
HASTE: Software Security Analysis for Timing
Attacks on Clear Hardware Assumption

Prabuddha Chakraborty, Jonathan Cruz, Christopher Posada, Sandip Ray, and Swarup Bhunia
Department of ECE, University of Florida, Gainesville, FL 32611, USA

Abstract—Information leakage via timing side-channel analysis
can compromise embedded systems used in diverse applications
that are otherwise secure. Most state-of-the-art timing side-
channel detection techniques focus on analyzing the software
code while paying little to no attention to the underlying
hardware. This limits the ability of such techniques in terms
of detection and repair. In this paper, we propose a timing side-
channel analysis framework that takes into consideration both
the software and the underlying hardware micro-architecture
to detect vulnerabilities with high precision. We also propose a
set of metrics to quantify the severity of the vulnerabilities. We
verify our proposed framework on two different computation
subroutines which are widely used in crypto and secure systems.

Index Terms—Hardware-Software Co-Security, Embedded
Systems Security, Timing Side-Channels.

I. INTRODUCTION

If the execution time of a process depends on the value
of secret data (such as an encryption key), then timing side-
channel attacks can potentially infer the secret data value. The
attack is carried out by obtaining multiple measurements of the
execution time of a process directly from inside the system
[1] or via remote interactions [2]. Another class of timing
side-channel analysis exploits secret dependent memory access
patterns to infer the secret [3].

Security analysis in the software domain attempts to address
timing side-channel exploits by constant time expressions,
padding, obfuscated execution, etc. [4], [5]. Unfortunately,
most existing timing side-channel tools are agnostic of the
underlying micro-architecture [6], [5] and only a few frame-
works incorporate minimal micro-architecture information by
modeling cache and memory accesses [7], [8]. However,
increasingly complex micro-architectures make it necessary to
include much more hardware information to accurately capture
potential leakage.

In this paper, we present a framework, HASTE (Hardware-
Aware Software Timing-attack Evaluation) for accurate and
system-specific (hardware + software) timing vulnerability de-
tection and quantification (see Fig. 1). HASTE transforms the
software code into a control flow graph (CFG) and performs
a taint propagation to detect all information flow from the
declared assets. Execution time of all basic blocks in the
CFG, on the given hardware (via simulation on BOOM cores)
are captured and mapped to the CFG. We formalize three
different sub-categories of timing side-channel vulnerabilities
and propose algorithms (Algo. 1, Algo. 2, Algo. 3) to detect
and quantify those vulnerabilities given the asset tainted CFG
and the real hardware execution time information for each
basic block. Quantifying the vulnerabilities allows the system
designer to address only those vulnerabilities which appear to
be most critical given the system deployment setup.

Fig. 1: Overview of HASTE framework: the input-output
interface and major steps for automatic vulnerability analysis.

The paper makes the following contributions.
• We create a unique framework for automatic hardware-

aware software timing-side channel vulnerability analysis.
• We formalize three different categories of timing side-

channel vulnerabilities with well-defined metrics; propose
algorithms to detect them; and implement the algorithms
into the HASTE framework.

• We demonstrate HASTE by detecting different timing
side-channel vulnerabilities for two different secure pro-
cedures running on five different micro-architectures.

II. RELATED WORK

Information flow analysis using Program Dependence Graph
(PDG) can be used to detect timing side-channel vulnerabil-
ities. Rodrigues et al. show how to generate a PDG with
O(|V |+ |U |) edges, where V is the set of program variables
and U is the set of variable uses; this approach is integrated in
the FlowTracker [6] tool. Alemeida et al. develop another tool,
et-verif [5], that detects flaws in constant-time programs using
a reduction-based approach. Both FlowTracker and et-verif
are hardware agnostic. Recently, Reparraz et al. developed
a tool, dudect [9], which attempts to identify non-constant
time codes by gathering execution time data to detect potential
deviations. It requires running the function under test many
times to obtain good statistical confidence. In comparison,
HASTE can identify specific locations of code that causes
the timing vulnerabilities and is more scalable due to minimal
dynamic/simulation effort. MicroWalk [7] uses cryptograph-
ically secure pseudorandom number generators for creating
and applying input vectors for execution trace generation.
However, its effectiveness and scalability on other programs
have not been explored. CaSym [8] uses symbolic execution to
identify timing side-channel leakage. Such techniques suffer
from scalability issues on large software. In addition, CaSym
and MicroWalk include only a limited scope of the micro-
architecture mainly focusing on the cache. Metrics such as

TABLE I: Comparison of HASTE with state-of-the-art timing side-channel detection techniques.

Type of Analysis Objectives Microarchitectural Information Incorporated
FlowTracker [6] Static Identify non constant time expression None

ct-verif [5] Static + Formal Identify non constant time expression None
dudect [9] Dynamic Identify non-constant time codes Complete hardware microarchitecture

MicroWalk [7] Dynamic Identify timing difference in execution traces Memory accesses, branch operations
CaSym [8] Symbolic Execution Identify cache-based side channels Abstract cache model

HASTE Static + Dynamic Identify, quantify, and localize runtime timing side channel leakages Complete hardware microarchitecture

Fig. 2: The basic block in RSA modular exponentiation
responsible for potential timing vulnerability.

SVF, CSV have been proposed for quantifying cache timing
side channel vulnerabilities but they do not directly apply to
timing vulnerabilities that arise due to secret-data-dependent
control flow [10], [11].

III. THE NEED FOR TARGETED HARDWARE-SOFTWARE
ANALYSIS AND REPAIR

The execution time of a piece of code in real hardware rarely
matches hardware-agnostic estimations [12]. For example,
when analyzing the RSA modular exponentiation, the basic
block highlighted in Fig. 2 determines the timing difference
due to the branch based on e%2. If static timing analysis
assumes a unit cycle model, then this is estimated as 8 cycles.
For an attacker with timing sensitivity of 10 cycles, this
system may appear secure. However, in real hardware, the
multiplication (mul) may take 2.5 cycles moving the timing
difference to 10.5 cycles which is within the vulnerable range
for the assumed attacker. In contrast, if a static timing analysis
framework assumes that all instructions takes 2.5 cycles, then
the timing difference becomes 20 cycles and it may appear that
the system is vulnerable to an attacker with timing sensitivity
of 19 cycles but in reality, this is a false alarm because real
hardware execution time is 10.5 cycles.

IV. HASTE METHODOLOGY

HASTE assumes that the attacker has access to the inputs of
a victim program and the ability to time the overall execution
(with a degree of error). A system designer can estimate an
attacker’s measurement error based on the level of access to the
system the attacker can have. For example, remote attackers
will have less timing precision compared to attackers having
direct physical access. The major contribution of HASTE
is a methodology for exploiting this insight into a practical
detection/mitigation solution, as we describe below.

A. Hardware-Software Information Fusion
Given the software code, we first generate the control flow

graph. Based on the list of assets, we perform an information
flow analysis to determine the variables which are tainted
by the assets. These asset-tainted variables are also treated
as secrets for subsequent analysis. To precisely estimate the
execution time of each basic block in the code on the specified

Algorithm 1 Analyze Branch on Secret
1: procedure BOS(CFG, secret)
2: V ulnerabilities =[]
3: for each BB ∈ CFG do . BB: Basic Block
4: if branchOn(secret, BB) then
5: PD = findPostDominatorsSet(BB,CFG)
6: B1, B2 = Immediate branch successors
7: Find d ∈ PD | d ∈ PostDom(B1), d ∈ PostDom(B2) and

@x ∈ PD | x ∈ PostDom(B1), x ∈ PostDom(B2), d ∈
PostDom(x), x 6= d

8: LP1 = LongestPath(B1, d)
9: SP1 = ShortestPath(B1, d)

10: LP2 = LongestPath(B2, d)
11: SP2 = ShortestPath(B2, d)
12: if |(LP1 − SP2)| > |(LP2 − SP1)| then
13: BoS Severity = |(LP1 − SP2)|
14: V ulnerabilities.append([BoS Severity, LP1, SP2])
15: else
16: BoS Severity = |(LP2 − SP1)|
17: V ulnerabilities.append([BoS Severity, LP2, SP1])

18: return V ulnerabilities

micro-architecture, we synthesize a BOOM core that closely
matches the micro-architecture. We instrument the RISC-
V assembly of the code to enable cycle tracking through
BOOM’s hardware performance counters. This allows us to
obtain the execution time (in clock cycles) for each basic
block from the BOOM simulator.1 We merge the basic block
execution time estimates with the asset tainted control flow
graph (previously obtained from software-level analysis), to
generate a combined database for subsequent analysis.

B. Analyzing Branch on Secret
A secret variable determining the control flow can poten-

tially lead to timing side-channel leakage. Algo. 1 targets
detection and quantification of such vulnerabilities. CFG is
the asset tainted control flow graph of the given software
along with the hardware-level basic block execution timing
information. We first identify basic blocks which has a secret
dependent branch at the end (line 4). PD is the set of post
dominators of BB in CFG (line 5). B1 and B2 are the
two immediate branch successors of BB (line 6). Next, we
find d which is the first common post dominator of both
B1 and B2 (line 7). The BoS Severity is computed as
shown in lines 13, 16. This metric is an estimate of the
maximum timing difference that is possible due to a branch on
secret. Hence, if an attacker can measure the execution time
with a resolution less than this value then the system can be
considered vulnerable.

C. Analyzing Loops on Secret
If a secret variable controls the number of times a loop runs,

then an attacker can infer the variable’s value by obtaining
the execution time of the loop. Algo. 2 targets detection and

1HASTE automates the process of obtaining micro-architecture specific
execution time information.

Algorithm 2 Analyze Loop on Secret
1: procedure LOS(CFG, secret, Sensitivity)
2: V ulnerabilities =[]
3: for each BB ∈ CFG do . BB: Basic Block
4: if loopHead(secret, BB) then
5: InNode =Immediate successor of BB in Loop Body
6: LP = LongestPath(InNode,BB)
7: SP = ShortestPath(InNode,BB)
8: LoS Resilience = Sensitivity/(LP − SP)
9: V ulnerabilities.append([LoS Resilience,BB])

10: return V ulnerabilities

Algorithm 3 Analyze Early Exit on Secret
1: procedure EOS(CFG, secret, Sensitivity)
2: V ulnerabilities =[], L =[]
3: L = findLoopsWithEarlyExitOnSecret(CFG, secret)
4: for each (h,E) ∈ L do
5: InNode = Immediate successor of h in Loop Body
6: for each e ∈ E do
7: P1 = shortestPath(InNode, e)
8: P2 = longestPath(InNode, h)
9: EoS Resilience = (Sensitivity + P1)/P2

10: V ulnerabilities.append([EoS Resilience, h, e])

11: return V ulnerabilities

quantification of these vulnerabilities. CFG is the asset tainted
control flow graph of the software code with hardware-level
basic block timing. First, we identify the basic blocks which
are loop-heads for loops that are controlled by a secret asset
(line 4). InNode is the immediate successor of BB inside the
specific loop body. We quantify a loop-on-secret timing vulner-
ability using LoS Resilience which is computed as shown in
line 8. It estimates the minimum number of iterations the loop
must run before an attacker can pick up the timing discrepancy.
Here Sensitivity is a user-provided parameter that specifies
the estimated time measurement accuracy. An attacker with
physical system access may have lower Sensitivity than an
attacker attempting a remote analysis.

D. Analyzing Early Exit on Secret

If there is a secret variable dependent possibility for early
termination of a loop then by timing the program or the loop,
an attacker can potentially extract the secret. We detect and
quantify such vulnerabilities using Algo. 3. L is the set of
(h,E), where h is the loop head of a loop with a set of
E secret-dependent early exit nodes (line 3). InNode is the
immediate successor of h which is also in the corresponding
loop body. For each basic block (node) e in E, we compute
the shortest path from InNode to e (line 7) and the longest
path from InNode to h (line 8). To quantify an early-exit-
on secret vulnerability we define EoS Resilience as shown
in line 9. Assume that in scenario-1 the loop exits after A
full-iterations and in scenario-2 the loop exits after B full-
iterations. If A > B, the extra iteration count is A − B.
EoS Resilience is the minimum value of A−B for which an
attacker (with a specific Sensitivity) can pick up this timing
difference between the two scenarios.

V. RESULTS & CASE-STUDIES

To capture cycle times for different architectures, we use the
configurable Berkeley Out-of-Order Machine (BOOM) [13]
with a 10-stage pipeline and the Chipyard [14] framework.
These two tools are used to test 5 different architectures

TABLE II: BOOM Architectures used for the experiments.

ArchitectureParameter Large Medium Small Tiny Mini
Fetch Width 8 4 4 4 4

Decode Width 3 2 1 1 1
Issue Width 5 4 3 3 3
ROB Entries 96 64 32 4 2

Int Register File 100 80 52 52 52
FP Register File 96 64 48 48 48

Load/Store Queue 24 16 8 8 8
D-Cache (KiB) 32 16 16 16 16
I-Cache (KiB) 32 16 16 16 16

L2 Cache (KiB) 512 512 512 512 512

TABLE III: LoS Resilience values for the vulnerability at
line 8 of the RSA modular exponentiation subroutine.

LoS Resilience at Different Sensitivity (S)Architecture S = 5 S = 25 S = 100 S = 200 S = 300
Large 0.31 1.56 6.25 12.50 18.75

Medium 0.31 1.56 6.25 12.50 18.75
Small 0.28 1.39 5.56 11.11 16.67
Tiny 0.28 1.39 5.56 11.11 16.67
Mini 0.21 1.04 4.17 8.33 12.50

without branch prediction as shown in Table II. The microar-
chitecture parameters, other than the ones that are specifically
mentioned, are kept at default values. The LLVM intermediate
representation (IR) of the program under test is transformed to
RISC-V assembly using Clang 9.0.0. The RISC-V assembly is
modified to approximately capture cycle times at the beginning
and end of each basic block by wrapping the basic block with
csr mcycle instructions. The augmented code is compiled
to a RISC-V executable that is run on each architecture using
the Verilator simulator.

A. Analyzing RSA Modular Exponentiation

The RSA modular exponentiation subroutine shown in
Algo. 4, is a classic example of vulnerable code. The direct
branch on the secret keybit (e) in line 9 and the loop on e in
line 8 are the two main sources of timing side-channel leakage.
Using HASTE, we quantify the severity of these vulnerabilities
for five different micro-architectures. In Fig. 3, we report the
BoS Severity values for the branch on secret vulnerability
present at line 9. An attacker with timing sensitivity less
than BoS Severity can potentially detect which branch was
taken and subsequently infer the value of e. The Large and
Medium micro-architectures appear to be more resilient to this
vulnerability because the execution times of basic blocks are
lower leading to smaller discrepancies between LP and the
SP (Algo. 1). We observe that the Small and Tiny Architecture
have the same BoS Severity of 18 cycles because the additional
ROB resources in Small micro-architecture were not utilized
during the execution of the critical basic blocks. The Mini
micro-architecture is most vulnerable due to longer basic block
execution time. Based on the BoS Severity the system de-
signer can apply a targeted, minimal patch (path balancing) to
the code to lower the metric below the attacker’s Sensitivity.
Table III reports the LoS Resilience for the vulnerability at
line 8 across different micro-architectures and Sensitivity
values. At Th = 100 cycles LoS Resilience = 4.17
(for Mini) implies that an attacker with timing measurement
precision of 100 cycles can detect a timing difference arising
from ceil(4.17) = 5 iterations of the target loop (at line 8).

Algorithm 4 RSA: Modular Exponentiation
1: procedure MODPOW(b, e,m)
2: r ← Initialize
3: if m == 0 then
4: return 0
5: else
6: r = 1
7: b = b%m
8: while e > 0 do
9: if e%2 == 1 then

10: r = (r ∗ b)%m

11: e = e >> 1
12: b = (b ∗ b)%m

13: return r

Algorithm 5 Binary Search
1: procedure BINARYSEARCH(A[], x, n)
2: Initialize low = 0, high = n− 1
3: while low ≤ high do
4: mid = (low + high)/2
5: if x == A[mid] then
6: return mid
7: else if x < A[mid] then
8: high = mid− 1
9: else

10: low = mid + 1

11: return −1

Fig. 3: BoS Severity for the vulnerability at line 9 of RSA
modular exponentiation across different micro-architectures.

B. Analyzing Binary Search
Searching algorithms are widely used in many sensitive

applications such as healthcare systems and data storage
systems. In a binary search (Algo. 5), the early exit at line
6 is dependent on the secret data (x) for which the search is
being made. Using HASTE we report the EoS Resilience for
this vulnerability across different micro-architectures and for
different Sensitivity values in Table IV. With attacker mea-
surement precision Th = 25, for the Large micro-architecture,
we observe that EoS Resilience = 2.25. This implies that
the attacker can detect a timing difference between an exe-
cution that terminates after i iterations and another execution
that terminates after i + ceil(2.25) iterations. Depending on
how long it takes to complete the search, the attacker can
potentially infer a set of candidate values for x. For this case,
the system designer can minimally patch the code to reduce the
timing difference until the EoS Resilience metric is greater
than the maximum number of loop iterations.

VI. CONCLUSION

We have presented HASTE, a joint hardware-software aware
timing side-channel analysis framework. We have also for-
malized the detection and quantification algorithms for three

TABLE IV: EoS Resilience values for the vulnerability at
line 6 of the binary search algorithm.

EoS Resilience at Different Sensitivity (S)Architecture S = 5 S = 25 S = 100 S = 200 S = 300
Large 1.00 2.25 6.94 13.19 19.44

Medium 0.89 1.95 5.89 11.16 16.42
Small 0.75 1.38 3.72 6.84 9.97
Tiny 0.58 0.95 2.31 4.13 5.95
Mini 0.67 0.90 1.80 2.99 4.18

different sub-classes of timing side-channel vulnerabilities.
Using HASTE, we have analyzed different secure algorithms
across five different micro-architectures. The ability to de-
tect/quantify timing side-channel vulnerabilities for a specific
software micro-architecture, and attacker timing measurement
sensitivity combination can help system designers fix only the
relevant vulnerabilities for a target hardware. This is expected
to result in faster system debugging and lower performance
overhead due to constant-time programming.

In future work, we will analyze systems with more mi-
croarchitectural optimizations and states, in particular cache
timing side-channel attacks, and investigate automatic repair
of vulnerabilities detected by HASTE.

VII. ACKNOWLEDGEMENT

This work was funded in part by Semiconductor Research
Corporation (SRC), task 2860.001.

REFERENCES

[1] P. C. Kocher, “Timing attacks on implementations of diffie-hellman, rsa,
dss, and other systems,” in Annual International Cryptology Conference.
Springer, 1996, pp. 104–113.

[2] D. Brumley and D. Boneh, “Remote timing attacks are practical,”
Computer Networks, vol. 48, no. 5, pp. 701–716, 2005.

[3] D. J. Bernstein, “Cache-timing attacks on aes,” 2005.
[4] A. Rane, C. Lin, and M. Tiwari, “Raccoon: Closing digital side-channels

through obfuscated execution,” in 24th {USENIX} Security Symposium
({USENIX} Security 15), 2015, pp. 431–446.

[5] J. B. Almeida, M. Barbosa, G. Barthe, F. Dupressoir, and M. Emmi,
“Verifying constant-time implementations,” in 25th {USENIX} Security
Symposium ({USENIX} Security 16), 2016, pp. 53–70.

[6] B. Rodrigues, F. M. Quintão Pereira, and D. F. Aranha, “Sparse
representation of implicit flows with applications to side-channel detec-
tion,” in Proceedings of the 25th International Conference on Compiler
Construction, 2016, pp. 110–120.

[7] J. Wichelmann, A. Moghimi, T. Eisenbarth, and B. Sunar, “Microwalk:
A framework for finding side channels in binaries,” in Proceedings of
the 34th Annual Computer Security Applications Conference, 2018, pp.
161–173.

[8] R. Brotzman, S. Liu, D. Zhang, G. Tan, and M. Kandemir, “Casym:
Cache aware symbolic execution for side channel detection and mitiga-
tion,” in 2019 IEEE Symposium on Security and Privacy (SP). IEEE,
2019, pp. 505–521.

[9] O. Reparaz, J. Balasch, and I. Verbauwhede, “Dude, is my code constant
time?” in Design, Automation & Test in Europe Conference & Exhibition
(DATE), 2017. IEEE, 2017, pp. 1697–1702.

[10] J. Demme, R. Martin, A. Waksman, and S. Sethumadhavan, “Side-
channel vulnerability factor: A metric for measuring information leak-
age,” in 2012 39th Annual International Symposium on Computer
Architecture (ISCA). IEEE, 2012, pp. 106–117.

[11] T. Zhang, F. Liu, S. Chen, and R. B. Lee, “Side channel vulnerability
metrics: the promise and the pitfalls,” in Proceedings of the 2nd
International Workshop on Hardware and Architectural Support for
Security and Privacy, 2013, pp. 1–8.

[12] R. Wilhelm et al., “The worst-case execution-time problem—overview
of methods and survey of tools,” ACM Transactions on Embedded
Computing Systems (TECS), vol. 7, no. 3, pp. 1–53, 2008.

[13] J. Zhao, B. Korpan, A. Gonzalez, and K. Asanovic, “Sonicboom: The
3rd generation berkeley out-of-order machine,” May 2020.

[14] A. Amid et al., “Chipyard: Integrated design, simulation, and imple-
mentation framework for custom socs,” IEEE Micro, vol. 40, no. 4, pp.
10–21, 2020.

