Synergies Between Delay Test and Post-silicon
Speed Path Validation: A Tutorial Introduction

Sandip Ray' and Arani Sinha’

'ECE Department, University of Florida, Gainesville, FL 32611. USA. sandip@ece.ufl.edu
%Intel Corporation, Hillsboro, OR 97124. USA. arani.sinha@intel.com

Abstract—The goal of speed path validation is to identify
frequency limiting paths in a fabricated IC. It is a complex
and expensive activity, requiring significant manual expertise.
This paper provides a tutorial overview of speed path validation,
focusing primarily on the state of the practice and its limitations.
This paper also discusses delay test and discusses synergies
between the two disciplines.

Index Terms—Silicon debug, Timing errors, Frequency limiting
paths, Delay Test

1. INTRODUCTION

Post-silicon validation makes use of fabricated (pre-
production) silicon implementation of an integrated circuit
(IC) as the platform to run tests. Post-silicon validation enables
exploration of many design characteristics that cannot be exer-
cised in pre-silicon (e.g., RTL, netlist, or FPGA) validation. In
particular, the silicon runs at target clock speed, while a cycle-
accurate simulator is about 10° times slower. Consequently,
post-silicon tests can explore deep design states and exercise
the design on realistic workloads. Furthermore, post-silicon
validation can explore physical and electrical characteristics
of the design, effect of temperature and physical stress, etc.
Post-silicon validation remains one of the most critical and
most expensive components in the modern IC validation flow.

Several papers have been published recently on aspects
of post-silicon validation, including a number of surveys
and tutorials [9], [8], [13]. However, literature has primarily
focused on post-silicon functional validation, i.e., the use of
the silicon to identify, isolate, and diagnose design errors. Of
course the scope of post-silicon validation is much larger: in
addition to functional validation, one performs compatibility
validation (i.e., whether the hardware works with the plethora
of peripherals, operating systems, and applications), electrical
validation (i.e., ensuring that the electrical characteristics such
as power draw, voltage droop, etc. are within margin, even
under noise), marginality validation (i.e., behavior of the
design under high clock speed), validation of the design under
high thermal and physical stress, and many others.

In this paper, we provide a tutorial introduction to circuit
marginality validation (CMV) activity in post-silicon valida-
tion. Commonly referred to as speed path validation, the goal
is to ensure that the silicon runs at a fast enough speed
under a variety of operating conditions. Speed path validation
is a complex activity, involving a variety of sophisticated
instruments together with subtle use of on-chip debug and

testing architecture. We discuss the challenges involved in this
activity, current practice and its limitations, and recent research
in this area. While we discuss some research solutions, the
focus of the paper is on industrial practice.

One of our goals is to situate speed path validation in the
context of traditional delay test. Speed path validation relies on
re-purposing Design-For-Test (DFT) hooks for identifying the
failing paths. Similarities, differences, and synergies between
delay test and speed-path validation will be covered.

II. WHAT 15 SPEED PATH VALIDATION AND WHY DO WE NEED IT?

A speed path is a frequency-limiting critical path which
affects the performance of a chip. A speed path that violates
timing constraints during post-silicon validation is called a
failing speed path. The goal of speed path validation is to
identify failing speed paths, and determine the reason for the
failure (e.g., a slow transistor). Even if there is no failure, speed
path validation is used to find and reduce speed bottlenecks
in the circuit; this enables subsequent spins of the silicon to
run at higher clock speed and sold as faster products.

Obviously, a significant effort is put in pre-silicon static tim-
ing analysis (STA) to create reasonably accurate measurement
of circuit timing [7]. Nevertheless, a number of failing speed
paths escape to post-silicon. In particular, STA often uses
simplified delay models, which can result in mis-correlation
between STA and post-silicon timing behavior [15]. Further-
more, STA generally cannot account for logical interactions
between signals. For instance, a long path in a circuit may
not be activated because of a subtle functional invariant. For
these reasons, there is often discrepancy between the estimated
timing from STA and actual timing measurements for silicon.
Kaiss [2] estimates about 5% of chip frequency is achieved by
identifying and fixing frequency-limiting paths through post-
silicon speed path validation.

III. DeLAYy TEsT

Delay testing has traditionally been done for screening
defects and marginalities that prevent a fabricated die from
operating at targeted speed [3]. Many categories of test pat-
terns generated for testing for excessive delay for a circuit can
be used in speed path validation.

Delay failures in a design can be classified as gross delay
failures or small delay failures, and delay test fault models are
based on these assumptions. Gross delay failure assumption is



F1

"J 61

clk1 ’7

Fig. 1. A Logical Path Example

Hazard-free robust Robust Non-robust
L~ L1 1T el
T T T

- — D D

Fig. 2. Categories of Path Delay test

incorporated in the development of the transition delay fault
model. This model assumes that the delay size on a node
is high so that the fault can be propagated to a scan flop
independent of the delays on the paths that are used to excite
or propagate the fault effect. Small delay fault assumption has
led to the development of multiple fault models. Two principal
fault models are (1) small delay defect fault model or the
timing aware fault model [5], and (2) path delay fault model.
Timing aware fault models use knowledge of gate delays in
the design to guide the excitation and propagation to and from
the node which has the delay fault. Timing aware fault model
assumption can be used to create test patterns which excite
longer delays in the design relative to transition delay fault
model. The path delay fault is discussed in more details below.

A physical path can be defined a sequence of contiguous
gates from a launching flop to the capturing flop. For every
physical path, we can define two logical paths: one that starts
with a rising transition on the launching flop and another that
starts with a falling transition on the launching flop. We refer
to inputs that are on the logical path of interest as on-path
inputs; others are referred to as side inputs. This is illustrated
in Fig. 1. P is a flop-to-flop physical path; LP is a logical path
that starts with a rising transition on P; on-path inputs are i1,
i1, i31, i41; and side inputs are inputs of path gates not on P,
ie., i12, i22, i32, i42.

Path delay tests can be classified in different categories
based on sensitization at the side inputs. These categories are
(i) hazard-free robust, (ii) robust, and (iii) non-robust. The
conditions are shown in Fig. 2 for an AND gate. In this figure,
S1 implies a static 1 value and X can be either O or 1. Similar
conditions can be derived for all Boolean gates. Robustness

—>,

e l /

/

Debug

Fanure

| Collect

Faulures
Ignored
Failures

Fig. 3. Speed Path Validation Flow

—1

is an important property of path tests as they guarantee that
delay on adjacent paths, ones through side inputs of the path of
interest, do not prevent detection of any potential defect on the
path. If a path test fails to meet any of the conditions outlined
here, then the path may only be a functionally sensitizable
path, i.e., it may propagate the delay effect as a glitch.

Delay tests require at least two vectors v; and v,. Vector
vy sets up the condition for test, and the response of the
circuit needs to settle down before v, is applied. After v, is
applied, the response of the circuit is captured at the opera-
tional frequency of the design. There are different methods of
application of delay test. The two most important ones are the
launch-of-capture and launch-of-shift methods.

Path tests can also be derived from functional tests by
extracting relevant vectors from a functional testbench that
can excite delays on paths of interest in a design. This
requires a detailed understanding of the design and manual
test development.

IV. Speep PatH AcTiviTy OVERVIEW

It goes without saying that isolating speed paths and diag-
nosing their root cause is a challenging operation. A modern
IC can include billions of transistors; furthermore, tests can
be between 100,000 and 1M cycles long and any of the
cycles can entail activity of a slow transistor. Consequently,
isolating a speed path can appear a bit like finding a needle
in the haystack. Nevertheless, unlike other post-silicon vali-
dation activities such as functional validation or compatibility
validation, speed path validation follows a relatively structured
process. Fig. 3 provides a high-level overview of the overall
flow. The process of debugging a speed failure starts by
applying test patterns until an error is detected. The activity
is performed on dedicated testers, and the test patterns are
targeted to stress both the logical combinations of gates
and transistors, and voltage droop, capacitive and inductive
noise, and other electrical characteristics (Section V). The
process is applied on dedicated testers, although some “system
level” tests are employed with specialized validation boards.
A significant amount of on-chip instrumentation is employed



to assist in the debugging process (Section VII). The fix of
such a failure typically involves modifying the circuit either
by replacing a cell/gate with a faster (or slower) one, or by
performing design retiming operations.

V. TESTS IN SPEED PATH VALIDATION

Obviously, the efficacy of any post-silicon validation activity
critically depends on the tests employed. For speed path
validation, tests applied at the tester include both structural
tests (e.g., targeting stuck-at faults) and functional tests [1],
[11]. Functional tests include pre-silicon functional validation
tests created to exercise specific design features or tests known
to have been effective at detecting electrical issues in previous
generations of the circuit [10]. For processor cores these
tests can include tests from random instruction generators:
the goal is to exercise the various micro-architectural features
in ways not conceived by human. These tests of course are
not specifically targeted to stress the timing and marginal
behaviors of the current chip. Tests to cover specific speed
paths during debug are written for a small set of serious issues
by human experts. In addition, longer system level tests are
employed with the IC installed on validation board, that are
closer to the eventual application run by the customer.

Note that test generation as well as the process of debug-
ging from the tests can be expensive and challenging. First,
automated structural and functional tests are not very effective
in finding marginality issues, since they are not created to
target marginal behaviors. Marginal behaviors can be created
by electrical phenomena such as voltage droop and crosstalk.
Such electrical behavior can also be aggravated by process
variation. Such circuit behavior depends on workload and can
be intermittent i.e. they may not be reproducible reliably. It is
impossible to simulate during pre-silicon validation methods
the combination of parameters that cause marginalities induced
by a combination of electrical and process parameters. Second,
writing manual tests when necessary for isolating specific
speed paths during debug is extremely resource-intensive.
Third, while system level tests represent realistic workloads
and correspondingly can illustrate frequency limiting func-
tionality when the chip is deployed, debugging the issues
exhibited in these tests is difficult and unreliable due to non-
determinism in system execution. Note that it would be helpful
to make the failures reproducible in a tester, since the tester
has significant more debug “hooks” or instrumentation than
a validation board. On the other hand, long tests cannot be
effectively used in a tester given the limited tester memory.

VI. DEBUGGING A FAILURE

Given the results of the tests, the debugging process entails
identifying and isolating failing conditions. A typical approach
is to use a 2-dimensional shmoo plot of voltage (V;;) with
frequency. Fig. 4 shows a representative plot. The overall idea
is to identify the region (voltage and frequency combinations)
that correspond to the passing tests. A failure obtained in that
region would be a candidate for a failing speed path.

0 PassingArca

B Failing Arca

Fail at F, H2

» High F

Frequency

Fig. 4. Typical Shmoo Plot in Speed Path Validation. The red region
represents that V;; and frequency combination that corresponds to failing
tests, and the green region represents the region for passing tests.

Once we see a failure in the shmoo plot, we must isolate the
failure and diagnose its root cause. First, we need to make the
speed path reliably reproducible. This is non-trivial because of
the non-determinism involved in post-silicon validation: the
same test that caused failure once can pass when repeated.
Furthermore, two failing speed paths may be excited by the
same test. The goal then is to fine-tune the parameters (e.g.,
voltage, frequency, temperature, etc.) with a wide failure band
so that the failure is reproducible. Once we have a reproducible
failure, the goal of the exploration is to narrow down the
problem by answering the following two questions:

« Spatial root causing: Where in the die is the slow

location? Is this a transistor device or an interconnect?

» Temporal root causing: Where in the execution has the

slowness been encountered?

VII. DEBUGGING AIDS

As with any debug methodology, speed path diagnosis is a
highly manual process. Nevertheless, there are infrastructures
to aid with this activity, as described below.

A. On-Chip Instrumentation

One of the fundamental approaches to assist debug is re-
purposing the available Design-for-Test (DfT) infrastructure
available on-chip. Additionally some instrumentation is intro-
duced specifically for speed path debug.

Scan: A critical DIT instrumentation available in virtu-
ally any chip is scan. The key idea of re-purposing scan for
speed path validation is to identify and scan out the critical
cycle determined as follows. For each of the failing tests, the
frequency is relaxed to just let the test pass. The critical cycle
then is the clock cycle where the failure is latched internally.
We can then record the first scanout failures after the critical
cycle, to facilitate spatial root causing. For a fully scanned
design, a speed path is a flop to flop path and the critical cycle
is also the scanout cycle. However, note that if the design has
only partial scan then there may be several cycles between the
critical cycle and the scanout cycle.

On-die Clock Shrink: This is an interesting debug feature
available in some ICs particularly when the design does
not include full scan. It was introduced in the Pentium 4
microprocessor [4], and provides the capability of shrinking



and expanding a specific clock cycle. Additionally the clock
skew can be adjusted between clock domains. In case of partial
scan, this architecture can help reduce the discrepancy between
critical cycle and scanout cycle as follows. For each of the
failing tests, at the frequency in which the test just passes
(see above), the clock can be progressively and sequentially
stretched from the failure point, to identify the critical cycle.
Furthermore, clock skews are adjusted for the critical cycle. If
shrinking a clock edge causes an initially failing test to pass
then the driving latches of the failing path can be narrowed
to that clock region; correspondingly, if a shrinking causes an
initial passing test to fail then the load or receiver latches can
be narrowed to the clock region.

Process monitor: A process monitor is used to determine
the process skew of the fabricated die. A die can belong to
fast, nominal, or slow skew of the process. The process skew is
important information for speed path debug. A process monitor
is typically a ring of buffers and inverters whose delay can
be recorded. By characterizing data from process monitors
sprinkled around the die, one can infer the process skew.

Voltage droop monitor: Another debug aid is a voltage
droop monitor. A voltage droop can make a path slower than
the targeted delay, and the monitor helps understand if a speed
path is caused by unexpected voltage droop [12].

B. Failure Analysis: Instruments vs CAD

While on-chip instrumentation are helpful, they are not suf-
ficient for effective debugging of industrial speed path failures.
In particular,due to the large number of gates dominated by
each clock domain, one need to narrow the list of failing source
candidates into a smaller group of logic gates. Following are
representative technologies to enable effective failure analysis.

o Laser Voltage Probe (LVP) is used to monitor values,
arrival times and transition times at internal signals.

o Laser Assisted Device Alteration (LADA) is used to speed
up or slow down a device to check if it can pass under
altered timing conditions [14].

o Focused Ion Beam (FIB) is used to “circuit-edit” a device
(e.g., cut and add wires, remove components, etc.) and
check if it passes with altered connectivity

The failure analysis infrastructures above are obviously
heavy-weight. They are expensive (often costing more than
million dollars per equipment), require human operators with
special expertise, and human creativity to determine how
exactly to exploit the sophistication of the machines for
effective debugging. A debugging process might take hours up
to weeks per speed failure. Since an IC can have hundreds to
thousands of speed path failures, the process can take months.
To ameliorate the problem, there have been recent approaches
to develop light-weight, automated CAD flows. The goal is to
reduce the failure analysis instruments but still exploit the on-
chip instrumentation discussed in Section VII-A. McLaughlin
et al. [6] present an automated debug mechanism, borrowing
from fault simulation techniques by using delay testing for
temporal root causing. In particular, faults are seeded on

the receiver latch candidates after identification using clock
shrink as discussed in Section VII-A, and a path tracing
procedure analogous to critical path tracing is used to identify
sensitized paths. If multiple paths are found then they are
further analyzed through pre-silicon timing analysis as well as
probing solutions. Recently, Kaiss [2] extended such procedure
with symbolic analysis based on SAT-based formal reasoning.
The idea is to perform symbolic pre-image computation across
circuit elements using SAT, to localize a path from a failure
to the source flip-flop. Kaiss reports that the tool found the
same speed paths as LADA for a next-generation industrial
microprocessor but was much faster than LADA-based debug
which often took weeks. Such results reflect the promise
of CAD solutions. Nevertheless, as of this writing, CAD
approaches are still nascent in industrial practice.

VIII. ConcLusioN

Speed path validation is a complex and challenging compo-
nent of post-silicon validation in a modern IC. In this paper
we have provided a summary of this activity, focusing on
current industrial practice and limitations. We hope that the
tutorial description will help de-mystify post-silicon validation
in general and speed path validation in particular.

REFERENCES

[1] S. Gurumurthy, S. Vasudevan, and J. A. Abraham. Automated mapping
of precomputed module-level test sequences to processor instructions.
In ITC, pages 294-303, 2005.

[2] D. Kaiss and J. Kalechstain. Post-silicon Timing Diagnosis Made Simple
Using Formal Technology. In FMCAD, pages 131-138, 2014.

[3] A. Krstic and K.-T. Cheng. Delay Fault Testing for VLSI Circuits.
Springer, 1998.

[4] N. A. Kurd, J. S. Barkarullah, R. O. Dizon, T. D. Fletcher, and
P. D. Madland. A multigigahertz clocking scheme for the Pentium
4 microprocessor. IEEE Journal of Solid-State Circuits, 36(11):1647—
1653, 2001.

[5] X. Lin, K. Tsai, C. Wang, M. Kassab, J. Rajski, T. Kobayashi, R. Klin-

genberg, Y. Sato, S. Hamada, and T. Aikyo. Timing-Aware ATPG for

High Quality At-speed Testing of Small Delay Defects. In Asian Test

Symposium, pages 139-146, 2006.

R. McLaughlin, S. Venkataraman, and K. Lim. Automated Debug of

Speed Path Failures Using Functional Tests. In VTS, 2009.

[7] T. M. McWilliam. Verification of timing constraints on large digital

systems. In DAC, pages 139-147, 1980.

P. Mishra and F. Farahmandi, editors. Post-silicon Validation and Debug.

Springer, 2018.

[9] P. Mishra, R. Morad, A. Ziv, and S. Ray. Post-silicon validation in the

soc era: A tutorial introduction. IEEE Design Test, 34(3):68-92, June

2017.

S. Natarajan, A. Krishnamachari, E. Chiprout, and R. Galivanche. Path

coverage based functional test generation for processor marginality

validation. In ITC, pages 1-9, 2010.

S. Natarajan, S. Patil, and S. Chakravarty. Path Delay Fault Simulation

on Large Industrial Designs. In 24th IEEE VLSI Test Symposium, pages

16-22, 2006.

P. Pant and J. Zelman. Understanding power supply droop during at-

speed scan testing. In VLSI Test Symposium, 2009.

K. Rahmani, S. Ray, and P. Mishra. Postsilicon trace signal selection

using machine learning techniques. /EEE Trans. Very Large Scale Integr:

Syst., 25(2):570-580, February 2017.

R. Rowlette and T. Elies. Critical Timing Analysis in Microprocessors

Using Near-IR Laser-Assisted Device Alteration (LADA). In Interna-

tional Test Conference, pages 264-273, 2003.

A. Shah, R. Nayyar, and A. Sinha. Silicon-Proven Timing Signoff

Methodology Using Hazard-Free Robust Path Delay Tests. IEEE Design

& Test, 37(4):7-13, 2020.

[6

[t

[8

=

[10]

[11]

[12]

[13]

[14]

[15]



