
Mechanized Information Flow Analysis through
Inductive Assertions

Warren A. Hunt, Jr., Robert Bellarmine Krug, Sandip Ray, and William D. Young
Department of Computer Sciences

University of Texas at Austin
{hunt,rkrug,sandip,byoung}@cs.utexas.edu

Abstract— We present a method for verifying information flow
properties of software programs using inductive assertions and
theorem proving. Given a program annotated with information
flow assertions at cutpoints, the method uses a theorem prover
and operational semantics to generate and discharge verification
conditions. This obviates the need to develop a verification
condition generator (VCG) or a customized logic for information
flow properties. The method is compositional: a subroutine needs
to be analyzed once, rather than at each call site. The method is
being mechanized in the ACL2 theorem prover, and we discuss
initial results demonstrating its applicability.

I. INTRODUCTION

Security of many critical computing systems depends on
information flow policies that prohibit access to sensitive
information without proper authorization. With the increasing
application of software systems to secure applications, it
is vital to ensure that a software implementation properly
enforces information flow policies. The goal of this paper is to
develop techniques for mechanized information flow analysis.

In its simplest form, modeling an information flow policy
involves labeling certain program variables as classified (or
high security), with the requirement that the value of an
unclassified variable is not influenced by the initial values
of any classified variable. Such a policy can be formalized
by noninterference [1]. A deterministic program satisfies the
policy if, from a pair of initial states differing only in classified
variables, any pair of computations leads to final states with
identical values for unclassified variables. Noninterference
naturally generalizes to a lattice of security levels.

This paper proposes a method for verifying information flow
properties of software programs through general-purpose theo-
rem proving. Programs are formalized through an operational
semantics of the underlying language defined by an interpreter
that specifies the effect of executing instructions on the system
state. Our approach uses inductive assertions. Given a program
annotated with assertions at cutpoints, we derive verification
conditions that ensure requisite information flow control, to be
discharged with a theorem prover.

A key feature of our approach is that it obviates the need for
implementing a custom verification condition generator (VCG)
for information flow properties of the underlying language
constructs. Instead, we show how to configure an off-the-
shelf theorem prover to mimic a VCG through symbolic
simulation of the operational model. The method is inspired
by, and an extension of, our previous work [2] which showed

how to prove functional correctness via symbolic simulation.
The method is compositional; properties of subroutines can
be verified individually rather than at each call site. We
demonstrate the method by analyzing a small but illustrative
program with the ACL2 theorem prover.

II. BASIC FRAMEWORK

We use operational semantics to model a program by its
effects on the machine states. A state is a tuple of values
of all machine variables—the program counter (pc), registers,
memory, etc. The semantics is then given by a transition
function next : S → S where S is the set of states: for a
state s, next (s) returns the state after executing one instruction
from s. Executions are modeled by the function run : S×IN→
S which returns the state after n transitions from s.

run (s, n) ,

{
s if n = 0
run (next (s), n− 1) otherwise

To illustrate how to formally specify information flow prop-
erties of programs using operational semantics, we consider
the simple version of noninterference mentioned in Section I.
Assume a partition of the variables into sets H (high) and L
(low), corresponding to classified and unclassified data. Fur-
thermore, assume that we have two predicates poise and exit
on set S. For any state s, poise (s) stipulates that s is poised to
initiate execution of the program of interest: it specifies that the
program is in the current call frame and the pc points to its first
instruction. The predicate exit characterizes the termination
states. To formalize the noninterference statement, we make
use of the function esteps below, which returns, for any state
s, the number of transitions to the first exit state reachable
from s (if such an exit state exists).

estpt (s, i) ,

{
i if exit (s)
estpt (next (s), i + 1) otherwise

esteps(s) , estpt(s, 0)

The definition of estpt is partial: its return value is unspecified
if no exit state is reachable from s. Defining a recursive
function generally requires a termination proof. However,
since the definition is tail-recursive, it is admissible in theorem
provers whose logics support Hilbert’s choice operator [3].

A formalization of noninterference is shown in Fig. 1, and
can be paraphrased as follows. “Let s and s′ be any two states



pre (s, s′) , poise (s) ∧ poise (s′) ∧ (
∧

l∈L l(s) = l(s′))
post (s, s′) , (

∧
l∈L l(s) = l(s′))

nexte(s) , run(s, esteps(s))
Noninterference Condition:

pre (s, s′) ∧ exit (run (s, n))
⇒ exit (nexte(s′)) ∧ post (nexte (s), nexte (s′))

Fig. 1. Formal Definition of Noninterference. Here l(s) is assumed to be
the value of variable l in state s.

poised to execute the program, such that the variables in L
have the same valuation in both s and s′. Suppose that there
is an exit state reachable from s. Then the following conditions
hold. (1) There is an exit state reachable from s′. (2) Let s0 and
s′0 be the first exit states reachable from s and s′ respectively;
then s0 and s′0 have the same valuation for all variables in L.”

Note that the statement of a practical information flow
property might differ from the above. For instance, one might
have a lattice of security levels. Or one might be interested
only in a subset L′ ⊆ L at exit; then the conjunction in the
definition of post would range over L′. Nevertheless, such
concerns affect only the concrete definitions of pre and post;
once they have been defined for the desired information flow
requirements, the noninterference statement can be used as is.

Our approach is based on inductive assertions which involve
annotating a program with assertions at cutpoints that include
loop tests, program entry, and exit. For our purpose, the set of
cutpoints is characterized by a predicate cut on S, commonly
depending only on the pc. One then proves that whenever
the program control reaches a cutpoint, the corresponding
assertion holds. For functional correctness, this is achieved by
a VCG as follows. A VCG crawls over an annotated program,
generating verification conditions to be discharged by theorem
proving. The guarantee from the VCG process is informally
stated as follows. “Let p be any non-exit cutpoint satisfying
the assertions. Let q be the next subsequent cutpoint. Then the
assertions hold at q.” It follows that the corresponding asser-
tion holds whenever the program control reaches a cutpoint.

How do we extend the above for information flow proper-
ties? Since information flow is characterized by pairs of states,
the assertions involved are formalized by a predicate assert
over S × S. The associated VCG guarantee is as follows.
“Let p and p′ be any two corresponding non-exit cutpoints
of the program such that assert (p, p′) holds. (See below for
an explanation of the role of “corresponding cutpoints.”) Let q
and q′ be the next cutpoints from p and p′ respectively. Then
assert (q, q′) holds.” Then, if additionally, (1) assert holds
for the initial pair of states, and (2) for the pair of exit states
assert implies post, it follows that the pair of exit states
reachable from any pair of initial states satisfies post.

The formal verification conditions for information flow are
shown in Fig. 2. Condition 4 formalizes the VCG guarantee.
We now discuss the predicate C, which formalizes the notion
of “corresponding cutpoints.” Recall that the VCG guarantee
specifies that when assert holds between a pair of cutpoints

cstpt (s, i) ,

{
i if cut (s)
nextc (next (s, i + 1)) otherwise

cstps(s) ,

{
cstpt (s, 0) if cstpst (s, 0) ∈ IN
ω otherwise

cut (D)⇔ (∀s : cut (s))

nextc(s) ,

{
run(s, cstps (s)) if cstps (s) ∈ IN
D otherwise

Verification Conditions
1. C (s, s′)⇒ cut (s) ∧ cut (s′) ∧ (exit (s)⇔ exit (s′))
2. pre (s, s′)⇒ C (s, s′) ∧ assert (s, s′)
3. exit (s)⇒ cut (s)
4. C (s, s′) ∧ assert (s, s′) ∧ ¬exit (s) ∧ exit (run (s, n))
⇒ assert (nextc (next (s)), nextc (next (s′)))

5. C (s, s′) ∧ assert (s, s′) ∧ ¬exit (s) ∧ exit (run (s, n))
⇒ C (nextc (next (s)), nextc (next (s′)))

6. assert (s, s′) ∧ exit (s) ∧ C (s, s′)⇒ post (s, s′)

Fig. 2. Verification conditions for information flow. Each verification
condition is implicitly quantified over all free variables. Here ω is the first
infinite ordinal. The function cstps (s) returns the number of transitions to the
closest cutpoint reachable from s if one exists, and ω otherwise. The reasons
for returning ω when no cutpoint is reachable from s are technical, and not
germane to this paper.

then it also holds for the subsequent pair. However, the next
subsequent cutpoints might be out of sync. For instance,
computation might exit from p and not from p′; thus the
information flow theorem cannot be derived from the VCG
guarantee. The predicate C eliminates this possibility by re-
quiring the following: (1) if pre (s, s′) holds then s and s′ must
be corresponding; (2) for any two corresponding cutpoints, the
subsequent cutpoint pair must be corresponding; and (3) if s
satisfies exit and s′ is a corresponding cutpoint, then s′ must
also satisfy exit. We assume that there is a binary predicate
C on S × S characterizing the corresponding cutpoints; in
practice, the definition of C (s, s′) will usually reduce to the
condition that the pc values for s and s′ are equal.

Conditions 4 and 5 involve multiple steps of program execu-
tion. Contrary to common practice, we discharge them without
a VCG as follows. We prove the following two theorems,
which are easy consequences of the definition of nextc:

SSR1: ¬cut(s)⇒ nextc(s) = nextc(next(s))
SSR2: cut(s)⇒ nextc(s) = s

We treat SSR1 and SSR2 as oriented conditional equations or
rewrite rules. For any symbolic state s, the rules rewrite the
term nextc (s) to either s or nextc (next (s)); in the latter case
the definition of next is symbolically expanded, simplified, and
the rules applied again. The proof attempt causes the theorem
prover to symbolically simulate the program from a cutpoint
until the next cutpoint is reached; the process mimics a forward
VCG. For symbolic simulation to terminate, each program
loop must contain a cutpoint, as with traditional VCGs.

We briefly remark on how to automate the method above in
ACL2. The derivation of noninterference from Conditions 1–
6 is independent of the definitions of pre, post, etc. This
allows the development of a proof template for generating the



tricky1 (int high, low, n) {
int temp = low;
for i = 0 to n do {

if even(i) {
out = out + temp;
temp = high;

} else {
temp = low;

}
}
out = out + 7;
return out;

}

Fig. 3. Pseudo-code for the Tricky Program. Variable out is incremented
by temp only when i is even, and temp is equal to low in that case. Thus,
the final value of out is independent of high.

verification conditions as follows. First, we introduce functions
pre, post, cut, assert, C, and next constrained to satisfy
Conditions 1–6, and prove the noninterference theorem for
these constrained functions.1 We can then implement an ACL2
macro that automates the information flow proofs as follows:
• Mechanically generate the concrete version of nextc.
• Establish conditions 1–6 for the concrete versions of pre,

post, etc., using symbolic simulation.
• Derive the information flow theorem by functionally

instantiating the generic version.
We have developed a corresponding proof template for (partial
and total) functional correctness [2]. We are working on
extending the template for information flow properties.

III. A “TRICKY” EXAMPLE

Our approach, although extremely simple, nevertheless pro-
vides a scalable framework for information flow analysis. One
key strength is the ability to use expressive predicates for
proving information flow theorems: if an information flow
property depends on functional invariants of the system state,
then assertions can easily account for such invariants. This
is in stark contrast to traditional security type systems for
information flow verification, which depend on the syntactic
analysis of the program to deduce information flow [4].

As an illustration, consider the program shown in Fig. 3. The
information flow specification for the program is that the final
value of out depends only on the initial values of low and n.
The program is adapted from one in a recent paper by Amtoft
and Banerjee [5]2 which, although simple, was motivated by
an actual program used in operational verification of hardware
amplifiers provided by Rockwell Collins. The information flow
property depends on a key observation: whenever the value of
out is incremented by temp, the value of i is even and

1This proof has been completed with ACL2 at the time of this writing.
2The difference between Amtoft and Banerjee’s program and that shown

in Fig. 3 is that the former involved 7 iterations of i in the loop while we
use n iterations. Note that if the number of loop iterations is a constant then
the loop can be unrolled by symbolic simulation, obviating loop invariants.

the value of temp is equal to low; thus the final value of
out is dependent only on low (and the loop count n). The
property cannot be inferred by type reasoning which would
infer dependence of temp on high and out on temp.

We formalized the program through an operational seman-
tics of a simple machine model, and proved the information
flow specification using inductive assertions. The precondition
stipulates that s and s′ are poised to execute the program and
the values of low, n, and out are the same in both states; the
postcondition specifies that the value of out is the same after
exiting the program. The only “creative” assertion is in the
loop invariant. In addition to the boiler-plate assertion that the
values of low, n, out, and i are the same in s and s′, we need
the condition that if i is even s and s′ have the same value of
temp. With this assertion, the verification conditions shown
in Fig. 2 are easily verified through symbolic simulation.

It is instructive to compare our approach with that of
Amtoft and Banerjee [5]. Their approach is built around
the axiomatic semantics for a special logical construct on
stipulating agreement assertions: for a variable x, two states
p and q satisfy x on if and only if x(p) = x(q). They
develop axiomatic semantics for specifying loop flow and
object flow using on, and a VCG for the semantics. In contrast,
we generate and discharge the verification conditions directly
through symbolic simulation of the operational semantics.
Nevertheless, our approach requires no more creative insight
than theirs, namely manually constructing the loop invariant
above. On the other hand, our approach can harness the power
of a general-purpose theorem prover for symbolic simulation
and requires no axiomatic semantics for information flow.

IV. COMPOSITIONALITY

The above treatment did not consider compositionality.
Consider verifying a program P that invokes a subroutine Q.
Symbolic simulation from a cutpoint of P might encounter an
invocation of Q, resulting in simulation of Q. We prefer to
separately verify Q, and use the result for verifying P.

To achieve composition, we must handle the frame condi-
tions to justify that P can continue execution after Q returns.
Note that an information flow property of Q is not sufficient
for this; for instance, we must show that the execution of
Q does not corrupt the call stack. For functional correctness,
the frame problem is addressed by phrasing the postcondition
as an equality to characterize how each state component is
modified by Q [2]. However, a full characterization of Q is
often irrelevant to the information flow of P. The challenge
is to effectively augment the postcondition of Q with frame
conditions to facilitate symbolic simulation of P.

How do we address the challenge? Let V be the set
of state components governing the control flow on return
from Q; typically V includes the call stack. Then we define
modifyQ (s) to update each component of s as follows. For
each component v ∈ V , modifyQ (s) updates v by precisely
characterizing its modification on exit from Q. The update
to the call stack is characterized by popping the current call
frame. For c 6∈ V , the update is simply c(nexteQ (s)), which



int out;
main (int high, low, n, flag) {

out = 0;
if flag < 0 {

tricky1(high, low, n);
} else {

tricky3(high, low, n);
}
out = out - 1;

}

Fig. 4. A Program to demonstrate compositionality

may or may not need to be characterized depending on the
caller. We then prove the following two conditions.

1) poiseQ (s) ∧ exitQ (run (s, n)) ⇒ nexteQ (s) =
modifyQ (s)

2) preQ (s, s′) ∧ exitQ (run (s, n))⇒
postQ (modifyQ (s), modifyQ (s′))

Here, poiseQ (s) states that s is poised to invoke Q. Its
definition is derived from preQ (s, s′) by collecting the con-
juncts that only mention s. Condition 2 follows from 1 and
the information flow property of Q. We prove 1 through
inductive assertions, viewing modifyQ as a functional char-
acterization of Q [2]. The necessary assertions can be culled
from the information flow proof of Q. Recall that the predicate
assertQ (s, s′) is strong enough to characterize the flow of
control from each cutpoint of s (and s′) to the next. Thus,
the conjuncts in assertQ (s, s′) that only involve s can be
used for symbolic simulation from each cutpoint in s to
prove 1. The theorems facilitate compositional reasoning. If
states s and s′ encountered during symbolic simulation of
P are poised to execute Q, then 1 permits simulation to
“skip past” Q, and 2 enables us to assume post on the
generated pair (modifyQ (s), modifyQ (s′)) during subsequent
simulation. Note that this can be automated using macros as
hinted at in Section II for the basic framework.

We used the approach above to compositionally verify
the program shown in Fig. 4. The program is artificial but
illustrative. It invokes one of two separate versions of the
tricky procedure depending on flag: tricky1 is as
shown in Fig. 3; tricky3 iterates 3n times instead of n.
Our information flow specification is that the final value of
out on exit from main is independent of high. Note that the
information flow analysis of tricky3 is exactly analogous to
tricky1, but its return value is different. Thus, a complete
functional characterization of the two routines would involve
separate analysis. However, the actual return value of the
subroutines is immaterial to the information flow of main.
With our approach, main can be verified using only the
noninterference of each subroutine and the frame conditions.

V. RELATED WORK AND CONCLUSION

Information flow analysis was formulated by Denning and
Denning [6]. Sabelfeld and Meyers [4] contains a comprehen-

sive survey of the area. Traditional approaches to information
flow analysis involves security type systems [7], [8]: program
variables and expressions are annotated with security levels,
and flow of information is controlled by typing rules. There
has also been significant recent work on axiomatic semantics
for information flow. Clark et al. [9] develop a semantics
for Idealized Algol. Joshi and Leino [10] develop a weakest
precondition calculus for information flow. Darvas et al. [11]
use dynamic logic to express information flow for Javacard.

Our work provides the first framework for information flow
analysis through inductive assertions directly on operational
semantics. No separate VCG or axiomatic semantics for infor-
mation flow is necessary. Instead, the generation and discharge
of verification conditions are handled by the theorem prover
through symbolic simulation. Furthermore, we can compose
information flow properties of subroutines without requiring
full characterization of their functional specification. The
framework is in an early stage of development. As mentioned
in Section II, we are developing proof templates to facilitate
the automation of information flow verification. Some planned
future enhancements include (1) automated static analysis of
data structure shapes, (2) extension to multithreaded programs,
and (3) analysis of dynamic and declassification policies.

Acknowledgements: This material is based upon work sup-
ported by DARPA and the National Science Foundation under
Grant No. CNS-0429591. Matt Kaufmann provided numerous
comments and suggestions in course of this work.

REFERENCES

[1] J. Goguen and J. Meseguer, “Security policies and security models,” in
Proc. 1982 IEEE Symposium on Security and Privacy, April 1982, pp.
11–20.

[2] J. Matthews, J. S. Moore, S. Ray, and D. Vroon, “Verification Condition
Generation Via Theorem Proving,” in Proceedings of the 13th Inter-
national Conference on Logic for Programming, Artificial Intelligence,
and Reasoning (LPAR 2006), ser. LNCS, M. Hermann and A. Voronkov,
Eds., vol. 4246, Nov. 2006, pp. 362–376.

[3] P. Manolios and J. S. Moore, “Partial Functions in ACL2,” Journal of
Automated Reasoning, vol. 31, no. 2, pp. 107–127, 2003.

[4] A. Sabelfeld and A. C. Myers, “Language-Based Information-Flow
Security,” IEEE Journal on Selected Areas of Communication, vol. 21,
no. 3, Jan. 2003.

[5] T. Amtoft and A. Banerjee, “Verification Condition Generation for Con-
ditional Information Flow,” in Proceedings of the 2007 ACM workshop
on Formal methods in security engineering (FMSE 2007), P. Ning,
V. D. G. V. Atluri, and H. Mantel, Eds. ACM Press, Nov. 2007, pp.
2–11.

[6] D. Denning and P. Denning, “Certification of Programs for Secure
Information Flow,” Communications of the ACM, vol. 20, no. 7, pp.
504–513, 1977.

[7] P. Orbaek and J. Palsberg, “Trust in the λ-calculus,” Journal of Func-
tional Programming, vol. 7, no. 6, pp. 557–591, 1997.

[8] D. Volpano and G. Smith, “A Type-Based Approach to Program Secu-
rity,” in Proceedings of Theory and Practice of Software Development
(TAPSOFT 1997), ser. LNCS. Springer-Verlag, 1997, pp. 607–621.

[9] D. Clark, C. Hankin, and S. Hunt, “Information Flow Analysis for Algol-
like Languages,” Computer Languages, vol. 28, no. 1, pp. 3–28, 2002.

[10] R. Joshi and K. R. M. Leino, “A Semantic Approach to Information
Flow,” Science of Computer Programming, vol. 37, pp. 113–138, 2000.

[11] A. Darvas, R. Hähnle, and D. Sands, “A Theorem Proving Approach
to Analysis of Secure Information Flow,” in Proceedings of the 2nd
International Conference Security in Pervasive Computing (SPC 2005),
ser. LNCS. Springer, 2005, pp. 193–209.


