
A Mechanized Refinement Framework for Analysis
of Custom Memories

Sandip Ray
University of Texas at Austin

sandip@cs.utexas.edu

Jayanta Bhadra
Freescale Semiconductor Inc.

jayanta.bhadra@freescale.com

Abstract— We present a framework for formal verification of
embedded custom memories. Memory verification is complicated
by the difficulty in abstracting design parameters induced by the
inherently analog nature of transistor-level designs. We develop
behavioral formal models that specify a memory as a system of in-
teracting state machines, and relate such models with an abstract
read/write view of the memory via refinements. The operating
constraints on the individual state machines can be validated by
readily available data from analog simulations. The framework
handles both static RAM (SRAM) and flash memories, and we
show initial results demonstrating its applicability.

I. INTRODUCTION

This paper describes an approach to verify embedded cus-
tom memories. Memory verification entails showing that a
transistor implementation conforms to the high-level view of
a state machine that stores and retrieves data at addressed
locations. Memories are complex analog artifacts, optimized
for performance, area, power, etc., and account for about half
the real estate and more than 50% of the transistor count
of a microprocessor. This makes their verification a critical
component of the overall design validation. However, given the
size and complexity of a custom memory core, it is impossible
to validate the entire core by analog simulation. Thus, a key
challenge is to derive an effective abstraction which can be
formally compared against the high-level specification.

The common approach to abstract a traditional SRAM is to
extract a switch-level model [1] that represents the memory
netlist as a set of nodes connected by transistor switches.
Each node has state 0, 1, or X; each switch has state “open”,
“closed”, or “indeterminate”; state transitions are specified
by switch equations. These models capture many aspects of
transistor circuits, namely bidirectionality, signal strengths,
etc. The common analyzers for constructing such models are
the ANAMOS [2] and its variants; they partition a netlist into
channel connected subcomponents (CCSs) and analyze each
component separately to construct the switch equations.

However, in spite of their sophistication, switch-level ana-
lyzers ignore many analog effects. For instance, the strength
assignment procedure in ANAMOS produces a significant mis-
match with detailed analog simulations for netlists containing
transistors of closely matching but different strengths [3].
While these discrepancies can be ameliorated by designing
more and more accurate analyzers [4], such an approach does
not solve the fundamental problem of effectively represent-
ing inherently analog behaviors with equations in a discrete

algebra. The problem is exacerbated with the advent of flash
memories that contain both regular and Floating Gate (FG)
transistors; FG transistors “break” the view of netlists as a
collection of switches, making switch-level analysis untenable.

In this paper, we present a new approach to abstracting
memory implementations. Instead of extracting a switch-level
model by structural analysis of a transistor netlist implement-
ing a memory core, we formalize its behavior as a system of
interacting state machines. The viability of the method is based
on the observation that in an industrial design flow, custom
memories are designed not as an ad-hoc transistor network but
by interconnecting small, cohesive units such as bitcells, sense
amplifiers, etc., with well-understood electrical properties in
their range of operation. For instance, in Motorola’s design
flow, the units are carefully architected to operate over a lim-
ited sequence of certified stimulus patterns, each of which is
validated by extensive analog SPICE simulation across various
process corners and operating conditions [3]. Thus, it is natural
to formalize the behavior of each unit as a state machine using
guarded transitions that encode its operating constraints. This
enables us to reduce a memory implementation to a formal
behavioral model specifying an interacting composition of
state machine components, with each component representing
the behavioral model for a pre-computed unit. Note that by
focusing on the behavior of the units, our approach is agnostic
to the nature of the transistors (standard, FG, etc.) used in
the implementation, making it applicable to both SRAM and
flash designs. Finally, we show how to prove a refinement
theorem relating such compositions with high-level memory
specifications using an assume-guarantee technique.

Our approach is mechanized in the ACL2 theorem
prover [5]. We show how the use of the expressive language
of a general-purpose theorem prover enables effective compo-
sitional reasoning about the interacting state machines.

II. MODELING CUSTOM SRAM

We illustrate our approach with the bitcell implementation
shown in Fig. 1. From an electrical perspective, reading from
the bitcell can be explained by the following operations.

• Initially, the precharge (pch) signal turns 1 in order to
precharge the bitline (bl) and bitline-bar (blb) to 1s.

• Next, the wordline (wl) turns 1 indicating that the decoded
address matches that of the bitcell. Thus the data stored
in the bitcell (say 0) and its complement (1) are gated to



��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

bitcell
data

vddvdd

gnd

dout

iso

sl

se

wen

din

vdd vdd

data

wl
bl blb

bitcell

wl

se

iso

wen

dout old−data

old−data

read write

new−data

pch

pch

Fig. 1. A Standard SRAM Bitcell and Associated Timing Diagram

bl and blb respectively. Due to the large load on bl, the
bitcell cannot pull it down from 1 to 0; bl is pulled down
to an indeterminate value (1 − δ) (where 0 < δ < 1),
while blb retains a 1. Furthermore, since the isolate (iso)
signal is 0, the sense-line (sl) is pulled down to (1− δ).

• Finally, the sense (se) signal, followed by iso, turn 1
resulting in (i) an electrical disconnection between bl and
sl, and (ii) converting the bottom 5-transistor pack into a
latch that pulls the value of sl from (1− δ) to a solid 0.
The value is then inverted and is obtained at dout.

Note that reading a bitcell is a complex analog problem —
how to drive a large load (a bitline) with a bitcell that is
quite small in strength. Furthermore, the circuit functionality
depends on the constraints on the relative times within which
successive signals change value. For example, wl must be 1 for
a pre-determined bounded interval in order for the bitcell value
to drive bl from 1 to (1 − δ). Nevertheless, the behavior of
the signal pattern can be viewed as discrete state transitions:
if the data stored in the bitcell is 0, then under appropriate
conditions bl transits from state 1, through (1− δ) and so on
until finally the circuit produces 1 at dout.

Our approach works on the bitcell design as follows. We
identify the design as a composition of state machines that
correspond to the following two components:

1) the bitcell (from the shaded region together with the
structure of the pch and iso), with the wl, pch, and iso
signals as input and bl and blb as output, and

2) the sense amplifier (from the 5-transistor pack together
with the transistors gated by iso), with bl and blb as
inputs and dout as the output.

Each state machine is pre-computed into a “library”. To make
the library generic, the state machines are parameterized to
work over a range of operating constraints. For instance, to
model the time delay between pch and iso signals, the bitcell
component contains parameters n0, n1, and n2 (among others),
with constraints that on a read, (i) pch is 1 and iso is 0 for
at least n0 units, (ii) both pch and iso are 0 for at least n1

units thereafter and wl becomes 1 in this interval, and (iii) iso
is 1 for at least n2 units subsequently. For the reader familiar
with ACL2, the parameters are modeled using encapsulation

(with constraints specifying operating conditions) and can be
functionally instantiated [6] for concrete models.

We have used our library to model the transistor implemen-
tation of a simple but complete SRAM core consisting of an
array of memory words, each word composed of a row of
the bitcells in Fig. 1 (the sense amplifier being shared along
a bitcell column), together with a decoder implementation.
This example demonstrates scalability of the approach. A
strength of the approach is compositionality: the extracted
formal model of the memory core is merely a hierarchical
composition of those of the individual bitcells, with interme-
diate state machines specifying the behavior of the glue logic.

III. MODELING FLASH MEMORY

Although we can abstract custom SRAMs, our principal
goal is to develop a framework for handling flash memories.
The additional complexity in flash arises from FG transistors,
which have, in addition to the conventional drain (D), gate (G)
and source (S) terminals, a floating gate (F) — a polysilicon
layer inserted in the oxide between the gate and the substrate
that is physically disconnected from both S and D. A detailed
treatment of flash memories is provided by Cappelletti et
al [7]. The key electrical effect is the capacitive coupling
between G, F, and the substrate. The capacitance is exploited
to design a bitcell with a single FG transistor as follows.
Controlling the stored charge in the capacitive coupling allows
dynamic regulation of the threshold voltage Vth (the minimum
voltage to turn on the device); a low threshold voltage (V L

th)
represents logic 1 and high threshold voltage (V H

th ) represents
logic 0. Additionally, some flash designs make use of multiple
Vth levels to store 2 or 3 bits in one FG transistor; we do not
consider multi-level flash in this paper.

Unfortunately, the capacitive coupling mentioned above
breaks the simple view of a transistor as an on/off switch, as
taken by ANAMOS-like analyzers, and makes it infeasible to
extract precise switch-level abstractions. Consequently, current
industry practice on flash validation amounts to (i) simulating
the high-level model along with the encompassing SoC, and
(ii) simulating individual FG bitcells through SPICE simula-
tions. In particular, no formal correspondence is guaranteed
between the transistor netlist and high-level specification.

Before describing our behavioral models, we discuss the
electrical effects of flash operations. Below we summarize the
three main operations of an FG bitcell: read, program (writing
0), and erase (writing 1). The operations involve both the
bitcell and the surrounding control logic.

• Read: For the selected bitcell, one applies a voltage v
(V L

th < v < V H
th ) at G which is driven by the selected

wordline, while keeping other wordlines at ground. If the
cell has logic 0, the transistor does not turn on and no
current flows to the associated sense amplifier; otherwise
the bitcell turns on and current is detected, reading a 1.

• Program: The so-called Channel Hot-Electron Injection
procedure is performed to inject negative charge into the
FG, raising its Vth to V H

th . Then there is a verification
phase to ensure that Vth has been appreciably raised;



this is done by “reading” the cell with a gate voltage
v (> V H

th ). A result of 0 for the read indicates successful
programming; otherwise programming is iterated until it
succeeds or a specified number of attempts have been
made, signalling failure in the latter case.

• Erase: Erasing is performed for an entire memory sector
rather than one bitcell, and is based on removal of stored
charge by a procedure called Fowler-Nordheim tunneling.
The operation involves (i) raising the Vths of the bitcells
in the sector to V H

th by programming, (ii) charge removal
to lower all the Vths to V L

th, and finally, (iii) normaliza-
tion, which employs soft programming to increase the Vth
of the cells that have fallen below V L

th.
The description underlines the complexity of the analog op-
erations in a flash memory, and points to the difficulty of
designing switch-level analyzers. Other factors to account for
in abstracting flash memories include (i) multiple voltage
levels, (ii) charge injection and removal, and (iii) complex
sense amplifier activity to compare various current values.
However, the behaviors of the individual components are still
tractable (albeit more complex than SRAMs). For instance, the
response of the state machine for the FG bitcell component
to the electron injection phase of a program sequence is
formalized as a non-deterministic transition raising the Vth

by a bounded constant. Our library contains behavioral state
machine models for the different components of flash memory,
such as bitcell, sense amplifier, etc. Note that a few of the
generic components are reused from the SRAM library.

We used behavioral abstractions to formalize a standard
implementation of a NOR flash core:1 bitcells are arranged
in a two-dimensional array with a row decoder and a column
decoder; a read of a bitcell causes a row to be activated by the
row decoder, while the column decoder causes the appropriate
column to be connected to the sense amplifier resulting in the
loading of the data from the addressed bitcell to the output
buffer. The extracted model is a composition of the behavioral
models corresponding to the bitcells, the (row and column)
decoders, the sense amplifiers, and the output buffers.

IV. SPECIFICATION AND VERIFICATION

We relate the executions of the memory core with a high-
level specification. The specifications are abstract state ma-
chines representing the core’s interface to an SoC during
functional verification. The SRAM specification supports read,
write, and reset operations; the flash specification supports
read, program, and erase, together with core enable that
controls operations on the entire core, and write protect that
regulates programming bitcells in the core.

We prove that the implementation is a simulation refine-
ment [8], [9] of the specification up to stuttering, with respect
to a refinement map. A refinement map enables us to appropri-
ately view implementation states as specification states [10],
and in our case, maps the bitcell states in the memory core

1Flash memories have two common organizations: NOR and NAND. A
NOR flash is used as a nonvolatile memory with fast random access. A NAND
flash can be used as a disc storage. We do not consider NAND flash.

to an association list that models the core at the specification
level. We require the notion of correspondence to be stutter-
insensitive to account for the timing mismatch between the
implementation and specification models.

We now discuss the proof obligations. Let rep be a refine-
ment map. We then define predicates inv and commit, and a
function pick such that (i) inv is an implementation invariant
and (ii) the following formulas are provable:

1. ∀s, i : inv(s) ∧ ¬commit(s, i)⇒
rep(impl(s, i)) = rep(s)

2. ∀s, i : inv(s) ∧ commit(s, i)⇒
rep(impl(s, i)) = spec(rep(s),pick(s, i))

Here impl and spec are the (non-deterministic) state transition
functions of the implementation and specification respectively;
commit governs for an implementation transition if the spec-
ification transits or stutters; pick provides the specification
stimulus in case of a matching transition. The formulas above
thus state that for each transition of the implementation, the
specification either has a matching transition or stutters.2

These proof rules, of course, can be used to compare two
systems modeled at different abstraction levels; they have been
adapted from Manolios’ rules for stuttering simulations [11]
with the restriction that stuttering is one-sided. The restriction
is justified since one step of the specification corresponds to
several steps of the implementation, but not vice versa.

Using the ACL2 theorem prover we have verified the SRAM
and flash models of the preceding sections. Note that each
implementation is a complex composition of a large number
of state machines, which normally poses a challenge to formal
verification. However, the problem is ameliorated in our case
by a synergy of several factors. First, the implementation cor-
rectness is independent of the size of the core: we replace the
core size with a symbolic constant, and use symbolic rewriting
of the transition relations (an area of strength of theorem
provers, in particular ACL2) rather than detailed reachability
analysis. A second, subtle reason arises from the nature of the
models and proof obligations. The expensive verification step
involves the definition and proof of the appropriate invariant
inv. However, this step is substantially automated by using
the constraints attached to the component state machines.
Since the implementation is merely an interactive, hierarchical
composition, the assumed input constraints associated with a
component C must be implied by the invariants (guarantees)
associated with the state machines for their environmental
components. Furthermore, in a theorem prover we can define
invariants with generic, expressive predicates. Since ACL2
supports full first order logic, we define a predicate to express
(by quantification) that each state s is reached by transitions in
which the input sequences satisfy the associated constraints.
Invariance proof for this predicate reduces to the above
assume-guarantee reasoning.

2We also prove that stuttering is finite, by exhibiting a well-founded ranking
function that decreases along stuttering steps; this proof is trivial since timing
constraints upper-bound the completion of the state transition sequence by a
natural number, namely the number of delay units in system-clock cycle.



 0.400 0.450 0.500 0.6000.550

bl
wl

time (ns)

900.000

800.000

700.000

600.000

500.000

400.000

300.000

200.000

100.000

1000.000

voltage (mV)

data

Fig. 2. A SPICE Simulation trace showing a failed write of 0 due to
insufficient Setup Time

Finally, we note that one key feature of our framework is
the direct behavioral correspondence between the components
used for analog simulation and the formal models in our li-
brary. This facilitates corroboration of the models with readily
available simulation data. Furthermore, this correspondence
together with our assume-guarantee approach, can potentially
identify corner cases missed in analog simulation. In one
illustrative experiment, we inserted a bug in the SRAM li-
brary. During a write, the constraints on the state machines
responsible for generating signals bl and wl (Fig. 1) did not
guarantee that bl has been 0 for a sufficient time (setup time),
before wl becomes 0. The bug was promptly discovered while
attempting to prove the assumptions on the bitcell, and the
scenario specified by the failure corresponds directly to the
actual SPICE simulation pattern for the bitcell (Fig. 2).

V. RELATED WORK AND CONCLUSION

Formalization of transistor circuits has chiefly focused on
developing switch-level analyzers such as SLS [12], MOSSIM-
II [1], and ANAMOS [2]. Switch-level models have found
extensive applications in academia and industry [2], [13].
In addition, there has been work on equivalence verifica-
tion and conservative reachability analysis of small ana-
log circuits [14], [15], [16], [17]. Finally, the PROSYD
project (http://www.prosyd.org) aims to provide an
assertion-based run-time monitoring tool supporting STL or
PSL properties in analog circuits. This tool has been applied
on simulation traces from a flash memory [18].

Our framework has been inspired by recent efforts of Bhadra
et al [3] on behaviorally formalizing transistor implementa-
tions of custom memories. They show how to abstract SRAM
designs using parameterized regular expressions, and compare
those abstractions with a high-level memory specification
using STE. However, a limitation of that work is the difficulty
to correspond the abstract models with analog simulations; our
approach overcomes this by carefully constructing our library
of state machine models to formalize behaviors of design units
that have direct correspondence with SPICE simulations.

Our key insight is that although custom memories consist of
complex analog components, the behavioral characteristics of
the components are well-understood, at least within the limited
range of operating conditions. By focusing on the behavior
rather than the structure of components, we circumvent the

complex problem of abstracting analog operations with a
discrete algebra, and formalize memory implementations as
interactive compositions of relatively simple state machines.
To our knowledge, ours is the first platform that permits formal
analysis of both SRAM and flash memories. Note, however,
that our approach can only be applied to memory designs
constructed by interconnection of well-defined components;
in particular, we cannot abstract an arbitrary transistor netlist.

In future work, we plan to explore if the approach scales to
industrial memory designs. We also plan to extend our library
of models to handle multi-level flash designs.

Acknowledgements

Sandip Ray is funded in part by DARPA and NSF under
Grant No. CNS-0429591. We thank our colleagues at Freescale
Semiconductor Inc. for patiently answering our numerous
questions on the electrical behavior of custom memories.

REFERENCES

[1] R. E. Bryant, “A Switch-Level Model and Simulator for MOS Digital
Systems,” IEEE Trans. on Computers, vol. C-33, no. 2, pp. 160–177,
Feb. 1984.

[2] R. E. Bryant, D. Beatty, K. Brace, K. Cho, and T. Sheffler, “COSMOS: A
Compiled Simulator for MOS Circuits,” in Proceedings of 24th Design
Automation Conference. ACM/IEEE, 1987, pp. 9–16.

[3] J. Bhadra, A. K. Martin, and J. A. Abraham, “A Formal Framework for
Verification of Embedded Custom Memories of the Motorola MPC7450
Microprocessor,” Formal Methods in Systems Design, vol. 27, no. 1-2,
pp. 67–112, 2005.

[4] P. Agrawal, “Automatic Modeling of Switch-Level Networks Using
Partial Orders,” IEEE Transactions on Computer-Aided Design, vol. 9,
no. 7, pp. 696–707, July 1990.

[5] M. Kaufmann, P. Manolios, and J. S. Moore, Computer-Aided Reason-
ing: An Approach. Kluwer Academic Publishers, 2000.

[6] R. S. Boyer, D. Goldshlag, M. Kaufmann, and J. S. Moore, “Functional
Instantiation in First Order Logic,” in Artificial Intelligence and Math-
ematical Theory of Computation: Papers in Honor of John McCarthy,
V. Lifschitz, Ed. Academic Press, 1991, pp. 7–26.

[7] P. Cappalletti, C. Golla, P. Olivo, and E. Zanoni, Eds., Flash Memories.
Kluwer Academic Publishers, 1999.

[8] R. Milner, Communication and Concurrency. Prentice-Hall, 1990.
[9] D. Park, “Concurrency and Automata on Infinite Sequences,” in Pro-

ceedings of the 5th GI-Conference on Theoretical Computer Science,
ser. LNCS, vol. 104. Springer-Verlag, 1981, pp. 167–183.

[10] M. Abadi and L. Lamport, “The Existence of Refinement Mappings,”
Theoretical Computer Science, vol. 82, no. 2, pp. 253–284, May 1991.

[11] P. Manolios, “Mechanical Verification of Reactive Systems,” Ph.D.
dissertation, Department of Computer Sciences, The University of Texas
at Austin, 2001.

[12] Z. Barzilai, D. K. Beece, L. M. Hiusman, V. S. Iyegar, and G. M.
Silberman, “SLS – a Fast Switch Level Simulator for Verification and
Fault Coverage Analysis,” in Proceedings of 23rd Design Automation
Conference, 1986, pp. 164–170.

[13] N. Krishnamurthy, A. K. Martin, M. S. Abadir, and J. A. Abraham,
“Validating PowerPCTM Microprocessor Custom Memories,” IEEE
Design & Test of Computers, vol. 17, no. 4, pp. 61–76, 2000.

[14] L. Hedrich and E. Barke, “A formal approach to nonlinear analog circuit
verification,” in ICCAD, 1995, pp. 123–127.

[15] A. Salem, “Semi-formal verification of VHDL-AMS descriptions,” in
Intl. Symp. on Circuits and Systems, 2002, pp. 123–127.

[16] A. Ghosh and R. Vemuri, “Formal Verification of Synthesized Analog
Designs,” in Intl. Conf. on Computer Design, 1999, pp. 40–45.

[17] S. Little, N. Seegmiller, D. Walter, C. Myers, and T. Yoneda, “Ver-
ification of Analog and Mixed-signal Circuits Using Timed hybrid
Petri Nets,” in Automated Technology for Verification and Analysis, ser.
LNCS, no. 3299, 2004, pp. 426–440.

[18] D. Nickovic, O. Maler, A. Fedeli, P. Daglio, and D. Lena, “Analog Case
Study, PROSYD Deliverable D3.4/2,” Jan. 2007.


