
Exploiting Transaction Level Models for
Observability-aware Post-silicon Test Generation

Farimah Farahmandi1, Prabhat Mishra1 and Sandip Ray2

1Computer and Information Science & Engineering 2 Strategic CAD Labs
University of Florida, USA Intel Corporation, USA
{farimah,prabhat}@cise.ufl.edu sandip.ray@intel.com

Abstract—A major challenge in post-silicon debug is to gen-
erate efficient tests that activate requisite coverage goals on the
target hardware while also producing results that are observable
through a given on-chip design-for-debug (DfD) architecture.
Unfortunately, such tests cannot be generated by analysis of
RTL models, both because of design complexity and since the
implementation can be buggy. In this paper, we propose an
approach to address this problem by exploiting transaction-
level models (TLM). Our approach involves mapping test and
observability requirements between TLM and RTL, enabling
TLM analysis to generate post-silicon tests. We provide case
studies to demonstrate the flexibility and effectiveness of the
approach.

I. INTRODUCTION

Post-silicon validation of an integrated circuit (IC) entails
running tests on a fabricated, pre-production silicon to ensure
that the design functions as expected under actual operating
conditions and identify errors that have been missed during
pre-silicon validation. A fundamental problem in post-silicon
validation is the lack of observability and controllability —
only a few hundred among the millions of internal signals of
an IC can be directly observed or controlled during silicon
execution. This makes it difficult to diagnose bugs from
observed failures of post-silicon tests, or even identify whether
a test has passed, e.g., if the result of a test affects a signal
which is not observable, it is difficult to determine whether
the test has executed as expected.

To address this problem, it is critical that post-silicon tests
be observability-aware, i.e., produce results whose values can
be reconstructed from the available observability. Unfortu-
nately, this is difficult to achieve for several reasons. First,
in an industrial IC development environment, observability
architecture and (post-silicon) directed tests are developed
independently and concurrently by different teams at different
points of the design life-cycle. It is often impossible for test
generation teams to account for silicon observability since the
observability architecture may not have been fully developed
at the time of test generation. Furthermore, it is difficult to
employ automated tools for creating (additional) observability-
friendly directed tests after the observability architecture has
been defined. Creating the observability architecture entails
analysis of the RTL models to identify traceable signals;

This work was partially supported by National Science Foundation (NSF)
grant CCF-1218629 and an IBM Faculty Award.

these signals are then routed through appropriate hardware
instrumentation to an observation point such as an output pin
or memory [1], [2]. On the other hand, analysis of RTL models
directly to identify test generation is typically infeasible. RTL
models tend to be large and complicated (typically millions
of lines of code) making such analysis beyond the capacity of
test analysis tools. RTL models may also contain functional
or design errors. Indeed, a key reason for post-silicon directed
testing is to identify such errors. Consequently, if one develops
the directed tests through analysis of the RTL, then the fidelity
of the tests as well as any inference made on their effects on
observability, may become questionable.

In this paper, we present a technique for observability-
aware post-silicon directed test generation through analysis of
pre-silicon design collaterals. Our key approach to overcome
the scalability and relevance challenges mentioned above is
to exploit more abstract transaction-level models (TLM) for
the designs to perform our analysis. TLM definitions are
much more abstract, structured, and compact, compared to
RTL, which permits effective application of exploration to
identify high-quality directed tests. A key challenge is to
map design functionality and observability between TLM and
RTL so that the tests generated at TLM can be translated to
effective, observability-aware tests for RTL. We discuss how
to develop this mapping in practice. We provide case studies
from a number of different design classes to demonstrate the
flexibility and generality of our approach.

The remainder of the paper is organized as follows. We
discuss related work in Section II. Section III discusses
our overall framework, some of the challenges faced, and
our approach to overcome them. Section IV discusses our
experimental results. Finally, Section V concludes the paper.

II. RELATED WORK

Test generation has been widely studied for functional
validation of integrated circuits. Majority of the test generation
approaches are designed for pre-silicon validation [3], [4], [9],
[6], [8], [5]. Pre-silicon test generation has been performed at
different abstraction levels. A vast majority of test generation
efforts are focused on validation of RTL implementation
[3]. Recent approaches show how to reuse transaction-level
tests for RTL validation [9]. With the growing importance
of post-silicon validation, there have been significant interest

in test generation for post-silicon debug. Sousa and Sen [10]
generated TLM testbenches using mutation testing. HYBRO
[4] generates tests to cover branches using dynamic simulation
data as well as static analysis of RTL control flow graphs. Lin
et al. [7] presents how to create post-silicon validation tests
that quickly detect bugs in multi-core SoCs. Assertion-based
validation is widely used in pre-silicon validation to create
potential behavioral scenarios in order to increase coverage
criteria [11]. However, in post-silicon validation, it is difficult
to determine whether a set of assertions has been covered.
There has been many efforts to generate tests for activating
assertions. Chen. et al. [9] use model checker to generate
directed test using TLM models to overcome the complexity
of RTL designs. However, none of these approaches consider
observability constraints.

III. OBSERVABILITY-AWARE TEST GENERATION

Suppose we have an RTL model M, a set of checkers and
coverage conditions A to be exercised in post-silicon, and a
set of traceable signals S. Our goal is to develop directed tests
for exercising A such that the results of the test can be inferred
by observing the signals in S. Our approach uses TLM models
for post-silicon test generation. We impose some constraints
on the underlying design for viability of our approach. Our
key requirement is the existence of a TLM description of the
system (in addition to RTL), where the TLM is assumed to
be the “golden” specification. Our second requirement is that
TLM and RTL models must have the same external (input-
output) interfaces. Since SoC designs re composed of a number
of hardware or software intellectual property (IP) blocks, we
require the IPs to have the same interface variable definitions
in TLM and RTL models. Finally, we will only consider
assertions from A that are stutter-insensitive. The general
class of stutter-insensitive properties is LTL\X properties (X
denotes next operator). Tests for stutter-insensitive properties
are natural targets for generation based on TLM since the TLM
models are untimed.

Fig. 1 provides an overview of our approach. The approach
involves four important steps: i) mapping observability con-
straints as part of test targets, ii) mapping test targets from RTL
to TLM, iii) test generation using TLM description, and iv)
translating TLM tests to RTL. The basic idea is to transform
a RTL assertion (φ) as well as observability constraints (ψ) to
create a modified RTL assertion with observability constraints
(π). The modified assertion needs to be mapped to TLM
assertion (α). The TLM assertion/property would be used to
construct a TLM test. Finally the TLM test would be translated
to an RTL test. In the remainder of this section, we describe
each of the steps in detail.

A. Mapping Observability Constraints

Let MR and MT be the RTL and TLM models of a design
with (common) primary inputs I = 〈I1, I2, ..., In〉 and primary
outputs O = 〈O1, O2, ..., Om〉. Let R = 〈R1, R2, ..., Rl〉
be the set of observable RTL signals. Consider a stutter-
insensitive assertion φ over I , O and R from A. For the

IP 1 IP 2 IP 3

IP 1 IP 2 IP 3

RTL Assertions (φ) Path constraints (ψ)

Map Obsevability
Constraints

RTL assertion with
observability constraints (π)

Map RTL
Assertions

to TLM

Test generation

 TLM Assertions (α)

Channel

Bus

Test
Translation

RTL Tests

Step 1

Step 2

Step 3

Step 4

TLM Tests

TLM

RTL

Fig. 1. The proposed methodology with four important steps

purpose of the discussion below, it is convenient to think
of φ as an LTL\ X formula. Our method for generating
observability-aware tests for φ involves the following steps.

1) Trace Cone-of-influence Calculation: We traverse the
control/data flow of the RTL backwards from the signals
in R to the variables in φ. This cone-of-influence cal-
culation is made under the constraint that φ holds. All
signals in R whose cone-of-influence does not include
any variable in φ are discarded.

2) Assertion Propagation: We use symbolic simulation
to forward-propagate variables in φ along the cone of
influence found in Step 1. The result is a restatement
of φ into a new formula ψ stated in terms of traceable
variables (including signals in R and O).

3) Assertion Abstraction: We construct a formula π sub-
suming φ and ψ as follows. (i) If ψ is consequent of φ,
π : (φ → Fψ) and vice versa. (ii) If φ and ψ can be
satisfied concurrently, π : (φ ∧ ψ).

Example 1: Fig. 2 shows a router in RTL and TLM that
receives a packet of data from its input channel. The router
analyzes the received packet and sends it to one of the three
channels based on the packet’s address. F1, F2 and F3 receive
packets with address of 1, 2 and 3, respectively. Input data
consists of three parts: i) parity (data in[0] in RTL and
pkt in.parity in TLM) ii) payload (data in[7..3] in RTL
and pkt in.payload in TLM) and iii) address (data in[2..1]
in RTL and pkt in.addr in TLM). The RTL implementation
consists of one FIFO connected to its input port (F0) and
three FIFOs (one for each of the output channels). The FIFOs
are controlled by an FSM. The routing module reads the

Fig. 2. Router design, RTL and TLM implementations

input packet and asserts the corresponding target FIFO’s write
signal (write1, write2 and write3). Consider generating a test
to check that signal read0 from F0 (which is internal signal)
is not stuck at zero. The corresponding assertion, written as
an (LTL\ X) formula, is (φ : F read0). Suppose that the
address part of input data of F1 (F1.data in[2..1]) is selected
as a trace signal. In order to observe activation’s effect of
φ through F1.data in[2..1], the following predicate must be
true two cycles after read0 becomes true: ψ : F1.write1 ∧
F1.pkt in[2..1] = 1. Thus, following the above steps we get:

π : Fread0→ XX(F1.write1 ∧ F1.data in[2..1] = 1)

B. Mapping Test Targets (Assertions) from RTL to TLM

The key challenge in mapping assertions from RTL to TLM
is to bridge the abstraction level between the two designs. We
achieve this by exploiting the commonality of interfaces. Our
goal is to find TLM property α that is test equivalent of RTL
assertion π constructed in the previous section. Here by test
equivalence we mean that they generate equivalent tests or
counterexamples. The problem reduces to transforming π into
a formula α such that (i) α is an LTL\X property over I and
O, and (ii) If a test T is a counter-example of α in TLM
then T is also a counter-example to π in RTL. If π contains
internal RTL variables, we need to turn it to a test equivalent
RTL LTL\X property where it is only over the variables in
the interface.

We can define α through symbolic simulation of variables
in π analogous to the previous section, but this time over
the TLM model. Suppose that π is a temporal logic formula
over P1, P2, . . . , Pn where each Pi shows one condition on
interface or internal variables. For propagation to interface
variables, CDFG is traversed backward from point/points that
Pi is true to reach primary inputs. 1 As a result, each of Pi be
restated as a temporal formula θ over Qi = q1, . . . , qm where
qj denotes a condition on interface variables. The next step
is to remove exact timing notation from θ. Our approach is
based on the observation that the original assertion φ is stutter-
insensitive. Thus distributive property is applied such that their
operands are atomic (e.g. X(qi ∧ qj) ≡ X(qi) ∧ X(qj)). In
addition, we apply the following rules.

• F (Xp) = F p. Thus, operator F can subsume X.
• A property p→ XX...Xq can be replaced by p→ Fq.
• A property p ∧X¬p can be replaced by p ∧ F¬p.

1For some assertions like Pi → Pj , backward traversal from Pi and
forward traversal from Pj would be beneficial. However, in most of the cases
performing one of them is enough.

• A property p1∧X..Xp2 can be replaced by p1 → F (p2)
when p2 is a condition on variables from set O.

The modified assertion is an LTL\X that contains conditions
on interface variables so it can be applied on TLM. In
fact, assertion π is mapped as a sequence of put and get
transactions. The next step is to perform name mapping when
the interface signal names are not identical. The resultant
assertion is our desired assertion α.
Example 2: Consider assertion π from Example 1, we want
to turn it to TLM assertion α which is time insensitive an it
is formulated over interface variables. From CDFG traversal
we know that signal read0 (shown in Fig. 2) is asserted when
F0 is not empty. Thus, X(Xread0 = 1) ≡ (¬F0.empty).
Having non-empty F0 implies that write signal of F0 has
been asserted before. Thus, we can rewrite the formula as
XX(F0.read0 = 1) ≡ X(¬F0.empty) ≡ (F0.write)
Using the knowledge (F1.data in[2..1] = 1 ∧ F1.write1) ≡
(X(F1.read1) ∧ XX(F1.data out1[2..1] = 1). we get the
following formula:

θ : write→ FXX(read1→ FXdata out1[2..1] = 1)

Finally, assertion α (after name mapping) can be written as:

α : Fwrite→ F(read1→ Fpkt out1.addr = 1)

C. Test Generation at TLM Level

An assertion α represents a functional property which holds
in the design and violation of it exhibits a design fault.
Assertion based test generation methods take property ¬α and
use model checkers to generate a counter-example for ¬α. In
other words, checking property ¬α leads to generate a test
which can activate the scenario of the property α. Therefore,
proper set of assertions results in higher fault coverage and
guarantees the success of property based test generation.

In this paper, we make use of SMV as a formal specification
to model TLM. SMV model checker [12] is utilized to find the
counter-example of property ¬α over SMV model of TLM.
The counterexample’s assignments to primary inputs is the
TLM test case.

D. Translate TLM tests to RTL tests

The final step is to map TLM test vectors to the RTL
tests. Since TLM test lacks the timing information in RTL
implementation, they cannot be applied to RTL directly. The
mapping process consists of two parts. First, the input/output
variables are mapped. Next, templates are utilized to map TLM
transactions to sequence of RTL computations. The template
enables addition of timing relationship. This process is the
inverse of our RTL to TLM assertion mapping. The timing
relationship in templates can be provided by the designers or
can be extracted by design analysis tools [9].

IV. CASE STUDIES

We discuss the application of our approach on two case
studies: a NoC switch protocol and a pipelined processor.
In these experiments we make use of Bounded SMV Model
Checker [12] to optimize test generation time.

TABLE I
TEST GENERATION’S TIME FOR SAFETY PROPERTIES IN NETWORK WITH

FOUR SWITCHES
Prop. Random TG Our Proposed Method

Directed TG TG with Obs. Constraints
(min) (min) (min)

Property 1 > 600 4.83 6.11
Property 2 > 600 3.45 7.72
Property 3 205 0.49 2.45
Property 4 502.6 1.85 4.73
Property 5 > 600 8.54 13.49

A. Wormhole Protocol on NOC Switches

Switches are used as the building block of a Network on
Chip (NoC). They receive packets as input and forward it
to respective output ports. In this case study, the router uses
wormhole routing protocol. We consider test generation for
five intersting properties: property 1 is related to reservation
of output port of channels, property 2 is about making two
internal FIFO’s full at the same time, property 3 is about
receiving a packet with a specific value, property 4 is related
to forcing the acknowledgment signal true and property 5 is
related to deadlock detection.

Table I shows the effectiveness of our method in generating
observability-aware tests for these five properties. Since there
are no prior efforts for observability-aware post-silicon test
generation, we have tried to show the usefulness of our
approach in two ways: (i) our approach (with observability
constraints) takes reasonable test generation time compared
to directed test generation (without observability), (ii) random
test generation may be infeasible to activate buggy scenarios
and propagate their effects to trace signals. We also tried
to generate the test directly from RTL when the RTL is
buggy; however, test generation failed because the coun-
terexample cannot be produced. This observation emphasizes
the importance of test generation in golden TLM. Table I
provides statistics of test generation on four other selected
properties. The column DirectedTG shows the needed time
for generating directed test without considering observability
constraints. The time consumption is comparable with the
proposed approach but the effect is not observable on trace
signals so these test are not useful for post-silicon. Table I also
shows that TLM random test generation is drastically worse
than our approach and in most of the cases it cannot activate
the scenario.

B. Pipelined Processor

We have applied our method on a MIPS processor with 5
stages: Fetch (it fetches the new instruction from memory),
Decode (it decodes the instruction and reads the possible
operands), Execute (it executes the instruction), MEM (it is
responsible for load and store operations) and WriteBack
(stores the results in instruction’s target register). These stages
are implemented by one or more IP block in both RTL and
golden TLM implementations. These IP blocks are connected
by FIFOs together. The result of test generation based on
properties related to testing fetch, decode execution units of

the processor are reported in Table II. It is obvious that test
generation with observability constraints is most beneficial for
post-silicon validation.

TABLE II
TEST GENERATION’S TIME FOR SAFETY PROPERTIES IN A PIPELINED

PROCESSOR
Prop. Random TG Our Proposed Method

Directed TG TG with Obs. Constraints
(min) (min) (min)

Property 1 > 600 0.83 1.90
Property 2 92.10 1.12 1.17
Property 3 297.05 3.00 7.47
Property 4 416.02 1.12 1.36

V. CONCLUSION

We have presented a high-level directed test generation
method based on a golden TLM model. The method generates
directed test cases at TLM level and maps them back to RTL.
The tests not only activate buggy scenarios (especially the
scenarios that are hard to activate), but also ensure that the
effect of buggy scenario can be transferred observable points
in order to help the debugger to root-cause the source of
faults. The approach has several merits. First, it enables test
generation for buggy RTL designs since our tests are generated
using golden TLM model. Second, our method overcomes
the scalability limitations of creating automated directed test
generation methods at RTL level since TLM models are
significantly less complex than RTL implementation. Finally,
our test generation takes observability into consideration by
forcing results of the buggy scenario activation to the trace
signals. Our case studies demonstrate that TLM analysis
for observability-aware test generation is feasible for many
practical designs.

REFERENCES

[1] K. Basu and P. Mishra, “Restoration-Aware Trace Signal Selection for
Post Silicon Validation,” IEEE Trans. on VLSI, 21(4):605-613, 2013.

[2] K. Rahmani, S. Proch, and P. Mishra, “ Efficient Selection of Trace and
Scan Signals for Post-Silicon Debug,” IEEE Trans. on VLSI, 2015.

[3] M. Chen et al., System-level Validation - High-level Modeling and
Directed Test Generation Techniques, Springer, 2012.

[4] L. Liu and S. Vasudevan, “Efficient Validation Input Generation in RTL
by Hybridized Source Code Analysis,” DATE, 2011.

[5] F. Farahmandi and P. Mishra, “Automated Test Generation for Debug-
ging Arithmetic Circuits,” DATE, 2016.

[6] X. Qin and P. Mishra, “Directed Test Generation for Validation of
Multicore Architectures,” ACM TODAES, 17(3), June 2012.

[7] D. Lin et al., “Quick Detection of Difficult Bugs for Effective Post-
silicon Validation,” in DAC, 2012.

[8] M. Chen and P. Mishra, “Functional Test Generation using Efficient
Property Clustering and Learning Techniques,” IEEE TCAD, 29(3),
2010.

[9] M. Chen, P. Mishra, and D. Kalita, “Automatic RTL Test Generation
from SystemC TLM Specifications,” ACM TECS, 11(38), July 2012.

[10] M. Sousa and A. Sen, “Generation of TLM Testbenches using Mutation
Testing,” in CODES+ISSS, 2012.

[11] N. Bombieri et al., “RTL Property Abstraction for TLM Assertion-based
Verification,” in DATE, 2015.

[12] SMV Model Checker, http://www.kenmcmil.com.

