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Abstract—We consider the problem of developing functionally
safe suspension components and sub-assemblies for automotive
systems. Safety is prominent in all modes of transportation.
Failure of suspension components represents a significant reason
for car accidents. We develop an IoT-based continuous monitor-
ing solution to predict the impending degradation of suspension
through real-time detection and analysis of abnormal vibrations
in these parts in real-time. Our system includes onboard sensors
and computation modules for real-time detection, together with
an offline analyzer in the cloud for the refinement of prediction
accuracy through the lifetime of the part. We present a prototype
of the system and discuss the architecture and implementation
concerns involved in its design.

I. INTRODUCTION

The goal of safety in an automotive system is to ensure
that failure in an electrical or mechanical component does
not result in harm to the occupants of the vehicle or its
environment. Obviously, safety is a foremost concern for
modern vehicles, given the potential for a failed component
to cause catastrophic accidents resulting in loss of human
life and significant damage to infrastructure. Over the last
decade, safety challenges have been exacerbated by the trend
of increasing infusion of autonomous features augmenting and
replacing the actions of a human operator. As the complexity
of both electro-mechanical and electronic systems increases
in automotive systems, it is crucial to design each component
with safety concerns from the ground up. Most vehicular
failures, particularly those involving mechanical components,
start with the quality degradation of a single component, pos-
sibly due to fatigue. If not detected early, the degradation can
result in drastically reduced service life of other downstream
components, eventually resulting in a system failure. Early
detection of a degrading part (and corresponding mitigation)
can obviously prevent a routine problem with a part from
turning into a system-level safety concern. However, it is
non-trivial to perform such early detection. In particular, as
systems are getting integrated with sophisticated infotainment
components as well as autonomous and semi-autonomous
features, it is getting harder for the occupant of the op-
erator to pay significant attention to minor inconsistencies
that could divulge the (e.g., subtle acoustic patterns resulting
from increased friction with an aging component, or slight
loss of smoothness in driving functionality). On the other
hand, estimating impending fatigue in a part statically, through
analysis of material properties of the part and its dependencies
during vehicular operation is also non-trivial.

In this paper, we consider the problem of designing func-
tionally safe vehicular suspension systems. According to
National Highway Traffic Safety Administration, failure in
suspension represents a significant reason for car accidents
[1]. Our approach is based on the observation that degradation
in suspension can be estimated by monitoring the amplitude
of stresses in the sub-assembly affected by the suspension
system. Based on this observation, we introduce an IoT
solution that monitors motion and vibration data. The data
is logged into the cloud, where it can be used for prediction
of suspension quality, as well as subsequently by technicians
for analysis of root causes of failures. We are not aware of
any other safety system for suspension systems that enables
real-time detection of quality degradation through continuous
monitoring. In addition to addressing safety concerns resulting
from suspension failures, the system can facilitate the design
of weight-optimized suspension mechanisms that impact the
environment positively.

II. RELATED WORK

There have been several studies that estimate the fatigue life
of a variety of critical infrastructures, including bridges [2],
buildings [3], rolling stock [4], aircraft [5], and automotive
components [6]. Transportation applications such as aerospace
[7] and automotive requires estimating the life of components,
considering that they could involve life-threatening risks. Ling
et al. [8] and Kulkarni et al. [9] discussed two critical aspects
of a typical Structural Health Monitoring System (SHM)
system used for monitoring a fatigue crack: (1) a procedure to
predict macrocrack initiation and (2) a technique to quantify
the effect of imperfect inspections. In transportation systems,
especially terrestrial systems, there have been many studies
[4], [10] where fatigue life was evaluated for rolling stock
components such as railway bogies and axles. Samad et al.
[11] and Moon et al. [6] discussed the methods to estimate
fatigue life calculation for hyperelastic materials like rubber
used in highly loaded components in automobiles.

There is less work on an onboard system that evaluates the
life of safety-critical assemblies like that of suspension and
steering components. One exception is from Hu et al. [12];
however, it does not employ onboard evaluation and instead
uses IoT for verification and better accuracy to notify the
driver of the remaining life of these components. Both Hu et
al.and Luo et al. [13] used a long short-term memory (LSTM)
neural network to predict partial damage levels pertaining to



Figure 1. High level architecture

automotive suspension durability. Their work is driven by the
need for structural health monitoring to have high prediction
accuracy and quick computation. Ijagbemi et al. [14] designed
and optimized a suspension system to reduce weight by
simulating the assembly for fatigue life using Finite Element
Analysis (FEA). Internet of Things (IoT) has the potential
to be crucial for automotive health monitoring by connecting
users, processes, data, and things through networks. Shafi et
al. [15] presented an IoT-based architecture for remote vehicle
health monitoring and prognostic maintenance that is based on
real-time data collected while the vehicle is moving.

III. ARCHITECTURE

A. System Design

The system includes a collection of accelerometer sensor
modules that communicate through a hierarchy of nodes with
a cloud-based infrastructure for ML-based data analysis. We
divide the overall prototype into three primary sections: 1) sen-
sory activity, 2) network protocol, and 3) cloud analysis. Fig.
1 shows the high-level architecture of our proposed system.
Since the goal is to detect suspension motion for preventive
measures, the right and left suspensions will be integrated with
accelerometer sensor modules in the vehicle. The sensory data
is acquired through multiple end nodes (i.e., WiFi modules)
and transmitted via a publish-subscribe network protocol. Note
that low power consumption is typically a crucial requirement
when connecting locally networked sensors to a coordinator
node; to achieve that, the system can be configured to employ a
portable computer, an ECU, or a small single-board computer
(e.g., Raspberry Pi) that can act as the bridge between the
sensor network and the cloud with respect to the vehicular
environment.

B. Workflow

Fig. 2 depicts the workflow process of our system. The
system is designed to smoothly integrate with the automotive
suspension design and deployment process. In particular, one
crucial step in suspension design involves the static and
dynamic analysis of loads on the components affected by

Figure 2. Workflow process model

the suspension. The manufacturer analyzes the loads on each
component for different loading conditions. These are logged
into a file that correlates the motion data directly to the fatigue
life for that particular load. The onboard component of the
safety system exploits this data log to translate motion and
displacement data to cycle life. The suspension motion upon
usage is compared with the log and fatigue life for each
displacement and fed to the Rainflow-Counting algorithm [16].
The algorithm analyzes the load profiles and lets the user know
the remaining life of the system. On the other hand, packets of
data are uploaded to the cloud at regular intervals and based
on the availability of the network to provide better feedback
and prognosis. Additionally, the same spectral data is used
to analyze vibrations, and any abnormal vibrations that are
detected would be notified to the driver immediately.

IV. PROTOTYPE IMPLEMENTATION AND ANALYSIS

To enable exploration of the actual functioning of an auto-
motive suspension, we used a double wishbone configuration
as part of an independent rear suspension. We chose a quarter-
car model, hence one of the four axles is simulated. The
model is not optimized for any specific stress values since this
model only requires the kinematics involved for a particular
suspension geometry. To capture the motion data, we used an
MPU6050 accelerometer, gyroscope, and temperature module.
The MPU6050 is mounted on the outer side of the upright



Figure 3. Connection diagram of our prototype data acquisition

Figure 4. Stored Sensor Data on Cloud

for easy access and inspection. We employ a NodeMCU
(ESP8266) microcontroller for processing accelerometer sen-
sor data (connection diagram shown in Fig. 3). It is also
programmed to send data to the Raspberry Pi, which acts
as a coordinator node in our case. The second node is also
introduced to show the effects of another axle. A crucial part
of communication is sending the acquired data wirelessly to
the coordinator node and beyond. We use a standard MQTT
connection using two components: (1) ESP8266 (publisher)
and (2) Raspberry Pi (broker and subscriber).

Data generated from the accelerometer can be interpreted
as both acceleration and vibration of the vehicle. Fig. 4 shows
how the sensory data are stored in the sensor field of the
server’s private channel. Data is stored in a 2-axis graph in
the channel. Each of the input instances is logged with the
timestamp of the record. Data storage in the cloud allows for
easy access to live-stream data. Users can observe the trend
of their car’s data from the ThingView app. We integrate this
setup with a front-end interface for monitoring the sensor data
coming in from the end devices on every insertion to the cloud
server. When the inserted data crosses the threshold value, the
cloud server executes the react analysis of the sensor data.

V. CONCLUSION AND FUTURE WORK

We presented a functionally safe automotive suspension de-
sign through an IoT-based monitoring system with integrated
sensor, compute, and communication elements. The system

can capture (and differentiate between) normal and abnormal
values and predict the degradation of the suspension system.
We discuss the architectural elements of the system and a
prototype implementation. Furthermore, since the analytics
infrastructure is cloud-based, it enables the flexibility of inte-
grating sophisticated ML algorithms based on domain-specific
insights.

In future work, we plan to use our system with suspension
components made of tested isotropic materials. We would like
to extract stress data based on displacements and compare
the simulations using finite element analysis. Additionally, we
plan to use the same setup for other auto parts, including
steering and transmission systems.
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