble
insertion, avoiding construction of CCDFGs for different bub-

ble insertion scenarios. Experimental results show the viability
of our approach in practice.

Of course, a problem with our dependence on reference
model is that the synthesis tool can generate a pipeline
through advanced heuristics, but our reference implementation
does not; in such case our approach will report a spurious
inequivalence. While this is possible in theory, our experience
suggests that our model is adequate in practice.

A planned future work is a mechanized correctness proof
of reference pipeline generation, which is necessary for the
completeness of certification. We have an informal correctness
proof and our goal is to mechanize it in a theorem prover.

Acknowledgments: This research was partially sup-
ported by National Science Foundation Grants #CCF-0916772
and #CCF-0917188 and by a research grant from Intel Corpo-
ration. We thank Yatin Hoskote, Naren Narasimhan, and Jin
Yang for their advice and help.

REFERENCES

[1] Y.-L. Lin, “Recent developments in high-level synthesis,” ACM Trans-

actions on Design Automation of Electronic Systems, vol. 2, no. 1, 1997.

[2] K. Hao, F. Xie, S. Ray, and J. Yang, “Optimizing equivalence checking
for behavioral synthesis,” in Proc. of DATE, 2010, pp. 1500–1505.

[3] S. Ray, K. Hao, Y. Chen, F. Xie, and J. Yang, “Formal verification for
high-assurance behavioral synthesis,” in Proceedings of ATVA, 2009.

[4] P. R. Schaumont, A Practical Introduction to Hardware/Software Code-

sign. Springer, 2010.

[5] K. Hao, S. Ray, and F. Xie, “Equivalence checking for behaviorally
synthesized pipelines,” in Proc. of DAC, 2012, pp. 344–349.

[6] J. R. Burch and D. L. Dill, “Automatic verification of pipelined
microprocessor control,” in Proc. of CAV, 1994, pp. 68–80.

[7] J. Levitt and K. Olukotun, “A scalable formal verification methodology
for pipelined microprocessors,” in Proc. of DAC, 1996, pp. 558–563.

[8] M. N. Velev and R. E. Bryant, “TLSim and EVC: a term-level symbolic
simulator and an efficient decision procedure for the logic of equality
with uninterpreted functions and memories,” IJES, pp. 134–149, 2005.

[9] A. Koelbl, Y. Lu, and A. Mathur, “Formal Equivalence Checking
between System-level Models and RTL,” in Proc. of ICCAD, 2005,
pp. 965–971.

[10] S. Kundu, S. Lerner, and R. Gupta, “Validating high-level synthesis,”
in Proc. of CAV, 2008, pp. 459–472.

[11] P. Chauhan, D. Goyal, G. Hasteer, A. Mathur, and N. Sharma, “Non-
cycle-accurate sequential equivalence checking,” in Proc. of DAC, 2009,
pp. 460–465.

[12] A. Koelbl, R. Jacoby, H. Jain, and C. Pixley, “Solver technology for
system-level to rtl equivalence checking,” in Proc. of DATE, 2009, pp.
196–201.

[13] Calypto Design Systems Inc., SLEC User Manual, 2012.

