Proof Styles in Operational Semantics

Sandip Ray J Strother Moore
Department of Computer Sciences Department of Computer Sciences
University of Texas at Austin University of Texas at Austin
sandip@cs.utexas.edu moore@cs.utexas.edu

December 10, 2003

Abstract

We relate two well-studied methodologies, use of inductive invariants and clock functions, in deduc-
tive verification of operationally modeled sequential programs. We prove that the two methodologies are
equivalent in the following sense: If the logic used is sufficiently expressive then one can mechanically
transform a proof of a program in one methodology to a proof in the other. Both partial and total
correctness are considered in this context. We also show that the mechanical transformation is compo-
sitional in that different parts of a program can be verified using different methodologies to achieve a
complete proof of the entire program. Our proof of equivalence has been mechanically verified by the
ACL2 theorem prover [17, 16] and we discuss automatic tools in the form of ACL2 macros to carry out
the mechanical transformation between the two methodologies in the context of ACL2 theorem proving.

1 Background

This paper is concerned with relating strategies for deductive verification of sequential programs. We consider
a generic verification framework for reasoning about sequential programs modeled operationally in some
mathematical logic. This framework has been widely studied in the literature starting from the seminal
work by McCarthy [26], and successfully used in reasoning about practical programs and computing systems.
In this framework, correctness of a program is given by a statement of the following form: If the program
runs on some machine from a state satisfying some given precondition, then the state of the machine on
termination of the program satisfies some desired postcondition.

Deductive verification of sequential programs has traditionally used one of two reasoning strategies,
which we call the inductive invariant approach, and the clock functions or direct approach respectively. The
inductive invariant approach is more widely known, but is probably used less frequently in connection with
a formally defined operational semantics. While both the strategies guarantee some form of the correctness
statement above, no formal analysis has been performed to our knowledge on whether the theorems proved
using one strategy are in any sense stronger than those proved using the other. However, it has been
informally believed that the two strategies are fundamentally different and incompatible. In particular,
we are not aware of any technique for verifying parts of a program by different strategies and obtaining a
correctness theorem for the complete program.

This paper seeks to formally analyze and answer such questions on relations between the two strategies.
In particular, we show that the informal beliefs are flawed in the following sense: In a sufficiently expressive
logic, given a proof of a specific program property using one strategy, it is possible to mechanically transform
the proof into a proof using the other strategy. Our proof has been mechanically checked by the ACL2
theorem proving system [17, 16], and our transformation tools have been implemented as ACL2 macros.

To provide the relevant background for our work, we first summarize the operational approach on mod-
eling and reasoning about programs, and an overview of the two proof strategies. In particular, we discuss
formalizations of the correctness statement of programs above, and show how each strategy guarantees a

proof of correctness in the context of verification of a specific program. To facilitate understanding of the
two strategies, we deliberately consider a very simplified view of operational models and correctness proofs.
Then we discuss the contributions of this paper in greater detail.

1.1 Operational Program Models

Consider a program II executing in a machine M. The program is typically a fixed sequence of instructions.
The operational semantics approach to modeling the executions of II has been succinctly described by
McCarthy [26] as: “The meaning of a program is defined by its effect on the state vector”.

To reason about the program II operationally in a mathematical logic, therefore, we need some formaliza-
tion of the “states” of the machine M. Loosely, the states of M is a tuple describing available computational
resources, for example registers, memory, stacks, and so on. Typically every state s contains two special
state components, namely the program counter pc(s), and the current program prog(s). For this discussion,
we assume that for every state s, the component prog(s) will always contain the program II. The two com-
ponents pc(s) and prog(s), determine the “next instruction”: to be executed by the machine, which is the
instruction in IT at the position pointed by pc(s). The state s is is then said to be poised to invoke the
instruction 1.

Meaning is assigned to an instruction by defining, for every state s and every instruction 4, the effect of
executing ¢ on s. This notion is often concisely expressed by defining a function effect: S x I — S, where S
is the (possibly infinite) set of states of M, and I is the set of instructions. For example, if the instruction
is a LOAD its effect might be to push the contents of some specific variable on the stack and advance the
program counter by some specific amount. More complicated instructions might affect many parts of the
state.

A state s of M will be referred to as the halting state if s is poised to execute an instruction ¢ whose
effect on s is a no-op, that is, effect(s,1) = s. Most programming languages provide explicit instructions like
HALT whose effect on every state s is a no-op. In such cases, the machine halts when the instruction pointed
to by the program counter is the HALT instruction.

To formally reason about such operationally modeled programs, it is convenient to define a “next state
function” step : S — S. For every state s in S, the function step(s) is the state produced as follows. Consider
the instruction ¢ in prog(s) that is pointed by pc(s). Then step(s) is defined to be effect(s,). Further, one
defines the following iterated step function:

s ifn=0
run(step(s),n — 1) otherwise

run(s,n) = {

In order to formalize the correctness theorem we referred to at the beginning of this section, we would
assume three predicates pre, post and halting on the set S. The predicates pre and post are the specified
preconditions and postconditions respectively, and the predicate halting is true of a state s if and only if
step(s) = s. To understand the pre and post conditions, consider a program II that purportedly sorts a list
of integers. The precondition then might specify that some machine variable contains a list [of integers, and
the postcondition might specify that some (possibly the same) machine variable contains a list I of integers
that is an ordered permutation of /.

Two correctness notions are normally used for proofs of programs. The notions are often naturally
described as partial and total correctness of the program under inspection.

e Partial Correctness: Partial correctness involves showing that if, starting from a state satisfies the
precondition, the machine ever reaches a halting state, then the postcondition holds for such halting
state. Nothing is claimed if the machine does not reach a halting state. Formally, the partial correctness
theorem can be specified by the following formula:

Vs, n : pre(s) A halting(run(s,n)) = post(run(s,n))

e Total Correctness: Total correctness involves showing, in addition to partial correctness, that the
machine, starting from a state satisfying the precondition, eventually halts. Thus proving total cor-
rectness is tantamount to verifying partial correctness along with a termination proof. Formally, the
termination proof can be specified by the following formula:

Vs : pre(s) = (3n : halting(run(s,n)))

1.2 Inductive Invariants

Design of inductive invariants is one strategy for proving the correctness theorems above. Roughly, the idea
is to define a predicate that (i) is implied by the precondition, (ii) persists along every step of M, and (iii)
implies the postcondition in a halting state. More precisely, one defines a predicate inv on the set S of states
of machine M with the following properties:

1. Vs : pre(s) = inuv(s),
2. Vs : inv(s) = inv(step(s)), and
3. Vs :inu(s) A halting(s) = post(s).

The three properties above guarantee the partial correctness theorem described in Section 1.1. To see
this, note that the following lemma follows from property 2 by induction on n.

Lemma 1 For every state that satisfies inv and for every natural number n, the state run(s,n) also satisfies
inv. In other words, Vs,n : inv(s) = inv(run(s,n)).

The proof of the partial correctness theorem now follows from property 1, lemma 1, and instantiation of
property 3 with s by run(s, n).

To obtain a total correctness theorem as described in Section 1.1 using the inductive invariant strategy,
one normally applies an argument based on “well-foundedness”. Roughly, a well-founded structure is a pair
(W, <) where W is a set and < is a binary relation on the elements of W, such that < is an irreflexive
partial order on the elements of W and there are no infinitely decreasing chains in W with respect to <. In
order to derive total correctness, one establishes a mapping m : S — W, where (W, <) is well-founded, and
establishes the following property relating inv and m, in addition to the three properties above.

4. Vs : inv(s) A —halting(s) = m(step(s)) < m(s).

The termination proof in the total correctness statement now follows from properties 2 and 4 as follows.
Assume that the machine does not reach a halting state starting from some state s, such that pre(s) holds.
By property 2, each state in the sequence (s, step(s), step(step(s)) ...) satisfies inv. Further, by property 4,
the sequence (m(s), m(step(s)), m(step(step(s)))...) forms an infinite descending chain on W with respect to
<. However, by well-foundedness, no infinitely descending chain can exist on W, leading to a contradiction.

1.3 Clock Functions

A direct approach to proving the total correctness theorem in Section 1.1 is the clock function strategy.
Roughly, the idea is to define a function that maps every state s in M that satisfies the precondition, to a
natural number, describing the number of steps required to reach a halting state from s. More precisely, one
defines a function clock : S — IN with the following property:

e Vs : pre(s) = halting(run(s, clock(s))) A post(run(s, clock(s))).

To see that the total correctness theorem follows from this property, note that the termination follows
from the property of clock, since for every state s, such that pre(s) holds, there exists at least one n, namely
clock(s) such that run(s,n) is halting. To prove correctness, one needs the following two lemmas which are
provable from the definitions of run and halting using induction on n.

Lemma 2 Running from a halting state does not change the state. In other words, Vs,n : halting(s) =
run(s,n) = s.

Lemma 3 For every state s, running m times from s and then running n times from run(s,m) is the same
as running (m + n) times from s. In other words, ¥s,m,n : run(run(s,m),n) = run(s,m + n)).

Correctness follows from these two lemmas and the property of clock as follows. Assume that pre(s)
and there exists a natural number n such that halting(run(s,n)). Without loss of generality, assume that
n < clock(s), since the other case is analogous. We need to show post(run(s,n)). If n = clock(s), then the
proof follows from the property of clock. Otherwise, by Lemma 3 we have:

run(s, clock(s)) = run(run(s,n), clock(s) —n) 1)

Since run(s,n) is halting, by Lemma 2, the right hand side of the equation reduces to run(s,n). Now the
result follows by the property of clock.

For specifying partial correctness using clock functions, one weakens the property of the clock function
to imply halting and post only under the condition that a halting state is reachable from s. In other words,
one defines the function clock: S — IN to have the following property instead of the property above.

o Vs : pre(s) A (In : halting(run(s,n))) = halting(run(s, clock(s))) A post(run(s, clock(s))).

Using this weaker definition of clock, the partial correctness theorem as described in Section 1.1 now
follows using exactly the correctness argument above.

1.4 Contributions of this Paper

It should be clear from the discussions above that both inductive invariants and clock functions guarantee the
same correctness theorems. However, the arguments used by the two strategies are different. The question,
then, arises whether the theorems proved using either strategy are in any sense stronger than the other.

Why does one suspect that one strategy might be stronger than the other? Consider the total correctness
proofs using the two strategies. In particular, in the clock functions approach, the function clock(s) gives for
every state s satisfying the precondition, the exact number of steps required to reach a halting state from s.
In fact, one normally defines the function clock such that clock(s) is the minimum number of steps required
to reach a halting state from s. But that number is a precise characterization of the time complexity of the
program!! The inductive invariant proof, on the other hand, does not appear to require reasoning about
time complexity, although it requires showing that the program eventually terminates.2

Modern sequential programs are normally verified mechanically, that is, by the use of a trusted computer
program or theorem prover responsible for checking the correctness theorems and assisting in the proof
process. In this context, both inductive invariants and clock functions have independent but orthogonal
advantages. For example, none of the obligations in the inductive invariant strategy involves reasoning
about more than one step of the system model. Hence once a suitable predicate inv is obtained, the proof
obligations can often be dispatched without resorting to inductive proofs. In particular, if the number of
states of M is finite and tractable, it is even possible to verify the obligations automatically by exhaustive case
analysis. The proof obligations for the clock function strategy, on the other hand, normally require induction
on the length of the execution to be dispatched. The issue with inductive invariant proofs, however, arises in

1One might argue that in the proofs we just described, clock was not required to be a characterization of time complexity
but only an upper bound. While that is the case in the simplified view of the situation, we will see in Section 4, that for
composing proofs the clock functions need to be modified and be precisely the time required for the program to reach from a
state satisfying the precondition to the first return of the program.

2Tt might also appear that the inductive invariant strategy is stronger than clock functions in the following sense: For
proving property 2 for an inductive invariant, one needs to show that for every state s which satisfies inv, the state step(s) also
satisfies inv. This seems to indicate that the predicate inv needs to explicitly characterize every state s reachable from a state p
that satisfies the precondition. However, recent work by Moore [30] shows that this is not the case. In particular, it is possible
to define the predicate inv only by specifying assertions on certain “cutpoints”, when a partial correctness proof is desired.

the context of coming up with the appropriate predicate inv which satisfies all the obligations. For example,
the obligation 2 for inv requires that for every state s that satisfies inv, the state step(s) must satisfy inv
as well. On the other hand, a user familiar with how the different branches of a program operate can often
come up with a clock function with relative ease. Further, as verifications with clock functions reveal, for
example in [28], the definition of the function clock often provides a hint on the inductive approach to be
taken in verifying a correctness theorem involving clocks.

We note that use of both strategies has been popular in mechanical verification of sequential programs.
In fact, almost all reported mechanical proofs of operationally modeled practical sequential programs that
we are aware of, has principally followed one of the two strategies.> The inductive invariant strategy has
often been considered the “classical approach” in proving program correctness, especially in the context of
partial correctness.

The clock function strategy has been principally used in theorem-proving community in the Boyer-Moore
style using the NQTHM theorem prover [4] and its industrial-strength successor ACL2 [17, 16]. While
reasoning using inductive invariants is possible, and indeed, has been successfully accomplished in these
systems especially for partial correctness proofs, the clock function technique “plays” to the strength of the
theorem prover in using induction when the total correctness is desired.

In spite of extensive use of the two techniques in program verification, especially using mechanical theorem
provers, we are not aware of any formal analysis on the relation between the two proof techniques. However,
informally, several researchers, including the authors, have been concerned about the requirement of reasoning
about time complexity of a program in the clock function approach when “merely” a correctness theorem is
desired. In fact, this issue has often been a serious grievance encountered by the authors in describing ACL2
proofs of programs to the mechanical verification community.

In this paper, we therefore, attempt to settle the question on the relation between the two proof tech-
niques. We discuss the following two questions:

1. Are the two strategies equivalent?

2. If they are equivalent, then is it possible to verify different parts of a program using different strategies
to obtain a complete proof of the entire program?

Our answer to both the questions is positive. In particular, we show that the two proof techniques are
equivalent in the following sense: If the logic used is sufficiently expressive, namely, if quantified first order
statements are definable in the logic, then it is possible to mechanically transform a proof in one strategy to
a proof in the other, in a way that allows composition of proofs. Note that even if the answer to question
1 is positive it does not directly imply a positive answer to question 2. In particular, when only a part
of a program is verified, for example one procedure, then the simplified picture of proof we showed above
breaks down, at least for clock function arguments. In that argument, we used the definition of halting to
justify that the clock function strategy indeed guarantees correctness. However, if only a single procedure
of a program is considered, then execution of such a procedure will normally not bring the program into a
halting state but return control to the caller. We discuss a variant of the framework in Section 4, which lets
us deal with composition of strategies.

Our proofs have been mechanically checked by the ACL2 theorem prover. While ACL2, and indeed, any
theorem prover, is unnecessary for our equivalence proof, we decided to mechanically verify our proofs for
two reasons. First, ACL2 is a practical logic with theorem proving support in which program models such as
we described can be and have been successfully verified. Hence the use of the ACL2 logic for carrying out this
verification clearly demonstrates that the expressibility required of the modeling logic to state and prove the
equivalence is achievable by practical logics used in program verification. In fact, in terms of expressibility,
the logic of ACL2 is limited compared to other practical logics supported by theorem provers like HOL [14]
and PVS [31]. Hence, our proof demonstrates that the equivalence is provable in these stronger logics,

3We say “almost” since some reported work uses model checking techniques [8, 9], which are fundamentally different.
However, such techniques are more commonly used for verification of reactive or non-terminating system models, especially
when the models are of finite states. Such techniques, therefore, are more appropriate for verifying hardware models rather
than sequential programs.

and correspondingly, mechanical translation tools can be designed in these theorem provers to decompose a
program verification into proofs of component parts that can use different strategies to obtain a complete
proof of the composite whole. Secondly, as we mentioned, ACL2 is a theorem prover which has routinely
and successfully used both strategies for verification of sequential programs. Our equivalence proofs have
enabled us to design simple ACL2 macros that allow automatic translation of proofs in different strategies.
We believe that such automatic translation will assist in simplifying ACL2 proofs of large programs in future,
by allowing the user to choose between different strategies for verifying components of a program without
any requirement to think whether a single strategy will be useful for the entire system.

In the sequel, we provide details of our work. In Section 2, we briefly review rudiments of the ACL2 logic
and discuss the ACL2 formalization of inductive invariant and clock functions for sequential program models.
Our overview is not comprehensive, and our objective is merely to provide a sufficient logical framework to
discuss our theorems. In Section 3, we provide a simplified description of the equivalence proof in the ACL2
logic. In Section 4, we elaborate on our framework to allow composition of proof strategies. In Section 5,
we describe the two macros for translation between proof strategies. Finally, in Section 6, we summarize
our work and provide some concluding remarks. We note that this paper assumes no previous acquaintance
with the ACL2 logic or the theorem prover. The concepts we require are described in passing. However,
previous exposure to proofs about sequential programs in ACL2 is useful to appreciate our specific choices
of modeling and reasoning framework. We also point out that the ACL2 theorems we describe in this paper
are available as books for the current version of the theorem prover and are available upon request from the
first author.

2 Program Verification in ACL2

In this section, we outline the ACL2 approach to model and reason about sequential programs. The modeling
approach we describe here essentially provides a formalization of the operational models we discussed in
Section 1.1 in the ACL2 logic. To make the formalization precise, we sketch the basic features of the ACL2
logic used in our models and proofs in Section 2.1. We then discuss the operational models for sequential
programs in the logic of ACL2, and provide a simple example of how the two strategies are used in verifying
such models. Our discussions in this section are not comprehensive, either in the description of the logic of
the theorem prover, or in the presentation of operational models and reasoning strategies. The purpose of the
section is merely to sketch the essential features of the logic required in our proofs and provide a very rough
overview of these features on actual system examples. We refer the reader interested in learning the theorem
prover and investigating practical examples of ACL2 verification to the extensive online documentation of the
URL: http://www.cs.utexas.edu/users/moore/acl2/ and to numerous books and papers written about
it. Many such books and papers are referenced in the URL above, and we will also cite some of them in this
section for more elaboration of the concepts described here. Further, we emphasize that this section does
not discuss any novel idea of the paper but simply serves as the summary of already existing work in ACL2.
Readers familiar with the ACL2 logic and system models in ACL2 might skip this section without loss of
continuity.

2.1 The ACL2 Logic

ACL2 is essentially a first-order logic of recursive functions. The language supported by the theorem prover
is the applicative subset of Common Lisp [12]. Therefore, instead of writing f(a) as the application of
function f on argument a, one would write (f a) in the ACL2 logic. Terms are used instead of formulas.
For example, the term:

(implies (natp i)
(equal (nth i (update-nth i v 1))
v))

represents a basic fact about list processing in the ACL2 syntax. The syntax is quantifier-free; formulas may

be thought of as universally quantified over all free variables. For example, the term above can be thought
of as specifying the statement: “For all 4, v and [, if ¢ is a natural number, then the i-th element of the list
obtained by updating the i-th element of [by v is v.”

From a logical perspective, ACL2 provides an axiomatization of all primitive functions of Common Lisp
supported by the system. For example, Lisp provides functions car, cdr and cons to implement lists. To
reason about lists, ACL2 provides the semantics to such functions by specifying axioms like the following
for cons, car, and cdr, among others. A comprehensive description of the axiomatically defined Common
Lisp primitives appears in [18].

Axiom 1:
(equal (car (comns x y)) x)
Axiom 2:
(equal (cdr (coms x y)) y)

The axioms above specify that the function car, applied to the cons of two arguments, returns the first
argument of cons, and correspondingly, cdr returns the second argument. The axioms can thus be thought
of as providing formal semantics to the primitive Common Lisp functions. On the other hand, the semantics
provided by ACL2 differs from the Common Lisp semantics in an important way. Many Common Lisp
functions are partial; values are specified for the functions only when the functions are applied to inputs
from a specific intended domain. For example, the value returned by car is specified by Common Lisp only
in the case that the argument of car is a non-empty list (recognized by the predicate consp) or nil. In
particular, since the number 3 is not a consp, the Common Lisp Standard does not specify what value (car
3) must return. Implementations of Common Lisp are free to return any value, and in fact, are not required
to return the same value every time the function car is called with argument 3. However, all functions in
ACL2 are total, and can, in fact, be called on any argument. To achieve consistency in the logic, ACL2
therefore provides additional axioms that specify a unique value for every call of each Common Lisp function.
This is achieved by specifying for every function a “natural” default value to return when the function is
not called on an argument in its intended domain. For example, the following “completion axiom” for car
specifies that the function returns nil if it is called on an argument which is not a consp. ACL2 provides a
logical “story” of its relation in Common Lisp by the notion of “guards”. For a thorough discussion on the
relation between Common Lisp and ACL2, see the topic guard in the online documentation.

Axiom 3:
(implies (not (consp x)) (equal (car x) nil))

Theorems can be proved for axiomatically defined functions in the ACL2 system. (In addition, as we will see
shortly, the user can define his/her own functions in ACL2 via the extension principles and prove theorems
about them.) Theorems are proved by the defthm command. For example, the command:

(defthm sort-is-permutation
(perm (sort x) x))

asks the theorem prover to prove that for every x, the output of the function sort applied to x produces a
“permutation” of x,* and store this theorem in its internal database by the name sort-is-permutation.

The inference rules for the logic basically constitute propositional calculus with equality and instantiation,
along with well-founded induction up to ¢y. Theorems proved in the logic are stored in a database and can
be used to prove subsequent theorems. The informed user can therefore “guide” the theorem prover to prove
complicated theorems by a careful and judicious choice of lemmas. A detailed description of the inference
engine of ACL2 and the numerous heuristics used by the theorem prover to apply a previously proved lemma
in guiding the search for a proof of a current theorem is beyond the scope of this paper and the interested
reader is referred to the online documentation of the system for fuller discussions.

In addition to axiomatically specifying Common Lisp primitives, ACL2 provides three extension principles
that allow the user to extend the logic by introducing new function symbols and adding axioms about such

4Note that before attempting to prove this theorem, one must first define the functions sort and perm via the extension
principles below, since those functions are not axiomatically specified Common Lisp primitives.

function symbols in a way consistent with the logic.> The extension principles constitute (i) the definitional
principle for adding new function definitions, (ii) the encapsulation principle to introduce a constrained
function definition, and (iii) the defchoose principle to introduce Skolem functions. Since we will make
extensive use of these principles, particularly defchoose, in our equivalence arguments, we provide a sketch
of these principles here. A detailed description of these principles along with arguments for their soundness
appears in [19)].

Definitional Principle

The definitional principle allows the user to define new function definitions in the logic. For example, the
following function fact is a definition of factorial in ACL2.

(defun fact (n)
(if (zp n) 1 (* n (fact (- n 1)))))

The “body” of the defun form must be an ACL2 term consisting of known function symbols (that is,
function symbols previously introduced using one of the three extension principles or axiomatically defined
for Common Lisp) and the new symbol being introduced, applied to the specified number of arguments. The
variables used in the term must be a subset of the variables in the “argument list” of the defun form.

The effect of such a definition is the extension of the logic by the addition of a definitional aziom.

Definitional Axiom:
(fact n) = (if (zp n) 1 (* n (fact (- n 1))))

(Remark: In our discussions we sometimes write t1 = t2 for two terms t1 and t2. This notation is simply
an abbreviation for (equal t1 t2) and is used merely for a clearer exposition of the concepts to the reader
familiar with more traditional infix notations.)

To ensure the consistency of the extended logic, the definitional principle in ACL2 requires a proof that
the recursion terminates [5]. In particular, one must exhibit a “measure” m that maps the set of arguments
in the function to some set W, where (W, <) forms a well-founded structure for some binary relation < on
W. The proof obligation, then, is to show that on every recursive call, this measure “decreases” according
to relation <.

To add the definitional axiom for fact above, ACL2 therefore is required to find a measure m where for
every n (m n) is an element of some set W, such that (W, <) is a well-founded, and (m (- n 1)) < (m
n) when (zp n) is false. For proving well-foundedness, ACL2 uses a specific well-founded structure called
(Ord, e0-ord-<), where Ord is the set of ordinals below € [2, 24], and e0-ord-< is the extension of the
ordinary < relation to the ordinals. ACL2 provides a special predicate e0-ordinalp to recognize whether
its argument is a member of Ord. The proof of termination therefore involves defining the function m and
proving the following two theorems.

(defthm m-is-ordinal (eO-ordinalp (m n)))
(defthm m-less (implies (not (zp n)) (e0-ord-< (m (- n 1)) (m n))))

Such functions exist, and in fact, the following function nfix satisfies the two theorems above, since, in
particular, it returns a natural number, and hence an ordinal.

(defun nfix (n) (if (and (integerp n) (<= 0 n)) n 0))

We briefly remark here on arguments regarding well-foundedness in ACL2. In the ACL2 logic, the only
well-founded structure axiomatically defined is the set of ordinals with relation e0-ord-<, and the only
arguments known to show that a structure (W, <) to be well-founded by showing an embedding of W in 0rd
and justifying that < “reduces” to e0-ord-< in this embedding. We believe ACL2 is not expressive enough
for specification of generic well-founded structures other than via embeddings into ordinals. This explains
why we characterize the termination proof in inductive invariants approach in Section 2.3 using the ordinals

5The user can add an arbitrary ACL2 formula as an axiom in the logic using the defaxiom command. But the practice of
adding arbitrary defaxiom commands is discouraged because of the possibility of unsoundness. ACL2 gives no guarantee on
the validity of theorems once a user adds a defaxiom event in ACL2.

rather than by a generic well-founded relation as we discussed in Section 1.2. However, the special structure
of the ordinals is immaterial to our proofs and our theorems will work unchanged in a more expressive logic
which allows generic well-founded structures.

Encapsulation Principle

The encapsulation principle allows the extension of the logic of ACL2 with the introduction of undefined
functions constrained to satisfy certain specified properties. For example, suppose we want to define a
function foo of a single argument, and the only constraint that we want (foo n) to satisfy is that it returns
a natural number. Notice that the constraint does not uniquely specify a function. The following command
extends the logic with such a function foo which is only known to return a natural number.

(encapsulate
(((foo *) => *))
(local (defun foo (n) 1))
(defthm foo-returns-natural (natp (foo n)))

)

The effect of the form above is to extend the logic with a function symbol foo known only to satisfy the
proposed constraints. The axiom added to the logic is the following:

Encapsulation Axiom:
(natp (foo n))

In order to ensure that the extension is consistent, ACL2 needs to be convinced that some (total) function
exists that can satisfy the proposed constraints. This is achieved by exhibiting such a function to the theorem
prover, in this case simply the (constant) function that always returns 1

Since for a constrained function f the only axioms known about f are the constraints, it stands to
reason that any theorem proved about f is also valid for a function f' that also satisfies the constraints.
To make this precise, call the conjunction of the constraints on f the formula ¢. For any formula v let i
be the formula obtained by replacing the function symbol f by the function symbol f’. Then, a derived
rule of inference called functional instantiation [3] says that from any theorem 6 one can derive the theorem
6 provided one can prove dA) as a theorem. That is, one may infer a theorem about f’ from an analogous
theorem about f provided f’ satisfies the constraint ¢. In the example, notice that the function nfix we
described above satisfies the the constraint for foo. Hence, if (bar (foo n)) is a formula that can be proved
for some function bar, then one will be able to use functional instantiation to prove (bar (nfix n)).

Encapsulation and functional instantiation provide a higher order aspect in the ACL2 logic, which is
essentially first order. One typically produces a “generic theory” based on encapsulated functions which can
then be “instantiated” by specific functions satisfying the constraints. In Section 5 we will see an application
of this approach in our translation tool for proof strategies. More detailed discussions on the use of functional
instantiations can be found in [25].

Defchoose Principle

The defchoose principle allows the user to introduce “Skolem functions” into the ACL2 logic. To understand
this principle, assume that a function symbol P of two arguments has been introduced in the ACL2 logic.
Then the form:

(defchoose exists-y-witness y (x) (P x y))
extends the logic by the following axiom:

Defchoose Axiom:
(implies (P x y)
(P x (exists-y-witness x)))

The axiom merely claims that if there exists some y such that (P x y) holds, then (exists-y-witness x)

returns such a y. Nothing is claimed about the return value of (exists-y-witness x) if there exists no
such y.

The use of defchoose allows quantified functions to be introduced in the logic of ACL2. This comes
somewhat as a surprise even to some ACL2 users, although the topic has been documented in the online
documentation of the system, and discussed in [19]. The reason for the surprise is that the syntax of ACL2
is quantifier-free! As we have discussed earlier, variables are assumed to be implicitly universally quantified.
What does a quantifier mean in such a logic then?

The answer is that although every term in ACL2 is implicitly universally quantified, one might often
require quantifiers inside the body of a term to express certain properties. To understand this, assume that
we have defined the function (P x y) above, and consider defining a predicate Exists-y with the following
informal first-order property: (Exists-y x) returns true if and only if there is a y such that (P x y) is
true. (For example, if (P x y) is defined to be nil then no such y exists.) Notice that since the universe of
ACL2 objects is infinite, indeed uncountable, it is not possible to define the function by recursively checking
for every object y in the ACL2 universe whether (P x y) is true, until one either finds an object y such that
(P x y) does not hold or the universe is exhausted. (Remark: Defining a recursive function is possible and
in fact, often achieved if P has the property that a finite number of ys is sufficient to deduce the answer one
way or the other. But it is not possible for an arbitrary predicate P.)

However, the use of defchoose allows a simple definition of Exists-y as follows:

(defun Exists-y (x) (P x (exists-y-witness x)))

Here exists-y-witness is the function symbol introduced by the defchoose form above. Using the Def-
choose axiom for exists-y-witness and the Definitional axiom for choose-y, it is easy to prove the following
theorem in ACL2:

(defthm exists-y-suff (implies (P x y) (exists-y x)))

In other words, if one can find a y such that (P x y) is true then one can immediately conclude (exists-y
x). Further, from the definitional axiom of exists-y, one can conclude that if (exists-y x) is true,
then there is at least one y, namely (exists-y-witness x), such that (P x y) is true. The function
exists-y-witness can therefore be regarded as a “Skolem witness” for the property P if such a witness
exists. We point out that ACL2 provides a construct defun-sk that makes use of the defchoose principle
to introduce explicit quantification. For example, the form:

(defun-sk exists-y (x) (exists y (P x y)))

is merely an abbreviation for the following forms:®

(defchoose exists-y-witness y (x) (P x y))
(defun exists-y (x) (P x (exists-y-witness x)))
(defthm exists-y-suff (implies (P x y) (exists-y x)))

Hence, by the discussion above, the predicate (exists-y x) can be thought of as describing the first-order
statement: (Jy: (P x y)). Henceforth we will treat the defun-sk form above as specifying this first-order
statement. In addition, to existential quantification, the defun-sk form also supports universal quantification
forall by making the following observation in first order logic about any binary predicate f:

(Vo : f(z,9)) = ~(Fy : (=f(=2,y)))

2.2 Computing Systems in ACL2

We now briefly describe operational models of sequential programs in the ACL2 logic. This approach has
been successfully used in the ACL2 theorem prover for modeling and reasoning about sequential programs of
practical complexity. For example, Liu and Moore [21] discusses how to use this approach to obtain a fairly

8In Section 5, we will briefly discuss macros in the ACL2 system that enable the user to specify such abbreviations. Macros
will be used in our translation tool to convert one proof strategy to another. However, since macros are merely “syntactic
sugar” and not part of the logic of the theorem prover, we refrain from discussing them in this section.

10

accurate model of the Java' ™ Virtual Machine (JVM) in ACL2 and reason about JVM programs. Similar
approaches have been reported for modeling and verifying other system models, for example microproces-
sors [7, 22, 27, 33], compilers and program translators [27, 13], and concurrent programs [32]. This section
simply provides a nugget for the idea in order to concretize our informal description in Section 1.1 and set
the background for our result in the context of ACL2 verification of system models. The interested reader
will find more details of this approach in these reported work.

Recall from our discussions in Section 1.1 that a formal operational semantics consists of some formal
representation of the states of the underlying machine executing the program in the logic, along with a
formal description of the state transition function step. States are often modeled in ACL2 using constant
length lists, although it is possible (depending on the objective) to use more efficient structures like single
threaded objects [6] or “records” [20] provided with ACL2. In the list representation, the elements at the
different positions of a list represent the values of the different components, like pc, program, stack, registers,
and so on. Each of these components, in turn, can possibly be built out of other components represented
using different data structures in ACL2. For example, the program is typically modeled as a constant list of
instructions, and the pc as a natural number. An instruction is often modeled as a list whose first component
is the opcode and the rest is the list of arguments used by the instruction. For example, a simplified JVM
model in ACL2 [29] models the “goto” instruction as a list of two components, (GOTO k), where GOTO is the
opcode and (pc + k) is the “target” of the goto statement.

To formally model the effects of the different instructions on the states of the machine, one typically
defines functions that take a machine state and an instruction and returns the “updated state”. For example,
consider the GOTO instruction above. The effect of executing the instruction might be to change the value
stored in the pc to the value specified by the target of the instruction. Assuming that the pc is the first
(0-th) component of a state in its list representation, the following ACL2 code models the effect of executing
the instruction for an arbitrary state s.”

(defun execute-GOTO (s inst)
(let* ((pc-component 0)
(pc (nth pc-component s))
(target (+ pc (second inst)))
(new-pc target)
(new-state (update-nth pc-component target s)))
new-state))

More complicated instructions might involve updates of more components of the state. Elaborate examples
of functions modeling a large subset of JVM can be found in [28, 29, 21].

The state transition function step can then be defined by choosing the next instruction pointed to by
the pc, and updating the state by calling the appropriate “update function”. The typical state transition
function is shown as follows:

(defun execute-inst (s inst)
(let ((opcode (first inst)))
(case opcode
(LOAD (execute-LOAD s inst))
(GOTO (execute-GOTO s inst))

"The functions described in [29] are slightly more complicated than the simplified presentations provided in this paper.
The main reason is that the machine modeled there is multithreaded; as a result, the functions execute-opcode and step are
not functions of a single argument, that is, the current state, but also have another argument, namely the thread th that is
taking the step. The technique described in this paper do not pertain to multithreaded models, and indeed, we are not sure
of a “reasonable” approach using clock functions for verifying concurrent programs. However, for sequential programs, even in
multithreaded machine models, the second argument is of no significance. One can introduce a predicate mono-threadedp [30]
so that the same thread is always picked. Our techniques can be applied in such cases by appropriately modifying the clock to
return a mono-threaded sequence of threads instead of a natural number.

11

(defun step (s)
(let* ((pc-component 0)
(prog-component 1)
(pc (nth pc-component s))
(program (nth prog-component s))
(inst (nth pc program)))
(execute-inst s inst)))

The crux of program verification in ACL2 is to derive properties of the state transition function step defined
above. We first note that the iterated state transition function run and the predicate halting can be defined
naturally in ACL2 as follows:

(defun run (s n) (if (zp n) s (run (step s) (- n 1))))
(defun halting (s) (equal (step s) s))

Based on the above terminology, we now discuss a very basic program to illustrate the two proof strategies
in verification of sequential programs in ACL2.

2.3 Verifying Sequential Programs in ACL2

Consider a simple machine language program that simply adds 1 to the the value of a variable x and stores the
result in a variable y. In C-like syntax, the operation of this program can be coded by the single statement:
y=x+1;. The following program, denoted by *incr-program*, is a formalization for the simplified JVM
model [28] in ACL2. Note that the choice of this machine model and program is arbitrary and only serves
to provide an example of how ACL2 is used for reasoning about models using the different approaches. We
omit the several ACL2 definitions defining the semantics of every instruction in the program. We provide
comments on the side of every instruction describing its action.

(defconst *incr-programs

> ((ICONST_1) ;; Push the constant 1 on the stack
(ILOAD_1) ;; Push the content of location 1 (x) on stack
(IADD) ;; Pop the top two objects, add them and push the result.

(ISTORE_2))) ;; Store the top object to location 2 (y)

We want to prove that if the machine starts from a state s in which *incr-program# is present in the
program component of s and the value stored in location 1 in s is a natural number, then on termination
of the program, the value at location 2 is equal to 1 plus the value at location 1. Further, we want to
show total correctness, that is, the system eventually reaches a halting state. The statement of correctness
is specified in the precondition and postcondition defined below. Assume that for a state s, (pc s) and
(program s) returns the contents of the program counter and program, and (location i s) returns the
contents of location .

(defun pre (s)
(and (equal (program s) *incr-program*)
(equal (pc s) 0))
(natp (location 1 s)))
(defun post (s)
(equal (location 2 s)
(+ (Qocation 1 s) 1)))

We will look at how the two strategies help us prove the correctness, and discuss the basic differences between
them.

12

Inductive Invariant Proof

Recall from Section 1.2 that an inductive invariant proof of a total correctness theorem involves defining
functions inv and m. The ACL2 properties we discuss are natural formalizations of the proof obligations in
ACL2 and should be self-explanatory. Note that as we discussed in Section 2.1, we use the special set 0rd
of ordinals with the relation e0-ord-< instead of a general well-founded structure.

(defthm pre-implies-inv (implies (pre s) (inv s)))
(defthm inv-persists (implies (inv s) (inv (step s))))
(defthm inv-implies-post
(implies (and (inv s) (halting s))
(post s)))
(defthm measure-is-ordinal (e0-ordinalp (m s)))
(defthm m-decreases
(implies (and (inv s) (not (halting s))
(e0-ord-< (m (step s)) (m s)))))

The following two functions inv and m satisfy the theorems.

(defun inv (s)
(let ((pc (pc s))
(x (location 1 s))
(y (location 2 s)))
(case pc
(0 (natp x))
(1 (natp x))
(2 (and (natp x) (equal (top (stack s)) x)))
(3 (equal (top (stack s)) (+ 1 x)))
(t (equal y (top (stack s)))))))
(defun m (s) (nfix (- 4 (pc s))))

We note that the proof is trivial once the appropriate functions inv and m are defined. However, even for
this simple program, the definition of inv is slightly convoluted. The reason is that one must specify some
assertion for every value of the program counter. This is required since the proof theorem inv-persists
involves showing that for every state for which inv holds, the next state must satisfy inv. Moore [30] shows
an alternative way of specifying invariants which does not involve assertion at every program counter value,
but at selected “cutpoints”. The approach however, still requires one to justify that the assertion at one
cutpoint is strong enough to prove the assertion at the “next cutpoint”. While the result in [30] significantly
reduces the search for invariants, specifying and proving invariants is still the most significant component of
program verification using inductive invariant proofs.

Clock Function Proof
To prove the program correct using clock functions, recall that we need to define the function clock so that
the following theorem can be proved.

(defthm clock-run-is-halting (implies (pre s) (halting (run s (clock s)))))

(defthm clock-run-is-good (implies (pre s) (post (run s (clock s)))))

For this trivial program, one can define the function clock based on the following observations. The only
way a state satisfies pre is if the program counter is 0 and it is executing *incr-program*. However, since
the program is a straight-line code with no branches or loops, all the instructions in the program will be
exhausted in time equal to the length of the program which is 4. Thus the program will terminate after 4
steps, starting from a pre state. Hence, the function clock can be defined as:

(defun clock (s) 4)

The two theorems can simply be proved by simplification of the term (run s 4) under the assumption (pre

13

s). In this case, and indeed, for any program fragment that does not involve loops, the theorem can be
proved without using induction on the length of the execution. However, for programs containing loops, the
clock function strategy needs to use induction on the number of iterations in the loop.

To illustrate this point, consider a simple loop program that tests some condition (c s) to enter a loop,
and halts when the condition is false. Assume also the loop consists of a straight line code of « instructions,
and the pre and post conditions are both defined by the same predicate (loop-predicate s). In other
words, we want to show that if the program starts from a state s such that (loop-predicate s) holds then
on termination (loop-predicate s) still holds.

(defthm loop-correct
(implies (loop-predicate s)
(loop-predicate (run s (loop-clock s)))))

To define the clock for such a theorem, recall that the clock simply represents the number of steps to reach
the halting state. Since every iteration of the loop contains « instructions, the clock we will want to define
is as follows:

(defun loop-clock (s)
(if (not (c s)) O
(+ a@ (loop-clock (run s a)))))

Notice that if we can define this function, then the typical approach will be to prove by induction on
the number of iterations in the loop that loop-predicate holds every time the program counter reaches
the entry to the loop [28].% In other words, one would typically prove loop-correct using induction and
establishing the base and induction cases as follows:

Base Case:
(implies (not (c s))
(implies (loop-predicate s)
(loop-predicate (run s (clock s))))
Induction Case:
(implies (and (c s)
(implies (loop-predicate (run s a))
(loop-predicate
(run (run s a)
(clock (run s a))))))
(implies (loop-predicate s)
(loop-predicate (run s (clock s)))))

The soundness of this induction in fact, guaranteed by the definition of loop-clock. In particular, since
loop-clock is recursive, there must be a measure m such that (m s) is an ordinal, and under the condition
(c s), the term (m (run s «)) is smaller (according to e0-ord-<) than (m s). The existence of m justifies
that the induction hypothesis in the Induction Case above is indeed a “smaller” instance of the theorem.
The rest, therefore, follows from the Principle of Induction.

The discussion above should make it clear, that while proofs about programs using clock functions are
sometimes inductive, the induction is usually based on the same principles as the recursive function to
specify the clock. Hence, the proof critically depends on the definition of the function. Notice that the
function loop-clock we discussed can be admitted to ACL2 logic only after we can justify, according to
the Definitional Principle, that the recursive calls eventually terminate. However, the recursive calls will
terminate if and only if the program itself terminates! In fact, at least for this one-loop program, the function
loop-clock is a precise description of the time complexity of the loop.

We do not know which approach is better or more natural in the context of proofs of sequential programs
in ACL2 and indeed, in any logic, using the operational approach. The invariant proof involves describing

8If loop-predicate does not have that property, then it can usually be strengthened into a predicate inv-predicate such
that inv-predicate implies loop-predicate and inv-predicate indeed holds every time the program reaches the entry of the
loop.

14

strong predicates that will enable one to verify the alleged invariant to be indeed an inductive invariant. The
clock function approach involves finding a function clock that specifies the time complexity of the program
in a very strong way. In specific contexts one approach might be better or easier than the other. However,
we will claim in the next section that finding a proof in one approach immediately implies in the logic a proof
in the other approach. In particular, for total correctness, for an arbitrary function step, if the theorems
listed under Inductive Invariant Proof can be proved using some functions inv and m, then it is possible to
define a function clock so that the theorems listed under Clock Function Proof can be proved for the same
function step, and vice versa. Analogous results are shown for partial correctness. Logically, therefore, one
can use either approach in deriving correctness results in a specific context, and use the transformation to
get a proof in the other strategy.

3 Equivalence of Proof Strategies

In this section, we discuss our equivalence proofs. To make our proofs generic, we will merely assume that the
system model has been provided by specifying some state transition function step; the actual implementation
of step might involve some of the considerations we described in Section 2.2, but the implementation plays
no part in the equivalence proofs.

Our approach to model the generic inductive invariant and clock function proofs is to use the Encap-
sulation Principle in ACL2 to constrain functions inv, clock, and (in case of total correctness) m, with
appropriate constraints. For example, the constraints for an inductive invariant proof of total correctness
are exactly the properties described in the theorems in Section 2.3 for a generic function step instead of
the special function described there. In Section 5 we will describe macros that allow us to instantiate the
generic proofs using functional instantiation for specific system models.

3.1 Equivalence for Total Correctness

Assume that we have a unary function step modeling the next state function of some computing system,
and that we are provided unary predicates pre and post. Recall from our discussions in Section 2.3, that
an inductive invariant proof of total correctness involves defining functions inv and m and proving the
following theorems:

(defthm pre-implies-inv (implies (pre s) (inv s)))
(defthm inv-persists (implies (inv s) (inv (step s))))
(defthm inv-implies-post
(implies (and (inv s) (halting s))
(post s)))
(defthm measure-is-ordinal (e0O-ordinalp (m s)))
(defthm m-decreases
(implies (and (inv s) (not (halting s))
(e0-ord-< (m (step s)) (m s)))))
On the other hand, the clock function proof involves the definition of the function clock and dispatching
the following proof obligations:

(defthm clock-run-is-halting (implies (pre s) (halting (run s (clock s)))))
(defthm clock-run-is-good (implies (pre s) (post (run s (clock s)))))

To show their equivalence, we will prove that the theorems in one strategy can be derived from the theorems
in the other. In other words, from definition of inv and m known to satisfy the theorems under the inductive
invariant strategy, one can define clock which satisfies the theorems under clock function strategy, and
vice-versa.

15

Inductive Invariants To Clock Functions

Assume that for some functions step, pre, post, inv, and m, the theorems pre-implies-inv, inv-persists,
inv-implies-post, measure-is-ordinal and m-decreases have been proved. We now define the function
clock as follows:

(defun clock (s)
(if (or (mot (inv s))
(halting s))
0
(+ 1 (clock (step s)))))

Roughly, the function clock simply steps the machine until it encounters a state that is either halting, or
does not satisfy inv. To admit this recursive function according to the Definitional Principle, ACL2 needs to
prove that some measure function (measure s) exists, which maps the states of the system to the ordinals,
and which decreases in every recursive call. In other words,

(e0-ordinalp (measure s))
(implies (and (inv s) (not (halting s)))
(e0-ord-< (measure (step s))
(measure s)))

But at least one such measure already exists, namely (m s), by the theorems measure-is-ordinal and
m-decreases! Hence the function clock above is admissible to the logic.

Once this function is defined, the theorems clock-run-is-halting and clock-run-is-good follow as
simple consequence. The crucial observation is the theorem inv-run, which is essentially a restatement of
Lemma 1 in the ACL2 logic.

(defthm inv-run (implies (inv s) (inv (run s n))))

The theorem clock-run-is-halting now follows by the definition of clock. In particular, the term (run
s (clock s)) must be either halting, or not satisfy inv. However, if s satisfies inv then by theorem
inv-run, (run s (clock s)) must in particular satisfy inv and thus must also be halting. The theorem
clock-run-is-good now follows by using inv-implies-good, and instantiating s in the theorem by (run
s (clock s)).

An ACL2 user will note that the proof is extremely trivial. Indeed, the crucial aspect of proofs in clock
function strategy is in the definition of clock in a way that it is admissible to the ACL2 logic. Our chief
contribution is the observation that clock can be admitted by using the same termination argument as used
in an inductive invariant proof to guarantee eventual termination of the program.

Clock Functions to Inductive Invariants

To obtain an inductive invariant proof from a clock function proof, we will make use of Defchoose Prin-
ciple in ACL2. Assume that the functions step, pre, post, and clock are defined and the theorems
clock-run-is-halting and clock-run-is-good have been verified. We now define the functions inv and
m as follows:

(defun-sk inv (s) (exists (init n) (and (pre init) (matp n) (equal s (run init n)))))
(defun m-aux (s i clk)
(if (or (halting s) (>= i clk)
(not (nmatp i))
(not (matp clk)))
(nfix i)
(m (step s) (+ i 1) clk)))
(defun m (s) (m-aux s 0 (clock s)))

The function (inv s) posits that there exists state init and a natural number n, such that init satisfies the

16

precondition pre, and s can be reached by stepping the machine n steps. On the other hand, the function
m simply runs the machine until the first halting state is reached, and counts the number of steps.

The proof of pre-implies-inv and inv-persists follows from the definition of inv. Observe that for
every state s that satisfies (pre s), there exists at least one pair (init,n), namely (s, 0), such that running
from init for n steps returns s. Moreover, if (inv s) holds, then assume (init,n) form the witness for s.
Then (inv (step s)) holds and is witnessed by (init,n+1).

The proof of inv-implies-good and m-decreases requires the property of halting that was specified
in Lemma, 2. The following is the restatement of the lemma in ACL2, and can be easily proved by induction
on n.

(defthm halting-run (implies (halting s) (halting (run s n))))

Using this theorem, one can now easily show that for a halting state s reachable from a state init satisfying
pre, s must be equal to (run s (clock s)).

(defthm halting-is-clock
(implies (and (pre init) (halting (run init n)))
(equal (run init (clock init)) (run init n))))

The proof of this theorem is easy by considering the three cases, namely (i) n < (clock s), (ii) n =
(clock s), and (iii) n > (clock s), and the theorem halting-run. The proof of inv-implies-good now
follows from halting-clock and clock-run-is-good. Further, the theorem m-decreases follows by simply
observing that for any init satisfying pre, if (run init n) is not halting and n is a natural number, then
n must be less than (clock s).

(defthm not-halting-less-than-clock
(implies (and (natp n) (pre init) (not (halting (run init n))))
(< n (clock s))))

Note that this proof made extensive use of quantification in ACL2. Quantification is a feature of ACL2
whose power is largely neglected, even by serious ACL2 users. We found this feature invaluable in this and
other work, when the object is to build generic theories for system models in ACL2. In particular, we do
not believe that it is possible to verify the equivalence theorems we discussed in a logic which does not
allow quantification. Another example of successful use of quantification using the Defchoose Principle is
shown in [23] by Manolios and Moore. They discuss an approach to introduce partial functions in ACL2
satisfying certain classes of recursive equations. These and other independent work by us and others indicate
that quantification can play to the strength of the theorem prover for proving non-trivial theorems about
complicated system models.

3.2 Equivalence for Partial Correctness

To consider partial correctness, we need to weaken the proof obligations in both strategies. In particular,
for inductive invariants, we will assume a proof that consists only of the definition of the predicate inv
and the theorems pre-implies-inv, inv-persists, and inv-implies-good above. For clock functions, we
weaken the theorems clock-run-is-haltingand clock-run-is-good by adding hypothesis that posits that
halting states are reachable from states satisfying the precondition. The modified clock function theorems
are as follows:

(defthm clock-run-is-halting
(implies (and (pre s) (halting (run s n)))
(halting (run s (clock s)))))
(defthm clock-run-is-good
(implies (and (pre s) (halting (run s n)))
(post (run s (clock s)))))

We now show how we can derive the equivalence results for partial correctness.

17

Inductive Invariants to Clock Functions

To prove clock function theorems from inductive invariants, we define the function clock as follows. Note
that all the functions we discuss in this section make heavy use of quantification and the Defchoose Principle.

(defun-sk exists-pre-state (s)
(exists (init i j)
(and (pre init) (matp i) (natp j)
(equal s (run init i))
(halting (run s j))))
(defun clock (s)
(if (exists-pre-state s)
(mv-let (init i j)
(exists-pre-state-witness s)
(nfix (- j 1))
0))
Roughly, the function can be interpreted as follows. If there exists a state init and natural numbers i and j
such that (run init i) is s, and (run init j) is halting, then the function returns the difference between
j and i. If no such init, i, and j exist then it returns 0.

Informally, one can think of the clock for every state s that will eventually reach a terminating state to
measure the number of steps left to reach the terminating state. In other words, assume that from some
state init, the state s is reachable in i steps, and some terminating state is reachable in j steps, for j > i.
Then, the number of steps required to reach some terminating state from s must be (- j i), which is
defined to be (clock s). Note that the value returned from clock if no terminating state is reachable from
s is not critical, and the choice of 0 is arbitrary.

Now consider the question of proving the theorem clock-run-is-halting for partial correctness as
specified above. The theorem roughly posits that if there is a number n that takes some state s satisfying
pre to a halting state, then (clock s) takes s to a halting state too. To prove this statement, notice that
(exists-pre-state s) is definitely true for such s, since there exist witnesses for (init,1i,j), namely
(s, 0,n) witnessing the predicate. In other words, we can prove the following theorem in ACL2:

(defthm pre-has-pre-state (implies (pre s) (exists-pre-state s)))

Notice however, that the witness for exists-pre-state has to provide some state init from which s is
reachable, not necessarily the minimal such state. However, we can still reason as follows. Since for s,
(exists-pre-state s) holds, let (init,1i,j) be the corresponding witnesses. Then (clock s) = (nfix
(- j 1)) by defintion of clock. To relate i and j with s, we prove the following theorem run-compose
that is a fundamental property of run and a restatement of Lemma 3 in the ACL2 logic.

(defthm run-compose (equal (run p (+ m n)) (run (run p m) n)))

The theorem states that “running” from state p for (m+ n) steps is the same as first running m steps,
and then running n steps from the state so reached. The theorem can be easily proved by induction on
n. Now consider the three different cases: (i) i < j, (ii) i = j, and (iii) i > j, for the witnesses i and j
of exists-pre-state. For the last two cases, s must be halting by the property halting-run that we
discussed in the previous section, and hence the proof of clock-run-is-halting is trivial. For the first
case, however, note that (run init j) is equal to (run s (- j i)) by the theorem run-compose and
elementary arithmetic. But (- j i) is (clock s) in this case, and (run init j) is halting by definition
of exists-pre-state, proving the theorem.

Clock Functions to Inductive Invariants

To obtain the inductive invariant proof from clock functions for partial correctness, we will define inv as
follows:

(defun-sk inv (s) (exists (init n) (and (pre init) (matp n) (equal s (run init n)))))

18

Notice that the definition of inv is the same as the one we defined in Section 3.1 in the context of total
correctness. The proof of the inductive invariant theorems, namely pre-implies-inv, inv-persists, and
inv-implies-good follow the same argument as for total correctness. In particular, notice that the proofs
of the first two theorems never required any properties from the clock function proof for the predicate inv
we defined. For proof of inv-implies-good, notice that if (halting s) is true, then for the witness state
init there exists at least one i, namely the witness for n, such that (run init i) is halting. Hence using
theorem clock-run-is-halting for partial correctness, we can conclude that (run init (clock init))
satisfies halting. Further, by considering the three cases, namely (i) n < (clock s), (ii) n = (clock s),
and (iii) n > (clock s), and the theorem halting-run, we can conclude as in the corresponding total
correctness proof in Section 3.1, that s = (run init (clock s)). The proof of inv-implies-good now
follows from the theorem clock-run-is-good.

4 Proof Composition

From the discussions in the previous section, it should be clear that clock functions and inductive invariants
are equivalent in that from correctness theorems in one strategy, one can obtain correctness theorems in the
other. It makes sense, therefore, to ask whether parts of a program can be verified using different strategy
and composed to provide a correctness result for the composite whole. For example, consider a program II
with two procedures A and B. The program first “calls” procedure A, and then “calls” B. Is it now possible
to verify individual procedures A and B, possibly using different strategies to get a complete proof for II?

The thorny issue in the verification of individual procedures separately comes from the use of the predicate
halting in our framework. Recall that the predicate halting says that the program terminates in a very
strong sense: It posits that (step s) must be equal to s! However, when a program completes a specific
procedure, it does not halt, but simply returns control to the calling procedure. Hence our verification
framework as is will not be useful for verifying individual procedures of a program. Further, our proofs
of equivalence in Section 3 made extensive use of the definition of halting. Hence we need to adjust our
framework and definitions a little in order to make them work for individual procedures and compose such
proofs.

In order to “fix” this problem, we first consider replacing the predicate halting in the two approaches
by a predicate external. Informally, the predicate external indicates the return of control to the calling
procedure. A little reflection will reveal, however, that replacing the predicate halting by an arbitrary pred-
icate external in the proof obligations for the two strategies makes them very different. To understand this,
consider the case for total correctness. Assume that we have a clock function proof of a procedure, proving
the analog of clock-run-is-halting and clock-run-is-good, replacing (halting s) by (external s).
Assume also that nothing else is known about the predicate external. Can we define inv and m based on
this knowledge, which satisfy the analogs of inductive invariant theorems replacing halting by external?

To understand the difficulty in proving the inductive invariant theorems, observe that the clock function
theorems only talk about an external state and not the first external state. In particular, consider the
program II again, and assume that it calls procedure A, then B, and then A again. Consider a precondition
that says that the program is poised to invoke A, and the predicate external claims that the program returns
from A. The analog of clock-run-is-halting using external states is a statement of the following form:

(implies (pre s)
(external (run s (clock s))))

This condition, however, can be achieved if (clock s) for a state s poised to invoke A for the first time,
returns the number of steps to return from A for the first time, or the second, that is, the return following
the invocation of A, followed by B and then followed by A! In fact, by simply looking at the statement of
this theorem, it is impossible to conclude whether the clock returns the number of states to complete the
procesure s is poised to call, or some other subsequent invocation of A.

On the other hand, the inductive invariants provide a different but related complication. Notice that

19

the theorem inv-persists is at the heart of the inductive invariant proof. However, this theorem is too
strong! It states that one needs to define inv so that it holds for the next state if it holds at the current
state, no matter what the next state is. In particular, consider a state s in which the program has already
returned from procedure A. The theorem inv-persists needs to guarantee that even for such a state s,
the next state produced by stepping the machine must satisfy the invariant. Hence, this theorem does not
provide any opportunity for separating the invariant proof into separate proofs for a number of components.
The invariant defined must take into account every possible state of the system, including those that execute
procedure A and those that execute B.

To rectify this situation, we next consider a slight elaboration of the framework. We will generalize our
framework and proof obligations for the different strategies so that we can keep track of the “first return”
from the different procedures. We describe the generalized framework and proof obligations in Section 4.1.
In Section 4.2 we show that the two proof strategies are equivalent in the generalized framework as well. In
Section 4.3 we use this equivalence in composing proofs of different program components.

4.1 Generalized Framework

A slight reflection of the problems we discussed in composition proofs should reveal that the problems are
draconian. In particular, for clock function proofs of a particular procedure, we do not want to define the
function clock so that it returns, for a state s poised to invoke procedure A, a state in which some subsequent
calls to A are returned. For clock functions to be meaningful in the context of verifying a single procedure,
they need to describe precisely the first return from that procedure. In our discussions, note that the predicate
external is assumed to be some predicate that recognizes the state at which such returns are made from
a component of the program that we want to verify separately. To ensure that the clock function specifies
the number of steps to the corrsponding return, we add the following constraints clock-is-natural and
clock-is-minimal for a clock function proof of total correctness.

(defthm clock-is-natural (natp (clock s)))
(defthm clock-is-minimal
(implies (and (pre s) (nmatp i) (external (run s i)))
(<= (clock s) i)))

In addition, a clock function proof is given by the theorems clock-is-external and clock-is-post below
for total correctness. These theorems are simply restatements of the theorems clock-run-is-halting and
clock-run-is-good we discussed in Section 3, in terms of the predicate external.

(defthm clock-is-external (implies (pre s) (external (run s (clock s)))))
(defthm clock-is-post (implies (pre s) (post (run s (clock s)))))

The corresponding theorems for partial correctness will simply add the hypothesis that some external state
is reachable from s. The restatements are shown below.

(defthm clock-is-external
(implies (and (pre s) (external (run s n)))
(external (run s (clock s)))))
(defthm clock-is-post
(implies (and (pre s) (external (run s n))
(post (run s (clock s))))))

In addition, we will assume that no pre state is an external state.
(defthm pre-is-not-external (implies (pre s) (not (external s))))

The theorem above is necessary for technical reasons, but is a natural restriction, as the subsequent discus-
sions on interpretation of these theorems will show. For a specific operational model step and predicates
pre, post and external, we interpret the theorems above as follows. Consider a state s in the system
that satisfies pre. The predicate (pre s) will posit, for example, that s is poised to invoke some particular
segment of the code, for example, some procedure A, and that some “initial property” holds for s. The

20

predicate (external s) typically describes that at state s the system has finished executing some block of
code. In most cases, it will simply be a condition on the pc, for example, describing that the pc points to
some specific statement of the program which indicates that the control has returned from executing some
procedure. The predicate (post s) will describe the desired postcondition when the program reaches the
state prescribed by external on starting from a state satisfying pre. For example, consider a system which
has a procedure that sorts natural numbers. The predicate pre then might indicate that the state is poised
to invoke the sorting routine and some list in the heap component of the system contains a list of natural
numbers; the predicate external might that indicate that the pc points to the block of code immediately
following the return from the sorting procedure, and the predicate post that the list in the heap is an ordered
permutation of the original list.

In this context, what do the above theorems tell us? The theorems say that starting from a state s
satisfying the precondition, which, in particular, also means that s is poised to invoke some specific section
of the code, the system requires exactly (clock s) number of steps to exit from the block of code, that is,
reach the state £ satisfying external, and the state £ so reached also satisfies the postcondition post. For
partial correctness, this is guaranteed only if there exists some such state £.

One might legitimately ask whether the framework of using external and specifying program correctness
based on the first state satisfying external is general enough. For example, can this framework handle
recursive and iterative programs? Note that for example, for recursive programs, a procedure A might call
A itself, several times. The procedures return in order opposite to the calls, that is, the last call of A will
return first. Hence if the predicate external describes that the pc points to a return of A, and pre says that
that the state is poised to invoke A, then presumably we are “matching” the wrong calls!

This objection is indeed legitimate if the predicate external could only be a function of the pc. However,
in our framework, the predicate external can be any arbitrary predicate of the entire state. We do not
impose any restriction on the form external can take, as long as it is a predicate expressible in ACL2. As
a result, our framework can handle recursion and iteration with considerable ease. For recursive procedures,
for example, notice that the return addresses for different “recursive calls” of the same procedure are stored
and maintained in a stack. The predicate (external s) in this case can specify that the pc points to the
next statement after the call of a procedure and the “stack of recursive calls” is empty.

We have surveyed several proofs of system models, including ACL2 models of sequential programs in the
JVM models described in [28, 29]. In all sequential program models we studied, the verification has been split
up into several components proving individual procedures, and the theorems about individual procedures
could always be described in terms of pre, post, and external, as described above. This framework provides
a powerful and natural generalization of the program verification framework for operational semantics that
we described in Sections 1.1 and 2.3.

As the discussions above will indicate, we have restated the correctness theorem to roughly specify the
following: If starting from a state satisfying pre the system reaches a state satisfying external then the
first such state must also satisfy post. In addition, for total correctness, one proves that starting from
a state satisfying pre one eventually reaches an external state. This statement can be seen easily from
the clock function theorems above, since (clock s), by the above theorems, is specifically the number of
steps required to reach an external state from a pre state. How do we generalize the inductive invariant
approach to imply the above statement?

The crucial observation for this generalization is that when verifying a specific component of a program,
one does not want to define inv that persists over every step, but only till the first return from the block of
code being verified is encountered. Recall from our rpevious discussions in this section that the requirement
for inv to hold on every next state had caused the inductive invariant theorems to be unduly strong for
verification of a single component of a program by itself. This observation has been implicitly used by
Moore [30] in specifying his predicate inv for recursive and iterative programs. The crucial question, then,
is how to recast the inductive invariants theorems so that inv is required to hold from a state satisfying pre
until the first time a state satisfying external is encountered.

To capture the concept of first external state in an inductive invariant framework, we reason as follows.
We will specify inv so that it does not hold for external states. This is simple by adding (not (external

21

s)) as a conjunct in the definition of (inv s). The informal understanding is that inv is required to hold
on every state starting from a pre state, until an external state is encountered. Since inv does not hold
on external states, we can immediately decide if (step s) is the first external state, by checking if both
(inv s) and (external (step s)) hold. This informal understanding is captured in the following theorems
which define the proof obligations for the inductive invariant strategy for partial correctness.

(defthm pre-implies-inv (implies (pre s) (inv s)))
(defthm inv-persists-for-internal
(implies (and (inv s) (not (external (step s))))
(inv (step s))))
(defthm inv-and-external-implies-post
(implies (and (inv s) (external (step s)))
(post (step s))))
(defthm inv-is-not-external (implies (inv s) (not (external s))))

In addition, for total correctness, one requires the measure m to guarantee that an external state is eventually
reached. The corresponding termination theorems are as follows.

(defthm m-is-ordinal (eO-ordinalp (m s)))
(defthm m-decreases
(implies (and (inv s) (not (external s)))
(e0-ord-< (m (step s))
(m s))))

The reader acquainted with model checking might immediately recognize some similarity between the con-
straints we imposed and the “until” operator U typically used in specifying certain classes of temporal
properties in model checking [8, 9]. In model checking, for formulas P and Q, and given a sequence of states,
the formula (P U Q) is said to hold for the sequence if and only if Q holds for some state s in the sequence,
and P holds for every state before s. While the analogy between the until operator and our predicate inv is
obvious — inv holds for every state until external holds, making (inv U external) true of every sequence
of states starting from a pre state, at least for total correctness — the analogy is almost an afterthought
and ends there. Our predicate is a stronger form, since it requires inv not to hold in the state satisfying
external, a restriction not normally made in model checking work using “until”. Indeed, while the defini-
tion of inv has been influenced by the model checking literature using “until” to specify the first time some
predicate holds in a sequence, the definition of inv here is simply a by-product of our endeavor to capture
the notion of “first external state” rather than any detailed analysis of the model checking approaches on
specification of temporal properties.

4.2 Generalized Equivalence Theorems

Even in the generalized framework we discussed, the two approaches are equivalent. Given our discussions
in Section 4.1 and proofs in Section 3 this should probably be anticipated. However, these generalized
equivalence theorems will finally let us compose proofs of parts of programs into a complete proof of the
entire system. In this section, we discuss proofs of equivalence in the generalized framework. Since most of
our proofs will closely follow the proofs we described in Section 3 we merely provide the relevant definitions
here, and omit the details of the ACL2 proofs.

Consider total correctness first. To get a clock function proof from an inductive invariant proof, we will
define clock as follows:

(defun clock-aux (s)
(cond ((not (inv s)) 0)
((external (step s)) 0)
(t (+ 1 (clock-aux (step s))))))
(defun clock (s) (+ 1 (clock-aux s)))

Informally, the function clock-aux, given a state s satisfying inv counts the maximum number of steps

22

from s that can be executed without encountering an external state. The following theorems formalize this
intuition.

(defthm inv-run-1 (implies (inv s) (inv (run s (clock-aux s)))))

(defthm inv-run-2 (implies (inv s) (external (step (run s (clock-aux s))))))

The clock function theorems now follow simply by showing that (clock s) takes any state s satisfying inv
to the first state that satyisfies external.
To get an inductive invariant proof from clock functions we will define inv and m as follows:

(defun-sk inv (s)
(exists (init i)
(and (pre init) (natp i)
(< i (clock init))
(equal s (run init i)))))
(defun m (s)
(mv-let (init i)
(inv-witness s)
(nfix (- (clock init) 1i))))

The predicate (inv s) posits that there exists a state init which satisfies pre and from which s is reachable
without encountering an external state on the way. The function m counts the number of steps still
remaining before such an external state is encountered. Recall that in total correctness proofs, we know
that starting from a pre state , we will eventually encounter an external state after stepping for (clock
init) times. Hence, the difference between (clock init) and i, gives the number of steps remaining when
s is encountered, before an external state is reached.

The arguments for partial correctness are similar. To obtain a clock function proof from inductive
invariants we define clock as follows:

(defun-sk for-all-inv (s i) (forall j (implies (<= j i) (inv (run s j)))))
(defun-sk exists-run-to-external (s)
(exists i (and (natp i)
(for-all-inv s i)
(inv (run s i))
(external (step (run s i)))))))
(defun clock (s)
(if (exists-run-to-external s)
(1+ (exists-run-to-external-witness s))

0))

While the definition might appear convoluted on first sight, it really is a formal expression of the following
statement in the ACL2 logic: For a state s, the function (clock s) returns the number of steps required
to encounter the first external state if such an external state erists; otherwise it returns 0. Recall that
this function is similar to the corresponding clock we described in Section 3.2, recast in terms of the “first
external state”. To obtain the inductive invariants from clock functions in partial correctness, we define inv
as follows:

(defun-sk no-external-run (s) (forall i (not (external (run s i)))))
(defun inv (s)
(if (no-external-run s)
T
(and (exists-pre-state s)
(not (extermal s)))))

The only minor “twist” in this definition is the situation when no external state is reachable from s. This
is recognized by the predicate no-external-run. Recall from our discussions of Defchoose Principle in
Section 2.1 that there are no constraints on the return value of exists-pre-state-witness in this case.

23

Hence to define inv so that inv-persists-for-internal is a theorem, we “force” inv to return T in this
case.

The proofs of equivalence of the two strategies using these definitions have been successfully checked by
the ACL2 theorem prover. We should note that the actual ACL2 proofs of the theorems are not trivial; in
fact, considerable experience with the theorem prover is required to lead the system to these proofs. The
ACL2 scripts for these proofs are available as books for the current version of the theorem prover, and
the interested reader can obtain them by request from the first author, to get an understanding of what is
involved in the proof process. However, as our discussions should make clear, the definitions of the different
functions capture the basic intuitions showing that the two proof strategies are indeed equivalent, and the
difficulties of the proofs are “merely” technicalities.

4.3 Composing Component Proofs

We now discuss how our framework can handle composition of proofs of individual components into a proof
of the complete program. For simplicity, we only discuss sequential composition here, that is, we consider a
program that first “calls” some specific block A of code, and when it exits from that block, it calls another
component B. More complicated compositions, including branches, loops, and recursion, can be built up from
sequential compositions, and hence, our framework can handle such elaborate compositions as well. Further,
we only focus on clock function proofs in this section. As we will see, compositions are more natural for such
proofs than inductive invariants. Using our results in Section 4.2 however, any inductive invariant proof of
a component can be translated into a clock function proof, and our composition approach can then applied
to the “translated proof”.

Let us denote a clock function proof using functions pre, external, post, and clock by the tuple (pre,
external, post, clock). Assume that we have two proofs (pre-A, external-A, post-A, clock-A), and
(pre-B, external-B, post-B, clock-B), for two program components A and B respectively. Informally,
the proofs indicate that if a state is poised to execute the block of code in one component, then after
the number of steps specified by clock, it must reach a state external for the component, and the post
condition post for the component must hold. To compose two such proofs, we need another condition that
says that the two blocks are sequentially composed.

(defthm sequence (implies (and (external-A s) (post-A s)) (pre-B s)))

The condition sequence merely says that once we reach the external for one component, we will be poised
to execute the next component in the next step. This formalizes the notion of sequential composition in this
framework. In this composition, we will define the clock for the composition of A and B as:

(defun clock (s) (+ (clock-A s) (clock-B (run s (clock-A s)))))

The function clock simply counts the number of steps to reach the external of block B starting from the
“beginning” of block A. The composition proof (pre-A, external-B, post-B, clock) now depends upon
the composition of runs which has been established by the theorem run-compose in Section 3.

(defthm run-compose (equal (run p (+ m n)) (run (run p m) n)))

We note that if both the component proofs are for total correctness, the composite proof is a total correctness
theorem for the composite block, otherwise it is a partial correctness theorem. This exactly matches with
the intuition that a program eventually terminates if and only if every sequential block in it eventually
terminates.

We also note that as compositions are performed over a large number of blocks, the clocks justifying
the composition eventually get complicated. By the same token, the inductive invariants for the composite
blocks are also complicated. However, experience with sequential program verification suggests that the
actual structure of either the clocks or the invariants are normally of no consequence for correctness results;
what matters is that functions clock and inv can be defined which satisfies the constraints required. There
is one serious exception to that, namely if one is actually interested in proving the time complexity of
the program, once a total correctness result has been achieved. Recall from Section 1.4 that the clock
provides a precise measure of the complexity of the program in a total correctness theorem. If complexity,

24

in addition to correctness is a concern, then clock needs to have a simplified structure that is amenable
to easier reasoning in ACL2. For example, given the clock we produce for a large sequence of composite
blocks, one needs another function simple-clock that is logically equivalent to clock but is more simplified
in structure in order to facilitate reasoning, particularly inductve proofs of efficiency. Independent research
is being performed with ACL2 to achieve simplified “clock expressions”. In particular, Golden [private
communication] has applied concepts from term rewriting [1] to simplify clocks for simple blocks of code.
Such techniques might aid in reasoning about complexity of programs. However, for our work, the focus
has been on correctness rather than complexity. In this context, the elaborate structure of clock that we
produce is of no concern; clocks provide witnesses justifying that the program eventually terminates, or, in
case of an individual component, eventually reaches an external state.

5 Translation between Proof Strategies

We now describe two simple macros clock-to-inv and inv-to-clock that we have implemented in the
ACL2 system to translate proofs done in one strategy to the proofs in the other strategy. Macros provide
ways of defining useful abbreviations in ACL2. Details of the macro facility in ACL2 are presented in the
online documentation under topic defmacro and in Chapter 5 of [17]. We omit descriptions of this feature
here, but just give an example. In the earlier sections, we used natp with the implicit understanding that
a function natp is defined. While indeed, we used such a function in our work, we could alternatively have
defined it as a macro below:

(defmacro natp (n)
‘(and (integerp ,n)
(<= 0 ,n)))

The effect of this macro is to replace any call of natp by the body. For example (natp x) will expand to
(and (integerp x) (<= 0 x)). The concept is somewhat like “inlining” used in compilers. One defines
abbreviations for commonly used terms in a particular application; calls to the macro result in replacing the
call by the term produced!

Macros are specially suitable for implementing theorem proving tools in ACL2. For example, Manolios
and Moore [23] discuss a macro defpun to introduce partial functions in ACL2. Almost any serious researcher
using ACL2 to build generic tools uses macros to abbreviate certain programming and theorem proving styles.

To understand our macro, assume that for specific “concrete” functions c-step, c-pre, c-external and
c-inv, c-post, (and possibly c-m if the proof is for total correctness), the inductive invariant theorems
have been dispatched by the theorem prover. To obtain a clock function proof, one simply calls our macro
inv-to-clock. The macro takes 6 arguments, namely a special argument mode which takes the value :total
or :partial, the names of the 6 functions above. It also requires certain keyword arguments to specify the
names of the function clock and the names of auxilliary functions to use in the definition of clock. If
the mode is :total, then it also requires an additional argument :measure. The macro creates a function
named c-clock and generates its body using the generic functions we described in Section 4.2. For example,
a specific call to the macro (clock-to-inv :total c-pre c-step c-external c-post :clock c-clock
:measure c-m :run c-run :aux (c-for-all-inv c-exists-run-to-external)) expands to the follow-
ing set of definitions.

(defun-sk c-for-all-inv (s i) (forall j (implies (<= j i) (c-inv (c-run s j)))))
(defun-sk c-exists-run-to-external (s)
(exists i (and (c-natp i)

(c-for-all-inv s i)
(c-inv (run s i))
(c-external (c-step (c-run s i)))))))

(defun clock (s)

(if (c-exists-run-to-external s)
(1+ (c-exists-run-to-external-witness s))

25

0))

The system then attempts to prove the corresponding “clock theorems” automatically. This is done by func-
tional instantiation as we described in Section 2.1. In more concrete terms, the following is one of the defthm
event is produced by the macro.

(defthm c-run-is-external
(implies (c-pre s) (c-external (c-run s (c-external s))))
chints ((‘“Goal’’
:use ((:functional-instance clock-is-external
(inv (lambda (s) (c-inv s)))
(pre (lambda (s) (c-pre s)))
(external (lambda (s) (c-external s)))
(post (lambda (s) (c-post s)))
(c-run (lambda (s n) (run s n)))

(m (mabda (s) (c-m s))))))))

Roughly, this defthm event asks ACL2 to prove the theorem c-run-is-external, by instantiating the
theorem clock-is-external that we discussed in Section 4.1, instantiating the “abstract” functions in that
theorem by the “concrete” functions provided. Recall that in order to successfully prove this theorem by
functional instantiation, ACL2 needs to prove that the concrete functions, namely c-pre, c-step, and so on,
satisfy the constraints imposed by the abstract counterparts. But the constraints imposed by the abstract
counterparts are exactly the proof obligations for inductive invariants that have been already dispatched
for the concrete functions! Hence ACL2 can automatically prove theorems for the concrete functions by
functional instantiation. The macro inv-to-clock is similar and expands into inductive invariant theorems
from clock function proofs. We also provide basic macros for composing proofs.

Our actual macros are slightly more complicated than is apparent from the description above. For
example, they allow the user to provide hints or guidances to the theorem prover in the defthm events
generated, in case the theorems cannot be dispatched automatically. However, the basic structure of the
macros is as described.

6 Summary and Conclusion

We have discussed a formal framework for verification of sequential programs in ACL2, and shown that
two widely used strategies, namely inductive invariants and clock functions are essentially equivalent in
sequential program verification. In particular, from proofs using one strategy one can get a proof in the
other strategy. The result holds for both partial and total correctness. We also showed how to use the two
proof strategies to verify different components of a single program and obtain a correctness result for the
composite whole.

As we discussed in Section 1, the two proof strategies have been in vogue in the literature and used widely
for verification of operationally modeled sequential programs. However, the strategies have been considered
fundamentally different; in fact, the wide use of clock functions in precisely characterizing the number of
steps to terminate has often been criticized. Our results establish that in defining clocks, no more or less
work is done than what a proponent of inductive invariants will do for verifying total correctness, and the
theorems proved are logically equivalent. Furthermore, no termination argument is required for defining
clocks for partial correctness theorems.

We do not advocate one proof strategy over another. In specific contexts, one strategy might seem more
natural and the proof obligations easier to dispatch. However, using our theorems and translation tools one
can then convert such a proof into a proof in the other strategy. Hence proofs of an individual component
of a program can be done using the strategy most natural for the component alone, without concern for
verification of other components.

Our techniques are applicable to operational models alone. There is another widely used program verifi-
cation technique called inductive assertions attributed principally to Floyd [11], Hoare [15], and Dijkstra [10].

26

The style of specification of sequential program semantics in this approach is fundamentally different: Pro-
grams are modeled not in terms of transformation of states, but rather as transformations of predicates. Our
techniques or framework cannot be directly used for reasoning about programs in this style of specification.
However, Moore [30] shows that at least in the context of partial correctness, one can model programs op-
erationally using our framework and verify correctness using inductive invariants, but incurring exactly the
proof obligations in the inductive assertions method. Thus our results, in addition to this, establish that
we can derive clock function proofs of partial correctness by incurring exactly the obligations for inductive
assertions. However, for our method, and indeed, also the method described in [30] to work, programs need
to be modeled operationally as described in our framework.

Our work also emphasizes on the power of quantification in the logic. We do not believe the equivalence
theorems hold for a logic that is not expressive enough to specify first order quantified expressions. However,
practical logics used for building general purpose theorem provers are all sufficiently expressive for the theo-
rems to hold. The expressiveness of quantification in ACL2 has gone largely unnoticed. In fact, while ACL2
does provide quantification using the Defchoose Principle, there is little automatic support for quantification
in the logic. Among ACL2 users, the focus has always been to define “constructive” functions and predicates.
The chief reasons provided for this focus are executability, and amenability for induction. The ACL2 logic is
executable; functions defined in the logic can be efficiently evaluated on concrete values. Further, a strength
of ACL2 as a theorem prover is in its capability to apply well-founded inductive arguments in reasoning
about recursive functions. While both these arguments are justified, experience with proofs about large
systems has shown that it is often useful to abstract the details of the particular system, and reason about
an abstract but generic system model of which the different concrete systems are “merely” instantiations
or elaborations. Most often, quantifiers are useful for reasoning about such generic models. For example,
consider a system model in some state s. Assume we want to discuss the property of “some state p from
which s is reachable”. To talk about such a state p it is convenient to posit, using quantification, that “some
such p exists”, and pick the witness for such a property as the specific p to reason about. We and others
have found this approach convenient in diverse contexts, for example in formalization of the notion of weakest
precondition [10] inside the operational models, and in reasoning about complex pipelined machines.

Acknowledgments

The authors greatly benefited from discussions with the ACL2 group at UT Austin. The first author
specifically thanks Jeff Golden, Matt Kaufmann, Hanbing Liu, and Rob Sumners, for numerous comments,
suggestions, and insights.

References

[1] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press, 1998.

[2] A.Beckmann, S. R. Buss, and C. Pollett. Ordinal Notations and Well-orderings in Bounded Arithmetic.
Annals of Pure and Applied Logic, pages 197203, 2003.

[3] R. S. Boyer, D. Goldschlag, M. Kaufmann, and J S. Moore. Functional Instantiation in First Order
Logic. In V. Lifschitz, editor, Artificial Intelligence and Mathematical Theory of Computation: Papers
in Honor of John McCarthy, pages 7-26. Academic Press, 1991.

[4] R. S. Boyer, M. Kaufmann, and J S. Moore. The Boyer-Moore Theorem Prover and Its Interactive
Enhancements. Computers and Mathematics with Applications, 29(2):27-62, 1995.

[5] R. S. Boyer and J S. Moore. A Computational Logic. Academic Press, 1975.

[6] R. S. Boyer and J S. Moore. Single-threaded Objects in ACL2. In S. Krishnamurthy and C. R.
Ramakrishnan, editors, Practical Aspects of Declarative Languages (PADL), volume 2257 of LNCS,
pages 9-27. Springer-Verlag, 2002.

27

[7]

[8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]

[20]

[21]

[22]

[23]
[24]

B. Brock, M. Kaufmann, and J S. Moore. ACL2 Theorems about Commercial Microprocessors. In
M. Srivas and A. Camilleri, editors, Proceedings of Formal Methods in Computer-Aided Design (FM-
CAD), pages 275-293. Springer-Verlag, 1996.

E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic Verification of Finite State Concurrent
Systems Using Temporal Logic. ACM Transactions on Programming Languages and Systems (ACM
TOPLAS), 8(2):244-263, April 1986.

E. M. Clarke, O. Grumberg, and D. A. Peled. Model-Checking. The MIT Press, Cambridge, MA,
January 2000.

E. W. Dijkstra. Guarded Commands, Non-determinacy and a Calculus for Derivation of Programs.
Language Hierarchies and Interfaces, pages 111-124, 1975.

R. Floyd. Assigning Meanings to Programs. In Mathematical Aspects of Computer Science, Proceed-
ings of Symposia in Applied Mathematcs, volume XIX, pages 19-32, Providence, Rhode Island, 1967.
American Mathematical Society.

G. L. Steele (Jr). Common Lisp the Language: Second Edition. Digital Press, 30 North Avenue,
Burlington, MA 01803, 1990.

W. Goerigk. Compiler Verification Revisited. In P. Manlolios, M. Kaufmann, and J S. Moore, editors,
Computer-Aided Reasoning: ACL2 Case Studies, pages 201-212. Kluwer Academic Publishers, June
2000.

M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL: A Theorem-Proving Environment
for Higher-Order Logic. Cambridge University Press, 1993.

C. A. R. Hoare. An Axiomatic Basis for Computer Programming. Communications of the ACM,
12(10):576-583, 1969.

M. Kaufmann, P. Manolios, and J S. Moore, editors. Computer-Aided Reasoning: ACL2 Case Studies.
Kluwer Academic Publishers, June 2000.

M. Kaufmann, P. Manolios, and J S. Moore. Computer-Aided Reasoning: An Approach. Kluwer
Academic Publishers, June 2000.

M. Kaufmann and J S. Moore. A Precise Description of the ACL2 Logic. 1997.

M. Kaufmann and J S. Moore. Structured Theory Development for a Mechanized Logic. Journal of
Automated Reasoning, 26(2):161-203, 2001.

M. Kaufmann and R. Sumners. Efficient Rewriting of Data Structures in ACL2. In Proceedings of Third
International Workshop on the ACL2 Theorem Prover and Its Applications, pages 141-150, Grenoble,
France, April 2002.

H. Liu and J S. Moore. Executable JVM Model for Analytical Reasoning: A Study. In ACM SIGPLAN
2003 Workshop on Interpreters, Virtual Machines, and Emulators, San Diego, CA, June 2003.

P. Manolios. Correctness of Pipelined Machines. In W. A. Hunt (Jr.) and S. D. Johnson, editors, Formal
Methods in Computer-Aided Design (FMCAD), volume 1954 of LNCS, pages 161-178. Springer-Verlag,
2000.

P. Manolios and J S. Moore. Partial Functions in ACL2. Journal of Automated Reasoning, To Appear.

P. Manolios and D. Vroon. Algorithms for Ordinal Arithmetic. In Nineteenth International Conference
on Automated Deduction (CADE), LNCS, pages 243-257. Springer-Verlag, July 2003.

28

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

F. J. Martin-Mateos, J. A. Alonso, M. J. Hidalgo, and J. L. Ruiz-Reina. A Generic Instantiation Tool
and a Case Study: A Generic Multiset Theory. In Proceedings of Third International Workshop on the
ACL2 Theorem Prover and Its Applications, pages 188-201, Grenoble, France, 2002.

J. McCarthy. Towards a Mathematical Science of Computation. In Proceedings of the Information
Processing Congress, volume 62, pages 21-28, Munich, West Germany, August 1962. North-Holland.

J S. Moore. Piton: A Mechanically Verified Assembly Language. Automated reasoning Series, Kluwer
Academic Publishers, 1996.

J S. Moore. Proving Theorems about Java-like Byte Code. In E. R. Olderog and B. Stefen, editors,
Correct System Design — Recent Insights and Advances, volume 1710 of LNCS, pages 139-162, 1999.

J S. Moore. Proving Theorems About Java and the JVM with ACL2. Marktoberdorf Summer School
— Lecture Notes, 2002.

J S. Moore. Inductive Assertions and Operational Semantics. In D. Geist, editor, Proceedings of
12th Advanced Research Working Conference on Correct Hardware Design and Verification Methods
(CHARME), LNCS. Springer-Verlag, October 2003.

S. Owre, J. M. Rushby, and N. Shankar. PVS: A Prototype Verification System. In D. Kapoor,
editor, 11th International Conference on Automated Deduction (CADE), volume 607 of Lecture Notes
in Artificial Intelligence, pages 748-752. Springer-Verlag, June 1992.

R. Sumners. An Incremental Stuttering Refinement Proof of a Concurrent Program in ACL2. In Second
International Workshop on ACL2 Theorem Prover and Its Applications, Austin, TX, October 2000.

W. A. Hunt (Jr). FM8501: A Verified Microprocessor. Springer-Verlag LNAT 795, 1994.

29

