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Abstract—Modern System-on-Chip (SoC) designs include a
large number of embedded microcontrollers that execute custom
firmware. Firmware provides the flexibility of updating security
features, i.e., it enables patching or in-field update, in response
to an emerging security threat, bug, or changing requirements.
Unfortunately, current firmware update mechanisms are complex,
manual, and error-prone. In this paper we present CASTLE,
an architectural framework to enable systematic and assured
updates to SoC firmware. The main workhorse of CASTLE is
a centralized, dedicated IP in the SoC that is responsible for
receiving, authenticating, and installing a patch. The architecture
works with off-chip firmware validation flows, e.g., cloud-based
service for validating a proposed patch, and identifying compat-
ibility constraints on other resident firmware in the SoC. The
result is a comprehensive infrastructure that works seamlessly
across architectures, vendors, and service providers, while meeting
deployment and usability requirements. We demonstrate the
application of proposed framework in addressing functional and
security flaws of existing firmware patching mechanisms including
firmware incompatibility, inadequate authentication, and time-of-
check vs. time-of-use (TOCTOU) constraints.

Index Terms—Security architecture, Firmware patching, Secu-
rity policies

I. INTRODUCTION

Modern SoC designs include many hardware IPs that im-
plement a significant portion of system functionality through
firmware. Firmware implementations have several advantages
compared to traditional custom hardware, including the ability
to update (1) during post-silicon debug in response to bugs
(in either the firmware itself or other hardware components)
without going through expensive re-spins, and (2) in field, in
response to errors discovered after deployment or changing
requirements. As we move towards devices with long field-life
(e.g., automotive systems, IoT, critical infrastructure compo-
nents, etc.), the need for post-silicon, in-field update is getting
increasingly critical. Consequently, there has been a significant
upsurge in the number and diversity of microcontrollers in
SoC designs, as well as the complexity of the firmware. In
a commercial SoC design, it is typical to find at least a dozen
embedded processors, often with heterogeneous ISAs running
programmable firmware.

On the other hand, the firmware itself can be notoriously
error-prone. Unlike conventional software, firmware is de-
veloped concurrently with hardware and must be functional
before the hardware shipment. Consequently, a stable silicon
(or even emulation/FPGA) platform is not available until late
in firmware development. Firmware validation uses various
virtual platform (VP), i.e., software abstractions of the un-

derlying hardware platform, to cope with the unavailability
of stable silicon platform of the target SoC. However, since
these abstractions simplify or remove many details of the
hardware functionality, validation with them misses a number
of corner-case bugs. Furthermore, the correctness of a firmware
code executing on a specific microcontrolled IP depends on
correctness of other IP blocks (often running their own custom
firmware) with which it communicates.

In spite of its criticality, we are aware of no disciplined
approach for ensuring secure execution of firmware-controlled
SoC designs. There has been some work on firmware anal-
ysis through dynamic (simulation-based) analysis and formal
methods (See Sectin VI). These approaches do not account
for various hardware corner cases or communication of the
firmware with other IPs and suffer from scalability issues, and
can typically only validate shallow properties under highly
constrained environment. In practice, runtime monitors are
introduced to ensure system-level properties, e.g., it is common
to introduce monitors to do runtime check for violation of
privilege level escalation, unexpected access request for a
sensitive memory address space, etc. However, such runtime
monitors are also developed in an ad hoc manner, based on
designer and validator experiences.

In this paper, we take the position that it is possible to
develop high-assurance SoC designs even within the ecosystem
of extensive and potentially untrusted firmware by providing
architectural support to ensure runtime resilience of the system
against compromises due to firmware bugs. The key idea is
that such resliency requirements can be formulated as SoC
security policies [1] and addressed through systematic policy
enforcement paradigms. We demonstrate the viability of this
vision through a specific architectural framework for ensuring
firmware integrity in the context of in-field updates. Our
framework CASTLE (Centralized Architecture for Systematic
Firmware Load and Firmware Patch) is an extension of a
centralized policy implementation architecture we developed in
previous work [2]–[5]. The security architecture is realized by
a plug-and-play, flexible infrastructure IP called System Policy
Update Engine (SPATE) and standardized security wrapper
architecture that enable communication between the target
(microcontroller) IPs and SPATE. The architecture is aug-
mented with a cloud-based repository designed to establish
an interface for off-chip provisioning and communication with
SPATE through standardized communication protocol together
with cloud service for validating the firmware patches and



ensuring the compatibility of the resident firmware to the
upgrades. Fig. 1 shows a high-level overview of the system.
CASTLE has the potential to significantly reduce turnaround
times for firmware updates, streamline and in many cases
obviate complex coordination necessary among various players
in the supply chain in performing the updates, and ensure that
the updates are authentic, trustworthy, and consistent with the
target platform configurations.

The remainder of the paper is organized as follows. Section II
provides the relevant background on challenges in firmware
patching. We discuss the components of proposed framework
in Section III. Section V illustrates our experimentation and
demonstration plans. We discuss related work in Section VI
and conclude in Section VII.

II. CHALLENGES WITH FIRMWARE UPDATE

A major advantage of implementing system functionalities
in firmware is in-field patchability. However, exploiting the
benefits of in-field configurability requires a secure, disciplined,
and reliable mechanism for firmware update which are not
available in current industrial practice. On the other hand, due
to the complexity and heterogeneity of the designs, firmware
update today remains an ad hoc, and error-prone process,
requiring significant coordination among a variety of players in
a complex supply chain [6]. In particular, recall that firmware
in one IP may need to interact with other IPs. Unfortunately,
there is little coordination among different firmware vendors to
ensure compatibility of the different firmware modules that co-
habit any specific SoC design. The aggressive time-to-market
requirements for a patch (particularly in presence of errors
found in-field) makes it increasingly difficult to employ ade-
quate validation time for different cross-compatibility scenarios.
Consequently a firmware patch may be compatible with (or
validated for) a specific variant of firmware running on different
IPs. However, the very lack of co-ordination among different
firmware vendors and complex, heterogeneous microcontroller
architectures used in different IPs make it difficult to ensure that
such compatibility issues are respected during in-field upgrades.
Furthermore, the firmware load protocols themselves can be
complex and can be subverted by an attacker to launch mas-
querading or time-of-check vs time-of-use (TOCTOU) attacks
to load buggy or compromised firmware and disrupt system
functionality [7]. Given that a subtle error in a firmware update
can potentially make the entire system unusable, customers in
field often postpone updates for a long time. This in turn has
significant repercussions for the security of the system since
a significant component of firmware updates address security
vulnerabilities.

III. CASTLE OVERVIEW

The CASTLE infrastructure includes (1) an SoC security
architecture that accounts for firmware updates from the ground
up, and (2) a software architecture to enable coordination, veri-
fication, and unified delivery of firmware updates. The security
architecture enables enforcing SoC-level firmware compatibil-
ity by defining the compatibility and TOCTOU requirements as

Fig. 1. A high-level overview of proposed infrastructure: (1) a centralized
SoC security architecture, and (2) a cloud-based software service for firmware
management.

security policies; The cloud-based software architecture is re-
sponsible for communicating with the SoC, delivering patches,
and providing and maintaining compatibility constraints.

A. SoC Architecture

Our key observation in the SoC architecture is that firmware
load and patch protocol can be effectively implemented as
security policies enforced through a centralized plug-n-play
infrastructure IP which communicates with the different mi-
crocontrollers through a standardized communication interface.
The following design components together provide the archi-
tectural support for systematic firmware load and patch and
seamless configurability in field.

1) System Policy Update Engine (SPATE): The System
Policy Update Engine (SPATE) is an infrastructure IP which
is responsible for receiving a firmware update, authenticating
the updated firmware through communication with the crypto-
graphic engine, and communicating with the target microcon-
troller to load the firmware. This block acts as the centralized
patching agent of the SoC. Fig. 4 shows how SPATE can
be integrated to SoC designs as a stand-alone infrastructure
IP. It communicates with the target microcontrollers through
standardized security wrappers integrated to the IPs and ensure
disciplined firmware update. Furthermore, SPATE ensures that
the updates account for time-of-check time-of-use (TOCTOU)
constraints, i.e., ensure that the firmware authenticated is ac-
tually the firmware loaded. We are augmenting the defined
communication protocol among SPATE, cryptographic engine,
and target IP, together with a formal proof of correctness
with respect to TOCTOU properties. SPATE itself needs to be
upgraded, in response to changing in-field requirements. To



Fig. 2. An overview of SPATE in an illustrative SoC model.

Fig. 3. Architecture of smart security wrappers.

address this, we designed SPATE itself as a micro-controlled
IP running firmware to realize the functionality above. This
enables it to be updated in-field as well. The architecture of
SPATE is illustrated in Fig. 4. Formal verification of SPATE
functionality is tractable because of the centralized nature:
any analysis needs to explore only the SPATE design and its
interfaces, not the entire SoC design [5].

2) Smart Security Wrappers: To implement the authenti-
cated load and patch protocol, SPATE must talk to target
microcontrollers and relevant peripherals like cryptographic en-
gines. To facilitate these communications, we are extending the
IPs that include microcontrollers with smart security wrappers
responsible for communicating with SPATE. The smart security
wrappers essentially are an extension of the test (e.g., IEEE
1500 boundary scan based wrappers) which are universally
available for functional verification. Fig. 3 depicts the architec-
ture of the security wrapper. The wrappers are programmable,
so that they can be configured at boot time as per patching
requirements. Also, to enable smooth communication of SPATE
with the IPs for this purpose without incurring additional
overhead, we are investigating the possibility of repurposing

Fig. 4. Architecture of proposed System Policy Update Engine (SPATE).

an available communication fabric, possibly the debug fabric.
This repurposing must be done carefully to ensure minimal
disruption to the normal workload.

B. Software Architecture for Firmware Configuration Manage-
ment and Delivery

The software architecture tackles the problem of managing
and validating firmware updates, and communicating the up-
dates to target SoC designs and platforms. A key challenge
is that firmware modules for different IPs in an SoC might
be managed by different vendors (who are responsible for the
target IP) rather than the SoC integration house. To facilitate a
standardized infrastructure usable by the various vendors, we
propose a cloud-based repository that enables different vendors
to manage their own firmware with relative isolation (Fig. 1).
Our repository is modeled analogous to the github.com site
that enables various firmware vendors to manage their updates,
while providing a uniform, centralized pathway to securely
communicate with the target systems. The role of SPATE as a
centralized hub in SoC designs for managing firmware updates
implies that the communication protocol for firmware delivery
can be a single, uniform mechanism for communicating with
SPATE. A key constraint with a firmware update is that it may
only be compatible with (or has been validated against) specific
versions of other firmware executing in other micro-controllers.
The communication protocol accounts for the compatibility of
the firmware during update. The proposed software system
provides verification-as-a-service to enable firmware vendors
to verify their updates. The cloud service includes virtual
prototype models of several standard microcontrollers (e.g.,
MinuteIA, 8051, RISC-V), which can be used to validate
various firmware configurations. Vendors can also use their
custom microcontrollers or extend the ones available with
environmental models for the surrounding custom hardware
interface as necessary for validating their firmware.

C. Authentication and Remote Patch
Any update to SPATE must also be authenticated. To en-

able this, we are designing a bootstrapping load mechanism



Fig. 5. Message flow diagram of proposed solution for ensuring FW compat-
ibility.

with a provable guarantee of authenticated load. To protect
the firmware patching process against attacks like malicious
backdoors and Trojans, the framework incorporates an authen-
tication mechanism based on cryptographic keys. SRAM-PUF
is a suitable candidate for such key generation as it exploits
the intrinsic process variations at power-up. The power-up key
generation at secure boot prevents any on-chip key storage
access control attacks. Also, the design of such weak PUF is
cost efficient and doesn’t require additional circuitry for on-chip
implementation.

IV. ILLUSTRATIVE EXAMPLES

Firmware assurance can be established through a collection
of fine-grained security policies implemented in CASTLE.
These policies provide protection against a variety of attack
scenarios that can violate the integrity, availability, and confi-
dentiality requirements of the SoC platform. Here we discuss
three representative policies corresponding to the functional
and security flaws of firmware patching. These policies are
outlined as illustrative examples to show how the proposed
framework can help the security architects implement diverse
set of security policies for firmware assurance.

A. Functional Flaw: Incompatible Firmware Update

Following is a typical requirement of firmware update in SoC
platforms with micro-controlled IPs.

• Representative Policy: Any firmware patch must meet the
compatibility requirements of the target platform.

Attack Scenario: We consider a scenario involving an attempt
to update a micro-controlled IP with a firmware version that is
incompatible to existing firmware of other IPs. This can be a
malicious attack to impair the functionality of the platform or
an inadvertent error due to lack of systematic approach in the
patching mechanism.

Fig. 6. Message flow diagram of proposed solution for system resiliency
against masquerading attack.

Flow of operation: Fig. 5 shows the flow of events for a
security policy to protect against such attack.

• At boot phase, SPATE configures the SWs according
to policy specifications. A standardized, API-based com-
munication between centralized SPATE and distributed
SWs enable a secure, systematic way to accomplish tasks
associated with policy enforcement.

• Upon receiving a firmware update request from the cloud
infrastructure, SPATE broadcasts queries to the SWs lo-
cated at the micro-controlled IPs. The SWs translates the
bus packets and delivers signals to the target IP interface.

• The target IP responds to the query by generating firmware
metadata such as firmware version, current configuration,
compatibility requirements, micro-controller model, etc.
The SW located at the target IP translates the data to
packets and forwards to SPATE for verification.

• The execution core at SPATE validates the firmware
metadata received from all micro-controlled IPs to detect
any violation of compatibility requirements. In absence
of possible violation, it responds to the query of cloud
infrastructure and initiates firmware provisioning. In case
of compatibility mismatch, SPATE discards the update
request placed by cloud service by sending an error
message.

B. Security Flaw: Masquerading Attack

This section shows how policy-based solution can be employed
for masquerade prevention via proposed framework. The fol-
lowing is a typical requirement against masquerading attack:

• Representative Policy: Firmware update must comply with
source authentication and authorization specifications.

Attack Scenario: We consider a malicious entity pretending
to be an authentic firmware vendor and attempt to update the



target IP with malicious firmware. Failure to thwart such attack
can lead to severe security breach and complete operational
failure.
Flow of operation: The message flow diagram for the use case
scenario with corresponding policy implementation is depicted
in Fig. 6. The key steps are as following:

• At boot phase, SPATE configures the SWs according
to policy specifications. Successful authentication and
authorization for firmware update can be accomplished
by several means based on the use case and security
requirements of the target platform including PUF-based
challenge response pairs, composite watermark hash, digi-
tal signatures, etc. The flexible architecture of the SWs can
be augmented to facilitate such authentication mechanisms
of the target IP.

• When an update request is placed by a firmware vendor
from the cloud infrastructure, SPATE sends queries to the
target IP to retrieve the authentication data.

• The target IP responds to the query by generating the
crypto key (e.g., PUF response, digital signature, water-
mark hash, etc.) and SW forwards the packets to SPATE.

• SPATE verifies the keys retrieved from the target IP with
the ones received from the vendor requesting an update.
A failed authentication leads to cancellation of the update
request and a raised flag about the potentially spurious
vendor.

C. Security Flaw: TOCTOU Attack

Here we show how the proposed security architecture can
help to implement policies against TOCTOU attacks. A typical
security requirement against TOCTOU attack is the following:

• Representative Policy: Overlapping firmware updates are
prohibited.

Attack Scenario: In this scenario, the attacker attempts to
exploit the race condition of TOCTOU and update the target
IP with malicious firmware. This attack can lead to installation
of compromised / illegal firmware on the platform.
Flow of operation: Fig. 7 illustrates the message flow diagram
of the TOCTOU attack with implemented policy. The opera-
tional flow can described as follows:

• At boot phase, SPATE configures the SWs according to
policy specifications. TOCTOU attack prevention policy
can incorporate several aspects including single-threaded
firmware update, barring all operations of target IPs during
update, limiting / prohibiting access to the target IP during
update, etc. In this case, we employ the SW located at
the target IP to prevent all read / write request originating
from other IPs and use SPATE to enforce a single-threaded
firmware update.

• SPATE sends commands to the SW of the target IP to
change the status from operational to update mode when
a valid request is placed by an authentic vendor from cloud
infrastructure.

• Once the SW responds back with change of IP status,
SPATE initiates a non-overlapping firmware update pro-
cess with the provisioned firmware. The single-threaded

Fig. 7. Message flow diagram of proposed solution for system resiliency
against TOCTOU attack.

nature of the update eliminates any possibility of race
condition introduced by overlapping update requests.

• Upon completion of the update process, the SW changes
the mode of the IP to operational, sends acknowledgement
to SPATE, and enables access requests to the target IP.

V. EXPERIMENTAL PLAN

Given the lack of open-source SoC models with sufficient
complexity, we have been building our own SoC model,
AutoSoC. It represents an academic SoC architected with all
the major SoC components and incorporates many relevant de-
sign aspects of an industrial SoC. The architecture of AutoSoC
is inspired by commercial automotive SoC designs with on-chip
network fabric and application specific subsystems for multi-
functionality. The IPs of each sub-system are clustered together
based on their functionality. The CPU subsystem has 4 different
RISC-V cores that support a variety of ISAs. The crypto
subsystem incorporates a diverse set of crypto engines including
AES, DES3, RSA, MD5, and SHA. The DSP subsystem is
consisted of FIR, IIR, DFT, IDFT, and FFT block. Two RAMs,
and a ROM are integrated as the memory components of
the design. The design incorporates an Ethernet controller, an
SPI modules, an UART, and a toy GPS model for external
connectivity. The major interconnect of the SoC is an open-
source, NoC, namely, LisNoC. It is compatible to wormhole-
based flow control and has network adapters that support
DMA engines and message passing functionalities. All IPs of
AutoSoC are Wishbone-bus compatible and obtained from
open-source repositories. AutoSoC is functionally validated
in ModelSim.

Currently, We are augmenting AutoSoC with the SPATE
unit, implemented as a micro-controlled soft IP. We are extend-
ing and adapting this model to function as a demonstration plat-



Fig. 8. The AutoSoC SoC Design

form. In particular, we are replacing several custom hardware
IPs with microcontroller implementations using either 8051,
RISC-V based microcontrollers, and minute-IA (if available),
with associated firmware. We are modeling the firmware de-
signs to reflect these industrial complexities. For the software
infrastructure, we are exploiting a standardized open cloud
infrastructure, and add virtual prototype models for standard
micro-controllers as part of verification-as-a-service. The ar-
chitecture serves as a proof-of-concept as well as a working
prototype to be adapted/incorporated into an industrially viable
open-source firmware management infrastructure.

VI. RELATED WORK

There has been work in recent years on various aspects of
firmware design and analysis, as well as validation of firmware
load protocols. For instance, Krstic et al. developed an approach
to verify firmware load protocol by specifying the communica-
tion between the IPs [7]. Sastry et al. [8] discussed a method
for enforcing access control to security critical assets of SoC.
Conti et al. [9] proposed a methodology to implement context-
related policies for android application. However, these efforts
do not provide a coordinated, unified mechanism for collection,
analysis, and installation of updates. There are mechanisms
for over-the-air (OTA) firmware updates, particularly for SoCs
targeted towards applications with long field life e.g., auto-
motive, infrastructure, etc. [10], [11]. But these mechanisms
vary depending on the microcontroller and firmware vendor.
The design of SPATE is an adaptation of our previous work
on systematically implementing SoC security policies [2]–[5],

[12], [13]. That work targeted to achieve flexibility in security
policies implementation and in-field hardware reconfigurability
but did not specifically consider firmware patch.

VII. CONCLUSION

The key take-away from our work is that it is essential and
entirely viable to develop systematic architectural support for
ensuring runtime resilience of SoC designs against buggy or
compromised firmware. In particular, this can be achieved by
turning the resiliency requirement to the problem of security
policy enforcement and developing (or re-purposing) policy
enforcement architectures to implement such requirements. We
showed how to do this for firmware patching, resulting in
(to our knowedge) the first comprensive framework for disci-
plined, in-field firmware updates. The proposed infrastructure
facilitates firmware patching in complex, heterogeneous SoCs
comprising embedded micocontrollers of various architectures
and service providers. Our work streamlines and simplifies
complex coordination needs among firmware vendors and
incurs minimal overhead by employing architectural artifacts
that are readily available on-chip. Distinct features like flexible
in-field configurability, and low overhead make this patching
framework highly suitable for diverse applications in automo-
tive, IoT, and infrastructure domains.

In future work, we will demonstrate the feasibility of pro-
posed framework on our SoC model that is capable of reflecting
the industrial complexities of firmware patching and consider
extending the approach for SoC resiliency against other em-
bedded software compromises.
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