
A Symbolic Simulation Approach to Assertional
Program Verification

John Matthews1, J Strother Moore2, Sandip Ray2, and Daron Vroon3

1 Galois Connections Inc., Beaverton, OR 97005.
2 Dept. of Computer Sciences, University of Texas at Austin, Austin, TX 78712.

3 College of Computing, Georgia Institute of Technology, Atlanta, GA 30332.

Abstract. We present a method for automating deductive proofs of
machine-level sequential programs modeled using operational semantics.
Given programs annotated by the user with assertions at cutpoints, we
show how to use the operational semantics of the machine to derive the
verification conditions by symbolic simulation. No verification condition
generator is required, nor is it necessary to manually specify an inductive
invariant for the machine model. Both partial and total correctness are
considered. The methodology has been formalized in both the ACL2 and
Isabelle theorem provers, and applied to verify programs on operational
machine models in ACL2.

1 Introduction

This paper presents a method for automating proofs of machine-level determin-
istic sequential programs modeled using operational semantics. In operational
semantics, instructions of a program are modeled by their effect on the states
of the underlying machine. Program verification involves proving that for every
execution of the program from a state satisfying a given precondition, the state
reached on termination satisfies the desired postcondition. Operational seman-
tics provide clarity and concreteness to the modeled program; for example, it is
possible in executable logics to run simulations to corroborate the model with
the program as it is executed on actual machines [1]. However, traditional me-
chanical verification of operational models is tedious and complicated. It requires
defining either an inductive invariant along with possibly a well-founded ranking
function for every machine state, or a clock function [2] that characterizes, for
each state, the number of machine transitions before termination. For realistic
programs, the manual effort involved in the process is substantial.

Research in program verification theory has tended to favor assertional rea-
soning. In this approach, the program is annotated with assertions (and ranking
functions) at certain cutpoints, that correspond to the entry and exit of basic
blocks. The semantics of the language is then used to generate from these an-
notations a set of formulas called verification conditions; the formulas guarantee
that whenever program control reaches a cutpoint the associated assertions hold
for the corresponding state. These formulas are then verified, possibly using a

theorem prover. Assertional reasoning in practice requires a verification condi-
tion generator (VCG) that generates verification conditions from an annotated
program. The approach is attractive since user interaction is limited to annotat-
ing the program cutpoints and proving the verification conditions; no inductive
invariant or clock function is necessary. However, the method is complicated by
the need to implement a VCG for the target language. A VCG has to encode
the language semantics, and often needs to perform non-trivial simplifications to
keep generated formulas manageable. Further, to formally reconcile the applica-
tion of a VCG with operational semantics, the VCG itself needs to be verified
with respect to the operational model. The implementation of an efficient VCG
for a realistic language, let alone its verification, is non-trivial.

In this paper, we present a methodology that combines the strengths of op-
erational semantics and assertional reasoning while avoiding their weaknesses.
Our method applies to operational models and hence affords concreteness and
executability. However, the method does not require manually specifying an in-
ductive invariant, ranking function, or clock for every reachable machine state.
Instead, the user annotates the program with assertions (and ranking functions)
at cutpoints, as in assertional reasoning. We show how to derive the verification
conditions mechanically from such annotated programs without a VCG.

At the heart of our approach is the observation that it is possible to me-
chanically specify a function that returns, for every cutpoint, the number of
machine steps necessary to reach the next subsequent cutpoint, if such a cut-
point exists. The function is specified by a tail-recursive definition, and hence
is uniformly definable in logics such as ACL2 [3] and Isabelle/HOL [4, § 9.2.3]
that are expressive enough to admit arbitrary tail-recursive equations. We use
this function to prove certain symbolic simulation rules which are then used to
derive verification conditions from the annotated program. The method unifies
and extends previous efforts by the individual authors to connect assertional rea-
soning with operational semantics [5–7]. In particular, our approach provides a
uniform methodology for proving both partial and total correctness. Our method
has been implemented in the ACL2 [8, 9] and Isabelle [4] theorem provers, and
has been applied in ACL2 to verify programs on existing operational machine
models. However, the paper itself assumes no familiarity with these systems. The
proof scripts are available from the web page of the third author [10].

The remainder of the paper is organized as follows. In Section 2, we provide
some background on operational and assertional proofs. We formally present our
approach in Section 3. In Section 4, we illustrate the application of our method
on two operational machine models. In Section 5, we discuss related research.
We conclude in Section 6 with a discussion on future research directions.

2 Background

Operational semantics involves modeling program instructions by their effect on
states of the underlying machine. One models each state as a tuple that specifies
values for all machine variables such as program counter (pc), registers, memory,

and so on. The meaning of a program is formalized by the “next state function”
next : S → S, where S is the set of states. Given a state s, next(s) returns
the state s′ obtained by executing the instruction pointed to by the pc in s.
For example, if the instruction is a LOAD, then s′ might be obtained from s by
pushing the contents of some variable on the stack and advancing the pc.

To model executions of the machine, one then defines the function run that
executes the machine for n steps.

run(s, n) ,

{
s if n = 0
run(next(s), n− 1) otherwise

Program correctness is formalized by three predicates, which we refer to as pre,
post, and exit. Predicates pre and post are the preconditions and postconditions.
Predicate exit specifies the “final states” of the machine. If the machine halts af-
ter execution of the program, then exit can be defined as: exit(s) , (next(s) = s).
More commonly, one is interested in verifying a program component or subrou-
tine, and exit recognizes the return of control from that component.

Partial correctness involves showing that if, starting from a state that satisfies
pre the machine reaches an exit state, then post holds for the exit state. Nothing
is claimed if the machine never reaches an exit state. Total correctness involves
showing both partial correctness and termination, that is, the machine, starting
from any state satisfying pre, eventually reaches an exit state. Formally, partial
correctness and termination are specified by the following formulas:

Partial Correctness: ∀s, n : pre(s) ∧ exit(run(s, n)) ⇒ post(run(s, n))
Termination: ∀s : pre(s) ⇒ (∃n : exit(run(s, n)))

In this paper, we assume that an operational model is provided by defining
next, pre, post, and exit. Traditional verification then typically follows one of
two approaches, namely inductive invariants or clock functions. For inductive
invariants, one defines a predicate inv and proves the following properties:

1. ∀s : pre(s) ⇒ inv(s)
2. ∀s : inv(s) ⇒ inv(next(s))
3. ∀s : inv(s) ∧ exit(s) ⇒ post(s)

These properties can be used to show partial correctness by first proving that
for any n ∈ IN and any state s, if inv(s) holds, then inv(run(s, n)) holds. For
termination, one additionally defines a ranking function m : S → W where set
W is well-founded under some relation ≺, and proves the following property:

4. ∀s : inv(s) ∧ ¬exit(s) ⇒ m(next(s)) ≺ m(s).

Well-foundedness then guarantees that the termination condition holds.
In the clock functions approach, the user defines a function clock : S → IN

and proves the following formulas as theorems:

1. ∀s : pre(s) ⇒ exit(run(s, clock(s)))
2. ∀s : pre(s) ⇒ post(run(s, clock(s)))

The two conditions imply total correctness; termination is guaranteed since for
every state s satisfying pre, there exists an n, namely clock(s), such that run(s, n)
is an exit state. To express only partial correctness, one weakens the clock formu-
las 1 and 2 above so that run(s, clock(s)) satisfies exit and post only if an exit state
is reachable from s. This is achieved by adding the predicate (∃n : exit(run(s, n)))
as a conjunct in the antecedent of each formula. It is known [6] that inductive
invariants and clock functions have the same logical strength. In this paper, the
correctness theorems generated are in terms of clock functions.

Assertional reasoning involves attaching assertions at certain cutpoints of the
program, which are entry and exit points of basic blocks. This notion is formal-
ized by two predicates on the set S, namely cut and assert: cut recognizes the
cutpoints and assert specifies the assertions that hold every time control reaches
a cut state. A VCG uses these assertions to generate a set of verification con-
ditions, which are then verified, possibly with a theorem prover. The guarantee
from the conditions is informally stated as follows: “Let s be a cut state satisfying
assert. Assume s is not an exit state. Let s′ be the next cut state in an execution
from s. Then assert(s′) must hold.” The guarantee implies that if some cutpoint
satisfies assert, then every subsequent cutpoint must satisfy assert until an exit
state is reached. Thus, if (i) initial and exit states are cutpoints, (ii) pre implies
assert at the initial states, and (iii) assert implies post at exit, then the first exit
state reached by an execution from a pre state must satisfy post. In classic asser-
tional methods [11, 12], the guarantee above is formalized by a logic of programs,
where the meaning of an instruction is specified by an axiom schema over pred-
icates on S. In an operational model, it is possible, though non-trivial, to show
that each axiom schema is consistent with the model. Finally, to prove termina-
tion, one defines a ranking function m : S → W , where W is a well-founded set,
and verification conditions are extended to show that for any cutpoint s that is
not an exit state, if s satisfies assert, and s′ is the next cutpoint after s, then
m(s′) ≺ m(s). Well-foundedness now guarantees termination.

There are parallels between assertional reasoning and inductive invariants.
The difference is that while inductive invariants involve assertions and ranking
functions at every state, assertional methods only require them at cutpoints.
Attaching assertions to every state requires a formal characterization of the
reachable states, which becomes very complex in practice. However, assertional
methods require two trusted tools, namely a theorem prover and a VCG. The
outcome of our work is that the benefits of assertional reasoning can be obtained
using symbolic simulation without a VCG.

3 Methodology

Assume that an operational model has been defined by functions next, pre, post,
and exit, and predicates cut and assert are specified. We first define the function
csteps that computes the number of steps to the first cutpoint from s.

csteps(s, i) ,

{
i if cut(s)
csteps(next(s), i + 1) otherwise

The definition is tail-recursive, and therefore logically consistent [3][4, §9.2.3].
If j is the minimum number of transitions required to reach a cutpoint from s,
then csteps(s, i) returns i + j; however, if no cutpoint is reachable from s, the
definition does not specify the value returned. We now formalize the notion of
“next cutpoint”. To do this, we first fix a dummy state d such that cut(d) ⇔ ∀s :
cut(s). Thus if there is some state that is not a cutpoint, then d is not a cutpoint.
State d can be uniformly defined using a choice operator. Then nextc(s) returns
the first cutpoint from s if some cutpoint is reachable, and otherwise d:

nextc(s) ,

{
run(s, csteps(s, 0)) if cut(run(s, csteps(s, 0)))
d otherwise

The following formulas are formal renditions of verification conditions generated
in assertional reasoning. In particular, C4 specifies that if the assertions hold
for some cutpoint s that is not an exit state, then they hold for the state s′ that
is the next cutpoint encountered in an execution from s.

C1: ∀s : pre(s) ⇒ cut(s) ∧ assert(s)
C2: ∀s : exit(s) ⇒ cut(s)
C3: ∀s : exit(s) ∧ assert(s) ⇒ post(s)
C4: ∀s : cut(s) ∧ assert(s) ∧ ¬exit(s) ⇒ assert(nextc(next(s)))

We now show how we can automatically generate correctness theorems from
C1-C4. We will subsequently return to the problem of automating proofs of
C1-C4.

To generate the correctness theorems, we define the function esteps as follows
to count the number of transitions up to the first exit state.

esteps(s, i) ,

{
i if exit(s)
esteps(next(s), i + 1) otherwise

If some exit state is reachable from s, then esteps(s, 0) returns the number of
transitions required to reach the first exit state. Indeed, from the discussions
in Section 2, esteps(s, 0) can be thought of as a generic clock function. Partial
correctness now follows from the following theorem.

Theorem 1. Given conditions C1-C4, the following formulas are theorems:

1. ∀s, n : exit(run(s, n)) ⇒ exit(run(s, esteps(s, 0)))
2. ∀s, n : pre(s) ∧ exit(run(s, n)) ⇒ post(run(s, esteps(s, 0)))

Proof sketch: To prove formula 1, note that if some exit state is reachable from
s, then esteps(s, 0) returns the first reachable exit state. To prove formula 2,
note that by C4, if assert holds for some cutpoint s, then assert holds for every
cutpoint reachable from s until (and including) the first exit state. Since, by C1,
a pre state satisfies assert, it follows that the first exit state reachable from a pre
state satisfies assert. Formula 2 then follows from C3. ut

For termination, assertional reasoning requires a ranking function m : S →
W , where the set W is well-founded under some relation ≺. C5 and C6 below
are formalizations of the termination condition.

C5: ∀s : cut(s) ∧ assert(s) ∧ ¬exit(s) ⇒ m(nextc(next(s))) ≺ m(s)
C6: ∀s : cut(s) ∧ assert(s) ∧ ¬exit(s) ⇒ cut(nextc(next(s)))

By the following theorem, total correctness follows from C1-C6.

Theorem 2. Given conditions C1-C6, the following formulas are theorems:

1. ∀s : pre(s) ⇒ exit(run(s, esteps(s, 0)))
2. ∀s : pre(s) ⇒ post(run(s, esteps(s, 0)))

Proof sketch: From Theorem 1 it suffices to show that from every state s sat-
isfying pre, there exists some reachable exit state. By C1 and C6, we can show
that for every non-exit cutpoint p reachable from s, there is a subsequently
reachable cutpoint p′. But, by C5 and well-foundedness of ≺, eventually one of
these cutpoints must be an exit state. ut

How do we automate proofs of C1-C6? The complicated constraints are C4
for partial correctness, and C4-C6 for total correctness. These are exactly the
constraints certified by a VCG in assertional proofs. To automate their proof
without a VCG, we use the following two properties of nextc, which can be
easily proven from the definitions of nextc and csteps.

SSR1: ∀s : ¬cut(s) ⇒ nextc(s) = nextc(next(s)).
SSR2: ∀s : cut(s) ⇒ nextc(s) = s.

For any state s such that a cutpoint is reachable from s in a fixed number
of transitions, the theorems above can be used to determine nextc(s). Formu-
las SSR1 and SSR2 can be treated as symbolic simulation rules whose appli-
cation causes repeated expansion of the function next to ascertain if a cutpoint
has been reached. If cutpoints correspond to entry and exit of the basic blocks of
the program, then for every cutpoint s, the next cutpoint must be only a fixed
number of transitions away; hence the rules are sufficient to prove C4-C6. Note
that if an insufficient number of cutpoints are provided, for example if some loop
is not cut, the rules might cause repeated expansion of next, leading to an infi-
nite loop. This is exactly the behavior anticipated in the corresponding situation
using assertional reasoning.

Theorems 1 and 2 and the symbolic simulation rules SSR1 and SSR2 have
been proved using ACL2 and Isabelle. The proofs are independent of the actual
definitions of next, pre, post, and exit; thus, the verification of concrete programs
can be automated by instantiating the theorems for concrete machine models.
Indeed, in ACL2, we have implemented a macro to generate partial (resp., total)
correctness theorems for concrete programs by performing the following steps:

1. Mechanically generate functions csteps, nextc, and esteps for the concrete
model and instantiate symbolic simulation theorems SSR1 and SSR2.

2. Use symbolic simulation to prove constraints C1-C4 (resp., C1-C6).
3. Prove correctness by instantiating Theorem 1 (resp., 2).

100 pushsi 1 *start*

102 dup

103 dup

104 pop 20 fib0 := 1;

106 pop 21 fib1 := 1;

108 sub n := max(n-1,0);

109 dup *loop*

110 jumpz 127 if n == 0, goto *done*;

112 pushs 20

113 dup

115 pushs 21

117 add

118 pop 20 fib0 := fib0 + fib1;

120 pop 21 fib1 := fib0 (old value);

122 pushsi 1

124 sub n := max(n-1,0);

125 jump 109 goto *loop*;

127 pushs 20 *done*

129 add return fib0 + n;

130 halt *halt*

Fig. 1. TINY Assembly Code for Generating the nth Fibonacci Sequence

4 Applying the Techniques

In this section, we demonstrate our method by verifying two illustrative programs
on separate concrete machine models in ACL2. The operational details of the
machines are irrelevant to this paper; the models were chosen simply because
they had been previously formalized in ACL2 and are accessible to us.

4.1 An Iterative Program: Fibonacci on the TINY Machine

Consider the iterative assembly language program shown in Fig. 1 to generate
the n-th Fibonacci number, based on this definition:

fib(n) ,

{
1 if n ≤ 1
fib(n− 1) + fib(n− 2) otherwise

The program runs on TINY [1], a stack-based operational machine model with
32-bit word size. TINY has been developed at Rockwell Collins as an example
of an analyzable, high-speed simulator. The program is a compilation of the
standard iterative implementation to compute the Fibonacci sequence. In Fig. 1,
the program counter values for the loaded program are shown to the left of
each instruction, and pseudo-code for the high-level operations is shown at the
extreme right of the corresponding rows. The two most recently computed values
of the Fibonacci sequence are stored in memory addresses 20 and 21, and the
loop counter n is maintained on the stack. Each loop iteration puts the sum of

Program Counter Assertions

start (tos(s) = k) ∧ (0 ≤ k) ∧ fib-loaded(s)

loop (mem[20] = fix(fib(k − tos(s)))) ∧ (0 ≤ tos(s) ≤ k)∧
(mem[21] = fix(fib(k − tos(s)− 1))) ∧ fib-loaded(s)

done (mem[20] = fix(fib(k))) ∧ (tos(s) = 0) ∧ fib-loaded(s)

halt (tos(s) = fix(fib(k)))

Fig. 2. Assertions for the Fibonacci Program on TINY

these numbers in address 20, and moves the old value of 20 to 21. Since TINY
performs 32-bit integer arithmetic, given a number k the program computes the
low-order 32 bits of fib(k). For this model, the cutpoints are states with program
counter values associated with labels *start*, *loop*, *done*, and *halt* that
correspond to program initiation, loop test, loop exit, and program termination
respectively. The predicates pre, post, and exit for this model are as follows.

– pre(k, s) , (pc(s) = ∗ start∗) ∧ (tos(s) = k) ∧ (0 ≤ k) ∧ fib-loaded(s)
– post(k, s) , (tos(s) = fix(fib(k)))
– exit(s) , (pc(s) = ∗halt∗)

Here pc(s) and tos(s) return the program counter and top of stack at state s,
and fix(n) returns the low-order 32 bits of n. Predicate fib-loaded holds at state
s if the program in Fig. 1 is loaded in the memory starting at location *start*.
Predicates pre, post, and exit specify the classical correctness conditions for a
Fibonacci program: pre specifies that a non-negative integer k which is small
enough to fit into the machine word is at the top of stack at program initiation,
and post specifies that upon termination, fix(fib(k)) is at the top of the stack.

The assertions associated with the different cutpoints are shown in Fig. 2.
They are fairly traditional. The key assertion is the loop invariant which specifies
that the two most recently computed numbers stored at addresses 20 and 21 are
fix(fib(k−n)) and fix(fib(k−n−1)) respectively, where n is the loop count stored
at the top of the stack when the control reaches the loop test.

For total correctness, we also need to specify a ranking function. The ranking
function m we use maps the cutpoints to the well-founded set of ordinals below
ε0. Note that for this program it is possible to specify a ranking function that
maps cutpoints to natural numbers; ordinals are used merely for succinctness
and because of the extensive support provided for ordinal operations in ACL2
in the context of termination proofs [13]. Function m is defined as:

m(s) ,

{
0 if exit(s)
(ω ·o tos(s)) +o |∗halt∗ − pc(s)| otherwise

where ω is the first infinite ordinal, and ·o and +o are ordinal multiplication and
addition operators. Informally, m can be viewed as a lexicographic ordering of
the loop count and the difference between the location *halt* and pc(s).

class Factorial {

public static int fact (int n) {

if (n > 0) return n*fact(n-1);

else return 1;

}

}

Fig. 3. Java Program for Computing Factorial

Method int fact (int)

0 ILOAD_0 *start*

1 IFLE 12 if (n<=0) goto *done*

4 ILOAD_0

5 ILOAD_0

6 ICONST_1

7 ISUB

8 INVOKESTATIC #4 <Method int fact (int)> x:= fact(n-1)

11 IMUL x:= n*x

12 IRETURN *ret* return x

13 ICONST_1 *done*

14 IRETURN *base* return 1

Fig. 4. M5 Bytecode for the Factorial Method

4.2 A Recursive Program: Factorial on the JVM

We now apply our method to verify JVM bytecodes for the Java factorial method
fact shown in Fig. 3. The machine model we use is M5 [14], which has been de-
veloped at the University of Texas to formally reason about JVM bytecodes. M5
provides operational semantics for a significant fragment of the JVM in ACL2. It
specifies 138 bytecodes, and supports features like invocation of static, special,
and virtual methods, inheritance rules for method resolution, multithreading,
and synchronization via monitors. The bytecodes for fact, shown in Fig. 4, are
produced by disassembling output of javac, and can be loaded on to M5.

The factorial method is recursive. For recursive methods, the characterization
of cutpoints must take into account not only the program counter but also the
“depth” of recursive invocations. On the JVM, an invocation involves recording
the return address in the current call frame of the executing thread and pushing
a new call frame with the invoked method on the call stack. The precondition,
postcondition, assertions etc., for the fact method are described below.

– The precondition specifies that some thread th is poised to execute the
instructions of the fact method invoked with some 32-bit integer argument
n, the call stack of th has height h, and the pc is at location labeled *start*.

– A state is a cutpoint if either (i) the call stack of th has height less than h
(that is, the initial invocation has been completed), or (ii) the pc is in one
of the locations labeled *start*, *ret*, or *base* (that is, the program is
about to initiate execution of, or return from, the current invocation).

– A state s is an exit state if the call stack of th has height less than h.
– The postcondition specifies that fix(mfact(n)) is on the top of the operand

stack of th, where mfact is the standard recursive definition of factorial:

mfact(n) ,

{
1 if n ≤ 1
n ·mfact(n− 1) otherwise

– Let the height of the call stack for th at some cutpoint h′. If h′ < h,
the assertions specify merely that the postcondition holds. Otherwise, let
i := (n − h′ + h). We assert that (i) the top i frames in the call stack
correspond to successive invocations of fact, (ii) the return addresses are
properly recorded on all the frames (other than the frame being executed),
and (iii) if the pc is at location *ret* or *base* (that is, poised to return
from the current frame), then fix(mfact(i)) is about to be returned.

The height of the call stack merely tracks the “recursion depth” of the execution.
Further, since the assertions involve characterization of the different call frames
in the call stack of the executing thread, one might be inclined to think that
specification of assertions for recursive programs require careful consideration of
the operational details of the JVM. In fact, that is not the case. The key insight
is to recognize that the next instruction on a method invocation is not the
following instruction on the byte stream of the caller but the first instruction of
the callee. The instruction following the invocation is executed immediately after
return from the callee. Hence one only needs to ensure that (i) the assertions
at invocation can determine the execution of the callee, and (ii) the assertions
at return can determine the subsequent execution of the caller. However, for a
recursive program the caller and the callee are “copies” of the same method, and
so the assertions must be a symmetric characterization of all call frames invoked
in the recursive call. For the factorial program, the characterization is merely
that in the i-th recursive call to fact, the system computes fix(mfact(i)), and
this value is returned from the callee to the caller on return.

For termination, our ranking function m maps each cutpoint s to an ordinal
representing the lexicographic pair consisting of the invocation argument for the
current call frame and the height of the call stack at s. Note that along the
successive recursive invocations of fact, the argument of the recursive calls de-
creases, while along the successive returns, the depth of the call stack decreases.

5 Related Work

Operational semantics were introduced by McCarthy [15]. The notion of as-
sertions was used by Goldstein and von Neumann [16], and Turing [17], and
made explicit by Floyd [18], Hoare [11], and Dijkstra [12]. Hoare and Dijkstra
introduced program logics to provide a formal basis for the assertional method.
King [19] wrote the first mechanized VCG. In mechanical theorem proving, op-
erational semantics has been used extensively for program verification. Opera-
tional semantics has been particularly successful in ACL2 and its predecessor,

Nqthm, which have been used for verifying programs in several large machine
models [2, 20, 21]. Operational models have also been used in Isabelle/HOL for
formalization of Java and the JVM [22], and in PVS to model graphical state
chart languages [23]. Assertional methods have been applied, using a verified
VCG, to reason about pointers in Isabelle [24], and C programs in HOL [25].

Our work is influenced by two related previous efforts by the individual au-
thors, namely Moore [5] for verifying partial correctness, and Matthews and
Vroon [7] for showing termination. Indeed, a key motivation of our work has
been to extend these two methods to uniformly handle both partial and total
correctness. To our knowledge, the method of [5] is the first to integrate asser-
tional reasoning with operational semantics without requiring a verified VCG.
However, while we design symbolic simulation rules to determine the subsequent
cutpoint given a state s, the method of [5] defines a tail-recursive predicate inv:

inv(s) ,

{
assert(s) if cut(s)
inv(next(s)) otherwise

The method then attempts to prove that inv is an inductive invariant, and re-
duces the proof to the constraint C4 discussed in Section 3. For a cutpoint
s statisfying assert, the definition of inv is used as a symbolic simulation rule
to determine if assert holds for a subsequent cutpoint s′; symbolic simulation
generates the same proof obligation as ours. However, this approach cannot be
applied for termination, since there is no symbolic simulation rule to determine
the value of the ranking function at s′. We overcome this limitation by con-
structing symbolic simulation rules to compute s′ directly.

On the other hand, the method of [7] specifies symbolic simulation rules
similar to ours, based on tail-recursive clock functions, which are then used in
termination proofs. Our work differs in the treatment of assertions and cutpoints.
For example, in [7], a single predicate at-cutpoint characterizes the cutpoints to-
gether with their assertions. However, this is inadequate for partial correctness
proofs. The problem is that conflating assertions with cutpoints causes function
nextc to “skip past” cutpoints that do not satisfy their corresponding assertion,
on their way to one that does. However, one of those skipped cutpoints could
be an exit state, and so the postcondition can not be inferred. Thus partial
correctness becomes unprovable. Characterization of the cutpoints must be dis-
entangled from the assertions in order to verify partial and total correctness in
a unified framework.

6 Conclusion and Future Work

We have presented a method for verifying sequential programs modeled using op-
erational semantics. The method requires no VCG implementation or invariant.
Instead, the user annotates the program with assertions and ranking functions
at cutpoints, exactly as in assertional reasoning. Symbolic simulation is used
to generate and prove the verification conditions, which are then traded for
a correctness theorem by automatically generating a tail-recursive clock. Both

partial and total correctness are handled uniformly. The approach is attractive
for several reasons. First, the use of operational models affords validation with
respect to actual programs via simulation, and specification of correctness in a
general-purpose mathematical logic. Secondly, assertional reasoning factors out
the complexity of operational details and enables the user to focus on key pro-
gram assertions. Indeed, it is these operational details that often make the task
of verifying programs on realistic machine models daunting. For example, an in-
ductive invariant that “persists” along a method invocation on the JVM needs to
consider side effects to many state components like the heap, thread table, and
class table. In our approach, the only manual assistance required is the definition
of the assertions and ranking functions. Third, implementing an efficient reliable
VCG for any realistic language, let alone its verification, is a substantial enter-
prise. Further, a VCG needs to implement several theorem proving techniques
to generate manageable formulas. By directly generating verification conditions
in the logic of the theorem prover, we afford reuse and extension of existing
theorems and proof strategies. Finally, since we generate correctness theorems
uniformly in terms of clock functions, it is possible to mechanically compose
proofs of different program components [6].

We plan to apply this method to verify programs on realistic machine models.
A key target application is the high-assurance certifying compiler being devel-
oped at Galois Connections Inc. to compile programs in CryptolTM specification
language [26] into object code for the Rockwell Collins AAMP7TM microproces-
sor. The goal is to generate, in addition to object code, a proof to certify that
the generated code implements the Cryptol semantics of the source program;
we plan to apply this approach to automatically produce verification conditions
for showing correctness of the object code with respect to an existing formaliza-
tion of AAMP7 in ACL2. We have also implemented the method in the Isabelle
theorem prover [4], although we have not yet applied it to any examples.

We have assumed in this paper that the programs are deterministic, that
is, the next state of the machine can be specified as a function of the current
state. In non-deterministic programs that arise, for example, in asynchronous
distributed systems, one specifies the “possible next states” which are defined
by a transition relation. Our method cannot be directly used for verification of
such systems. In future work we plan to represent non-deterministic systems
using a linear-time path semantics; our method should then be applicable.

Acknowledgements We thank Jared Davis, Dave Greve, David Hardin, Matt
Kaufmann, Robert Krug, Jeff Lewis, Hanbing Liu, Pete Manolios, Mark Shields,
Matt Wilding, Thomas Wahl, and Bill Young, for comments, suggestions, and
advice.

References

1. Greve, D., Wilding, M., Hardin, D.: High-Speed, Analyzable Simulators. In Kauf-
mann, M., Manolios, P., Moore, J.S., eds.: Computer-Aided Reasoning: ACL2 Case
Studies, Kluwer Academic Publishers (2000) 89–106

2. Boyer, R.S., Moore, J.S.: Mechanized Formal Reasoning about Programs and Com-
puting Machines. In Veroff, R., ed.: Automated Reasoning and Its Applications:
Essays in Honor of Larry Wos, MIT Press (1996) 141–176

3. Manolios, P., Moore, J.S.: Partial Functions in ACL2. Journal of Automated
Reasoning 31 (2003) 107–127

4. Nipkow, T., Paulson, L., Wenzel, M.: Isabelle/HOL: A Proof Assistant for Higher
Order Logics. Volume 2283 of LNCS. Springer-Verlag (2002)

5. Moore, J.S.: Inductive Assertions and Operational Semantics. In Geist, D., ed.:
CHARME 2003. Volume 2860 of LNCS., Springer-Verlag (2003) 289–303

6. Ray, S., Moore, J.S.: Proof Styles in Operational Semantics. In: FMCAD 2004.
LNCS 3312, Springer-Verlag (2004) 67–81

7. Matthews, J., Vroon, D.: Partial Clock Functions in ACL2. In Kaufmann, M.,
Moore, J.S., eds.: 5th ACL2 Workshop. (2004)

8. Kaufmann, M., Manolios, P., Moore, J.S.: Computer-Aided Reasoning: An Ap-
proach. Kluwer Academic Publishers (2000)

9. Kaufmann, M., Manolios, P., Moore, J.S., eds.: Computer-Aided Reasoning: ACL2
Case Studies. Kluwer Academic Publishers (2000)

10. (http://www.cs.utexas.edu/users/sandip/)
11. Hoare, C.A.R.: An Axiomatic Basis for Computer Programming. Communications

of the ACM 12 (1969) 576–583
12. Dijkstra, E.W.: Guarded Commands, Non-determinacy and a Calculus for Deriva-

tion of Programs. Communications of the ACM 18 (1975) 453–457
13. Manolios, P., Vroon, D.: Algorithms for Ordinal Arithmetic. In: 19th International

Conference on Automated Deduction. LNAI, Springer-Verlag (2003) 243–257
14. Moore, J.S.: Proving Theorems about Java and the JVM with ACL2. In Broy, M.,

Pizka, M., eds.: Models, Algebras, and Logic of Engineering Software, Amsterdam,
IOS Press (2003) 227–290

15. McCarthy, J.: Towards a Mathematical Science of Computation. In: Proceedings
of the Information Processing Congress. Volume 62., North-Holland (1962) 21–28

16. Goldstein, H.H., J. von Neumann: Planning and Coding Problems for an Elec-
tronic Computing Instrument. In: John von Neumann, Collected Works, Volume
V, Pergamon Press, Oxford (1961)

17. Turing, A.M.: Checking a Large Routine. In: Report of a Conference on High Speed
Automatic Calculating Machine, University Mathematical Laboratory, Cambridge,
England (1949) 67–69

18. Floyd, R.: Assigning Meanings to Programs. In: Mathematical Aspects of Com-
puter Science, Proceedings of Symposia in Applied Mathematcs. Volume XIX.,
Providence, Rhode Island, American Mathematical Society (1967) 19–32

19. King, J.C.: A Program Verifier. PhD thesis, Carnegie-Melon University (1969)
20. Moore, J.S.: Piton: A Mechanically Verified Assembly Language. Kluwer Academic

Publishers (1996)
21. Yu, Y.: Automated Proofs of Object Code for a Widely Used Microprocessor. PhD

thesis, University of Texas at Austin (1992)
22. Strecker, M.: Formal Verification of a Java Compiler in Isabelle. In Voronkov, A.,

ed.: CADE 2004. LNCS 2392, Springer-Verlag (2002) 63–77
23. Hamon, G., Rushby, J.: An Operational Semantics for Stateflow. In: FASE 2004.

LNCS 2984, Springer-Verlag (2004) 229–243
24. Mehta, F., Nipkow, T.: Proving Pointer Programs in Higher Order Logic. In

Baader, F., ed.: CADE 2003. LNAI 2741, Springer-Verlag (2003) 121–135
25. Norrish, M.: C Formalised in HOL. PhD thesis, University of Cambridge (1998)
26. (http://www.cryptol.net)

