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Abstract— We present a framework for the specification and
verification of reactive concurrent programs using general-
purpose mechanical theorem proving. We define specifications
for concurrent programs by formalizing a notion of refinements
analogous to stuttering trace containment. The formalization
supports the definition of intuitive specifications of the intended
behavior of a program. We present a collection of proof rules that
can be effectively orchestrated by a theorem prover to reason
about complex programs using refinements. The framework is
integrated with the ACL2 theorem prover and we demonstrate
its use in the verification of several concurrent programs in ACL2.

I. OVERVIEW

Reactive concurrent programs consist of interacting pro-
cesses which perform ongoing, non-terminating computations
while receiving stimulus from an external environment. The
complexity induced by these interactions makes concurrent
programs particularly error-prone, with bugs difficult to de-
tect and diagnose. With pervasive deployment of multicore
and multiprocessor systems, there is critical need for robust
methodologies for verification of reactive concurrent pro-
grams.

This paper presents a verification framework for concurrent
programs in a general-purpose theorem prover. We model
concurrent program implementations as (possibly unbounded-
state) labeled transition systems, and our verification method-
ology entails proving that the implementation is a refinement
of a simpler system that serves as the specification. We develop
(1) a formal notion of correspondence for relating implemen-
tation and specification, (2) a collection of formalized proof
rules that reduce the verification to the definition and proof of
an invariant, and (3) an integrated predicate abstraction tool
to automate the latter proof. Our framework is mechanized
with the ACL2 theorem prover.

The notion of correspondence we use is stuttering trace con-
tainment: “For each (infinite) execution of the implementation
there is an (infinite) execution of the specification with the
same observable behavior up to finite stuttering.” Stuttering
trace containment and related notions of stuttering simulation
and bisimulation have been studied extensively in the context
of semantics for reactive systems [1], [2]. However, there
has been little work on formalizing the notion in a theorem
prover for verifying program implementations. Instead such
notions have been argued informally (e.g., to metatheoretically
justify proof rules built into the reasoning process [3], [4], [5].)

Unfortunately, that approach does not afford sound extension
of the repertoire of proof rules. With our framework, one
can verify a new proof rule and use it subsequently in
the verification of concrete programs. We found extensibility
critical for handling diverse programs each with its own unique
idiosyncrasies.

Developing the framework in ACL2 is non-trivial, in part
because of ACL2’s limited expressivity. The logic is first-
order, and does not permit infinitary objects. The logic does al-
low partially defined, constrained, and uninterpreted functions,
which can be used to simulate a limited amount of higher-
order reasoning sufficient for our purpose. In our work, logical
limitations manifest in the formalization of trace containment
(cf. Section II). However, once this formalization is completed,
verification of individual programs reduces to a first-order
problem for which ACL2 is suitable. In addition, ACL2
provides several features (e.g., an ANSI-standard program-
ming language as the formal language for defining systems,
support for efficient simulation, and the ability to handle large
formulas) which are invaluable for scalability.

Preliminary scripts supporting the work described
here are distributed with ACL2 in the directory
books/concurrent-programs.

II. STUTTERING TRACE CONTAINMENT IN ACL2

A reactive system M is described by three functions, namely
M.init(), M.next(s, i), and M.label(s), which correspond
to the initial state, state transition function (that takes a
current state s and an environmental stimulus i), and state
labeling function respectively. Given a unary function env
such that env(k) represents the stimulus at time k, the
function M.exec[env](n) below returns the state of M after
n transitions.

Definition Schema.
M.exec[env](n)

,


M.init() if (n = 0)
M.next(M.exec[env](n− 1), env(n− 1)) otherwise

The use of the unconventional names above illustrates one
of the “tricks” involved in formalizing reactive systems in the
logic of ACL2. In ACL2 logic, an infinite sequence of inputs
must be modeled as a function over a natural-valued time;
however, since functions in the logic cannot take arbitrary
functions as arguments, the notion of an infinite execution of
a system must be written as a schema rather than as a single,



closed-form definition. A consequence is that for each function
env, the function M.exec[env] represents an execution of
system M .

Details of the translation of a concurrent program definition
into this formulation are beyond the scope of this paper.
But the basic idea is that for a given concurrent program,
the definitions of M.init and M.next would correspond to
the initial state and state transformations derived from the
execution of the concurrent program within the context of the
formal semantics of the programming language. The definition
of M.label is determined by the components of the program
relevant to the notion or specification of correct execution of
the concurrent program.

Trace containment relates each execution of an implemen-
tation I with some execution of the specification S. We
formalize this notion as follows. Let uenv be an uninterpreted
function; thus, I.exec[uenv] represents an arbitrary execution
of I . Ignoring stuttering for the moment, proving trace con-
tainment reduces to the obligation of defining a (concrete)
function cenv such that the following condition is satisfied.
Trace Containment Obligation.
I.label(I.exec[uenv](n)) = S.label(S.exec[cenv](n))

We augment the above notions with provision for stuttering
by restricting the stimulus functions. Informally, we view the
environment stimulus env as a pair of functions 〈stim, ctr〉,
where the second component is simply a counter controlling
the number of stuttering steps and the first component is the
actual stimulus. Formally, given a system M , the notion of a
stuttering trace of M for the environmental stimulus is given
by M.trace[stim, ctr] below.
Definition Schema.
M.trace[stim, ctr](n) ,8>>>>><>>>>>:

M.init() if n = 0

M.trace[stim, ctr](n− 1) if ctr(n) ≺ ctr(n− 1)

M.next(M.trace[stim, ctr](n− 1),
stim(n− 1)) otherwise

Here ≺ is a well-founded relation. M.trace is analogous to
M.exec, except that when ctr(n− 1) ≺ ctr(n), M.trace stut-
ters, ignoring the stimulus. Well-foundedness of ≺ guarantees
that stuttering is finite.

The notion of stuttering trace containment is then given by
the following proof obligation; as with trace containment, ust
is an uninterpreted function and the obligation is to come up
with cst. We will use (S B I) to mean that S is a refinement
of I under this obligation.
Stuttering Trace Containment Obligation.
I.label(I.trace[ust,ctr](n)) = S.label(S.trace[cst,ctr](n))

The definitions above are difficult to use directly in the
logic of ACL2 for reasoning about concurrent programs. For-
tunately, we can develop proof rules to alleviate the problem.
Among the rules available in our framework are the following:
• Stepwise Refinement Rule reduces the obligation (SBI)

to the definition of an intermediate model M and showing
(S B M) and (M B I).

• Single-step Refinement Rule reduces the proof of (SBI)
to a collection of proof obligations that do not require
reasoning about more than one transition of any system
(see below).

• Local Reduction Rule collapses local transitions (tran-
sitions involving only local variables of a process in a
system) to a single atomic step.

• Oblivious Rule permits augmenting a system with aux-
iliary history and prophecy variables.

• Pipeline Rule replaces overlapped concurrent executions
of successive transitions into a sequence of transitions
executed in program order.

In practice, the main “workhorse” for verification of concur-
rent programs is single-step refinement. The rule is inspired
by (and derived from) corresponding rules for well-founded
bisimulation [5] and is a critical proof rule in our framework.
Given two systems S and I, we will say that I is a single-
step refinement of S, written (SDI) if and only if there exist
functions inv, skip, rep, rank, pick, and good such that the
following formulas are theorems.

ST1: good(s) ⇒ I.label(s) = S.label(rep(s))
ST2: good(s) ∧ skip(s, i) ⇒ rep(I.next(s, i)) = rep(s)
ST3: good(s) ∧ ¬skip(s, i) ⇒ rep(I.next(s, i)) =

S.next(rep(s), pick(s, i))
ST4: ordinal-p≺(rank(s))
ST5: good(s) ∧ skip(s, i) ⇒ rank(I.next(s, i)) ≺

rank(s)
ST6: inv(I.init())
ST7: inv(s) ⇒ inv(I.next(s, i))
ST8: inv(s) ⇒ good(s)

Single-step Refinement Rule.
Derive (S B I) from (S D I)

Informally, given a state s of I, rep(s) returns a corresponding
state of S with same label. The predicate skip governs
stuttering. If skip(s, i) is false then ST3 guarantees that S has
a transition that matches the transition of I from state s on
input i, otherwise ST2 guarantees that S can stutter. ST4, ST5
and well-foundedness of the ordinals guarantee that stuttering
is finite. ST6 and ST7 specify that the predicate inv is an
inductive invariant of I. That is, inv holds at I.init() and if
it holds at a state s then it holds after any transition from s.
ST8 stipulates that the predicate good is logically implied by
inv. Thus good must hold for all reachable states of I. This
allows us to assume good(s) in the hypothesis of conditions
ST1-ST5.

The single-step refinement rule reduces essentially the ver-
ification problem to the definition and proof of an inductive
invariant inv as follows. The proof of (S D I) is broken into
two phases.

1) Define good, rep, skip, pick, and rank and prove
obligations ST1-ST5.

2) Define inv and prove ST6-ST8.
In practice, the first phase is relatively straightforward. For
instance, assume that I is a multiprocess system implementing
a cache coherence protocol and that S is a system of processes



which atomically access and update the main memory. Then
good needs to posit that the caches are coherent, rep projects
the visible components (processes and memory) of the cache
system, skip holds for transitions which cause no access to
the memory, and rank counts the number of transitions before
a visible component is updated. The proof obligations ST1-
ST5 required for well-founded refinements can usually be
discharged with little or no manual effort once the appropriate
definitions are provided.

The definition of the inductive invariant inv required on the
second phase, however, is non-trivial. In particular, since inv
must be preserved by every transition of I , it must characterize
every reachable state. To ameliorate the difficulty, we have
integrated the framework with a tool based on predicate
abstraction. Predicate abstractions have been used in a number
of formal verification tools for automating invariant proofs.
However, our approach is designed to leverage the expres-
siveness and flexibility of theorem proving for discovering
predicates: useful predicates are “mined” by applying term
rewriting on the definition of the state transition function of the
implementation. Rewriting is guided by rewrite rules which
are taken from theorems proven by the theorem prover. Au-
tomating invariant proofs, of course, is a topic of independent
research interest, and previous papers [6], [7] cover details of
our implementation.

III. FAIRNESS CONSTRAINTS

Stuttering trace containment requires that every execution
of the implementation corresponds to some execution of the
specification. In some cases, we may only require the corre-
spondence for executions satisfying some fairness conditions.
Fairness requirements typically arise for showing progress
properties; in our framework, this manifests itself in the proof
of finiteness of stuttering. Here we only provide a sketch
of our approach; a previous paper [8] provides a technical
description.

Our approach for integrating fairness constraints with our
framework is analogous to the approach for introducing the
notion of stuttering, viz., constraining the stimulus functions
with appropriate constraints. The most common fairness con-
straint we use is unconditional: a stimulus function stim is
fair if and only if for every time instant m and each legal
input i, there is an instant n > m such that stim(n) = i.
The constraint is analogous to the weak fairness in Unity [9].
For most problems in practice, we have found this simplistic
formalization sufficient. Nevertheless, the framework allows
reasoning about more general notions of fairness using ap-
proaches similar to the one we describe below. For instance,
our previous paper [8] discusses an integration of conditional
fairness where one associates a set of legal inputs with each
system state and fairness ensures that an input that is infinitely
often legal is selected infinitely often.

Given the notion of a fairness, our framework permits
attaching fairness constraints both to specification S and
implementation I . We say that I is a refinement of S under
fairness assumption (denoted S BF I) if for each fair trace

of I there is a trace of S with the same observable behavior.
We say that I is a refinement of S with fairness requirement
(denoted SF B I) if for each trace of I there is a fair trace
of S with the same observable behavior. The following proof
rules are easy to verify.
• Derive (S BF I) from (S B I).
• Derive (S BF I) from (S BF R) and (RBF I).
• Derive (S F BF I) from (S F BF R) and (RF BF I).
• Derive (S F B I) from (S F BF R) and (RF B I).

Furthermore, analogous to single-step refinement, we define a
proof rule for single-step fair refinements that only requires
reasoning about one transition of a program.

Note that while fairness assumptions are necessary for
ensuring progress properties of implementations, fairness re-
quirements are usually necessary for the purpose of composi-
tion. In particular, assume that we want to prove (S B I) by
introducing an intermediate model R. If we need a fairness
assumption in the proof of correspondence between S and
R, then chaining the sequence of refinements requires that
we prove the correspondence between R and I with fairness
requirement.

IV. APPLICATIONS

We have used our framework for verification of several
concurrent programs. Among the programs verified are the
following.

a) A concurrent deque implementation: We verify the
concurrent deque implementation used in the work-stealing
algorithm of the Hood thread library [10]. The program is sub-
tle since all the methods are non-blocking; the non-blocking
property is crucial to the efficiency of work-stealing. Previous
work [10] discusses the subtlety of the implementation. Our
framework is used to verify that the implementation is a
refinement of a specification where each contending thread
atomically steals the work from the deque; the verification
entails orchestration of proof rules to chain together a series
of refinements involving the specification, implementation, and
two intermediate models.

b) German cache coherence protocol: The German
protocol has been widely used as a benchmark for many
verification methodologies. In this protocol clients commu-
nicate with a home process through three channels to gain
access to cache lines from a central memory. We prove that
a model of the protocol (that contains an unbounded number
of clients as well as a model of the memory and caches of
participating processes in addition to the control signals) is a
refinement of a specification system in which there is no home
or cache and each client atomically accesses and updates the
memory directly. The verification demonstrates the scalability
of our predicate abstraction procedure. Given a collection of
rewrite rules and a predicate good (that essentially states
that the caches of participating processes are coherent), our
procedure automatically proves the invariance of good in the
order of seconds. It generates a predicate abstraction graph
of 46 predicates, and reachability analysis explores roughly
7000 nodes and 300, 000 arcs. This is in stark contrast to



other predicate abstraction approaches we are aware of (e.g.,
UCLID [11] requires hours for the same verification).

c) A bakery implementation: We verify a model of
the Bakery algorithm, that is closely related to a microar-
chitectural implementation and optimized in several aspects.
The specification is a simpler system that executes the critical
region atomically. It turns out that there are executions of
the implementation that do not satisfy progress because of
a conflict between process scheduling and the protocol: a
process p ready to enter the critical section may never be
scheduled while other processes that are scheduled cannot
make progress until p executes. This problem was discovered
while attempting to prove finiteness of stuttering. Once the
problem was identified, we could prove the implementation
correct under fairness assumption.

d) Leader Election Protocol: In leader election, the
goal is for a collection of processes to communicate with
each other to determine the identity of the process with the
lowest index. We verified a standard but low-level synchronous
implementation of a leader election protocol on a token
ring. A process non-deterministically initiates the protocol
by sending a token to its neighbors in the ring, and each
process subsequently alternates between receiving and passing
the token, with a finite number of local steps in between,
until all processes reach a consensus on the identity of the
leader. Our specification is a simple abstract system with two
processes in which the leader is selected atomically in one
transition after initiation.

e) The Apprentice program: This multithreaded JVM
bytecode program involves updates to a shared counter. Moore
and Porter [12] put it forward as a benchmark against which to
measure approaches to formally verifying Java programs. They
also prove, using ACL2, that the program satisfies the weak
monotonicity property, (i.e., the counter never decreases), and
show why the proof is non-trivial. Nevertheless, their proof
does not ensure that the counter eventually increases. (Indeed,
if a thread is never scheduled after spawning a child then
the counter does not increase.) Our framework handles the
progress property under assumption of fair thread scheduling;
we prove that the Apprentice program is a refinement (under
fairness assumption) of a program that atomically increments
the counter.

In spite of the diversity of systems being verified, the notion
of correspondence used is always the same, namely stuttering
trace containment (possibly with fairness constraints). The use
of a generic notion of correctness, formalized and mechanized
proof rules that can be extended on demand, and integrated
tools for automating expensive proof steps, makes the ap-
proach scalable for reasoning about complex implementations.

V. DISCUSSION AND FUTURE WORK

The development of our framework involved three key
design decisions:

1) using a general-purpose theorem prover as the underly-
ing reasoning engine;

2) using program correspondence instead of temporal logic
for specifying program correctness; and

3) including a provision for stuttering in the notion of
correspondence.

The choice of a general-purpose theorem prover is governed
by the need for flexibility and control. A theorem prover
facilitates clean decomposition of proofs, and sound extension
and careful orchestration of strategies. Indeed, many of our
proof rules were crafted on demand; when the available rules
were found insufficient, they were restructured or new ones
were added. Furthermore, as we discussed with predicate
abstractions, decision procedures can be easily integrated
to effectively automate expensive proof steps. Indeed, they
become more effective in this context since the theorem prover
can use user-proven lemmas to control the complexity of the
abstraction on which model checking is applied.

Instead of defining the specification as an abstract program
(that is related to the implementation via refinement) we could
have chosen to specify program properties directly as temporal
logic formulas. Our choice is based on a number of consid-
erations. First, most general-purpose theorem provers (e.g.,
ACL2, HOL, PVS) support classical logic; a semantic embed-
ding of temporal logic in such a theorem prover is non-trivial;
the problem is exacerbated in a first-order theorem prover like
ACL2. Second, most of our target programs are parameterized
models with an unbounded number of processes; temporal
logic specification of such programs requires an expressive
logic (e.g., allowing quantification of process indices), and
the meaning of the resulting specification can be error-prone
due to possible nesting of quantifiers over time, branching,
and design parameters. Third, informal human review of
the completeness and correctness of temporal specification
requires familiarity in formal logic in general and temporal
logic specifically. Specification by program refinement allows
the specification and implementation to be defined in the
same operational language. This helps avoid errors that may
otherwise be missed due to differences in semantics between
the specification and the implementation.

The decision to allow for stuttering in the notion of corre-
spondence stems from our desire to provide simple, intuitive
specification. Admittedly, defining the theory of stuttering
trace containment in ACL2 was complex. However, that was
only performed once. For each application discussed in Sec-
tion IV, the specification system was the obvious, intuitive
abstraction capturing the design intent of the protocol. This is
no coincidence. In practice, concurrent programs are often op-
timized elaborations of simpler protocols. These elaborations
are designed to achieve execution efficiency, refine atomicity,
match a given architecture, and so on. The simpler protocol
then provides a succinct operational description of the intended
behaviors of the elaborated implementation. Stuttering is used
to reconcile the difference in the level of abstraction at
which the implementation and specification are modeled, while
limiting the amount of stuttering to be finite ensures that
both safety and progress properties of the implementation are
preserved in the specification. It is also worth noting that even



when the specifications are defined in terms of temporal logic
properties, it is common to define abstract models that hide
details of the implementation and facilitate the verification
process. In practice, a notion of correspondence with finite
stuttering allows us to use refinements both as a specification
and a proof mechanism.

Future Work: Future work involves two key research
thrusts: making the framework more robust and extensible, and
using it for more diverse systems. Towards the first goal, we
are augmenting the framework with more reduction theorems
and designing a better user interface to facilitate practical
applications. One key planned augmentation is support for
real-time constraints. Note that fairness constraints only ensure
that a fair stimulus is eventually picked. Real-time systems
require more stringent constraints, e.g., that the stimulus is
picked within a fixed upper bound of time. Towards the second
goal, we are using the framework for reasoning about mi-
croarchitecture implementations, distributed garbage collection
algorithms, and distributed checkpointing systems.
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