
Connecting Pre-silicon and Post-silicon Verification
Sandip Ray

Department of Computer Sciences
University of Texas at Austin

sandip@cs.utexas.edu

Warren A. Hunt, Jr.
Department of Computer Sciences

University of Texas at Austin
hunt@cs.utexas.edu

Abstract— We present a framework for post-silicon analysis,
that provides a formal, bidirectional communication with pre-
silicon verification. We show how to exploit the framework to
provide a formal guarantee on post-silicon verification accuracy
under limited observability. In particular, we partition a pre-
silicon assertion checker (with full observability) into (1) a
limited-observability checker and (2) an in-silicon integrity unit.
The composition of the two units is guaranteed to provide the
same accuracy as a pre-silicon checker. We apply the framework
in the verification of a cache system.

I. INTRODUCTION

Hardware verification research has traditionally focused on
pre-silicon analysis. Unfortunately, the complexity of modern
systems precludes catching all design errors at pre-silicon;
consequently, post-silicon verification is a key component of
the verification tool-flow. Post-silicon verification uses first-
pass fabricated silicon to catch design errors missed at pre-
silicon. Post-silicon simulations run at target clock speeds,
permitting exploration of deeper design states than afforded
in pre-silicon. Unfortunately, post-silicon verification is con-
strained by observability: only a few of the thousands of
internal signals are observable during normal chip operation.
The situation is exacerbated by the trend away from bus-
based architectures towards point-to-point links with no central
observation points [1]; many of the links exist within sockets
encasing multiple processor cores and are not observable.

Post-silicon verification in industry is relatively isolated
from pre-silicon. Current observability enhancement tech-
niques entail on-chip instrumentation or hooks to monitor
internal registers or bus transactions [2], [3]; however, the
hooks are typically added without analysis of design invariants.

The goal of our research is to develop a unified framework
connecting pre- and post-silicon analysis. We model hardware
designs using a formal Hardware Description Language (HDL)
deeply embedded in a formal logic. The netlist is a constant
with semantics specified by a formal evaluator. This deep
embedding permits analysis of functional and non-functional
properties of the same design by associating different eval-
uators for the logical constant: our HDL has evaluators for
(1) functional evaluation, (2) And/Inverter Graph, (3) gate
delay, and (4) information flow [4]. We view the design arti-
fact as a database with associated annotations, specifications,
and mechanically checked theorems, providing an integrated
environment for property checkers, coverage monitors, and
regression and analysis routines. The database is initialized

with pre-silicon results, and is interrogated during post-silicon
verification. The connection between pre- and post-silicon is
bidirectional: results from post-silicon augment the database,
facilitating further pre-silicon analysis. To our knowledge, our
work represents the first connection between pre- and post-
silicon verification within a unified logical foundation.

This paper discusses one component of this framework,
e.g., the use of formalized assertion checkers and coverage
monitors to transfer verification collateral from pre- to post-
silicon. We show how to partition a pre-silicon check (with full
observability) into (1) an on-chip integrity unit, and (2) an
external unit. The integrity unit has full observability, but
must have little hardware overhead. The external unit has
partial observability but can assume that in-silicon analysis has
succeeded. The two units are mechanically certified to provide
the same guarantee as the original check. The framework
provides a disciplined chip instrumentation mechanism with
a formal guarantee on verification accuracy. The framework is
being mechanized using the ACL2 theorem prover.

A. A Trivial Example

As an example of partitioning a property check, consider a
split-transaction bus, and consider checking that the number
of outstanding memory requests does not exceed a threshold.
Fig. 1 shows three ways of performing the check. One ap-
proach is to snoop the bus and use external circuitry to check
the count of outstanding requests (Fig. 1(A)); the observability
requirement is significant, e.g., all outstanding transactions. At
another extreme, building the checker in silicon (Fig. 1(B))
ameliorates observability but incurs significant hardware cost.
However, we can build only the up-down counter in silicon,
and the comparator externally (Fig. 1(C)). The composition of
the two units is provably equivalent to the original monitor; but
the observability requirement is only the count of outstanding
requests and the only hardware cost is the counter.

The above example is illustrative but pedagogical. We now
list several questions that a robust partitioning mechanism
must address. We will discuss our approaches to addressing
them in the remainder of the paper.

• How can we use design invariants to aid in partitioning?
Our example partition split the checker. In general, one
must take into account design invariants to effectively
winnow the set of observed signals.

• How can we make the partitioning flexible to satisfy dif-
ferent observability requirements? Our example exhibited



Pn

Threshold
Counter

Comparator

Pass/Fail

P0 P1

Memory Controller

Bus

Pn

Counter

Threshold

Comparator

Pass/Fail

P0 P1

Memory Controller

Bus

P0 P1

Memory Controller

Bus

Pn

Counter

Threshold

Comparator

Pass/Fail

(A) (B) (C)

Fig. 1. Example of partitioning a post-silicon check. (A) Checker implemented externally. (B) Checker built entirely as an integrity unit in silicon.
(C) Partitioned checking with a portion of checker built into silicon. In each case, the box with dotted outline contains the components built into silicon.

a single partition but in practice, different partitions might
be necessary to cater to available observability.

• How can we automate the decomposition of the monitor?
The above partition was trivial: a part of the checker
circuitry was built into silicon. In practice, we need auto-
mated decomposition of monitors for complex conditions.

II. PARTITIONING FRAMEWORK

Monitor partitioning involves (1) pre-silicon monitor M,
(2) post-silicon monitor P , and (3) integrity unit I.

Remark 1: In the description below, we leave implicit the
set S of states and set I of inputs but assume that each state
and input is represented by a tuple of Booleans. We assume the
existence of a state transition function step : S×I → S, such
that step(s, i) returns the design state one clock cycle from s.
Given a formalized HDL, step(s) is derived by running the
functional evaluator on the constant representing the design
from state s. An execution from state s is a sequence of states
obtained by repeated application of step for a corresponding
input sequence. We restrict executions to be finite.

Pre-silicon Monitor: For our purpose, a pre-silicon monitor
M is a function that takes a finite execution trace and returns
a Boolean. We say that M passes an execution τ if it returns
true; otherwise M fails τ . We restrict ourselves to monitors
that can be defined within a decidable theory.1 In ACL2,
we use a decidable subclass of the logic called SULFA [5],
which contains the basic logical constructs (e.g., conjunction,
disjunction, conditionals), embeds the theory of lists, and
permits (bounded) recursive definitions. The evaluation of a
SULFA expression reduces to a bounded check on a finite-
state system which can be efficiently synthesized into a netlist.
We discuss in Section III how we use this capability.

Remark 2: By the term monitor we include both assertion
checkers and coverage monitors. In practice, checkers and

1The decidability restriction is not germane to the framework, but imposed
to facilitate the use of SAT as explained in Section III. In practice, the
assertions are finite-state hardware invariants which satisfy this restriction.

monitors serve different purposes. A checker must return true
on each execution; a failure indicates a bug. A coverage
monitor determines if a specific corner case has been exer-
cised during testing. However, the distinction is irrelevant to
partitioning mechanisms.

Post-silicon Monitor: At post-silicon, only a subsequence of
the execution is observable. We refer to such a trace as a
partial trace. Formally, a partial trace σ is a subsequence of
a pre-silicon execution trace τ , with guaranteed observability
only of a certain pre-determined sequence of transitions. For
a memory system, the guarantee might only include key
communication events between the processing elements and
memory controller, e.g., signal transitions indicating initiation
of a cache request or grants. A post-silicon monitor P is
a function that returns a Boolean on any partial trace σ.
Informally, if P passes a partial trace σ, then we want to
guarantee the following: “σ is the subsequence of a pre-silicon
trace τ such that a given (pre-silicon) monitor M passes τ .”

Integrity Unit: It is normally impossible to guarantee post-
silicon accuracy merely by analyzing a partial trace σ. Suppose
σ elides a transaction that enforces a design invariant: then it
is impossible to determine from σ whether the invariant is in
fact enforced. The use of an integrity unit I circumvents this
problem. I is a (relatively inexpensive) hardware monitor built
into silicon. Given a partial trace σ, the external monitor P
can analyze σ under the assumption that σ is a subsequence
of a trace τ that passes the integrity check implemented by I.
In practice, the definition of I is culled from design artifacts
used to enforce integrity policies: one common unit deployed
in chip-sets monitors the traffic between the processor and the
chip-set controller, interrupting the processor if the number of
unacknowledged messages exceeds a threshold. The integrity
unit does not require additional pins or I/O.

III. POST-SILICON ANALYSIS OF A MEMORY SYSTEM

We illustrate the partitioning approach on the cache co-
herence protocol of a multiprocessor memory system. The



protocol is loosely based on the German protocol. It uses three
communication channels between processes (clients) and the
memory controller (home): channel 1 carries access requests;
channel 2 carries grant messages and invalidate requests;
channel 3 carries invalidate acknowledgements. We implement
channels by a bus-based communication interface; we also im-
plement datapath and memory. The following communication
events are relevant, and will be referred to as critical events.

• A client p requests a (shared or exclusive) cache block c
by setting the request line for c to high in channel 1.

• Home initiates processing a request for block c from
process p by setting this request line low.

• When c is granted, home signals its availability to p by
setting the grant line for c to high in channel 2.

• When p receives access of c, it sets the grant line low.
The German protocol has been extensively used as a ver-

ification benchmark [6], [7], [8]. However, this paper is not
about the verification of the protocol; we use it to illustrate
some facets of the partitioning mechanism.2

Consider checking the following assertion, which is identi-
fied at pre-silicon as an invariant necessary for coherence.
Assertion: Home processes cache requests in a sequential
order. That is, once Home initiates processing access request
of process p for cache block c, it services no further cache
access request for c until p has been granted access to c.
It is not difficult to design a pre-silicon monitor M for this
assertion. M snoops the bus, tracking requests and grants
between clients and the home. On the other hand, at post-
silicon, observability restrictions obviously preclude recording
all bus transactions. In our first simplistic scenario, we restrict
our post-silicon monitor P to record only the critical events
for a cache block c. The following theorem connects P with
M. The theorem has been mechanically certified by ACL2.

Theorem 1: Let P be a monitor that records only the critical
events for cache line c. Let τ be any bounded sequence of bus
transactions and σ be a subsequence of τ containing the critical
events for c. If P passes σ then M passes τ .

In spite of being simplistic, P can uncover useful bugs;
indeed, P was used in an early implementation to uncover
the design error shown in Fig. 2. Note that the bug involves
several cycles for a specific communication sequence, and is
difficult to hit by random simulation (at pre- or post-silicon).

Remark 3: M and P are implemented in a decidable
theory, e.g., the SULFA subclass of ACL2. A consequence
is that Theorem 1 is a formula in a decidable fragment of
the ACL2 logic and can be discharged by SAT solving; the
automation is critical to the robustness of the framework since
the large number of monitors associated with a design preclude
the use of theorem proving to discharge individual correctness.
Furthermore, we can use SAT-based image computation on
SULFA models; from the error isolated by P on a partial trace,
image computation reconstructs a complete trace to exhibit the

2In previous work, we in fact verified a model of the protocol. That proof
is not germane to this work, but it helped identify certain protocol invariants.

Client 0 shared request

Client 1 exclusive request

Client 0 shared grant

Fig. 2. A post-silicon bug uncovered by P . Home sets request line (for shared
access) from Client 0 to low before it sets the request line (for exclusive
access) from Client 1 low. Yet, the request line for Client 1 is set to low
before the grant line of Client 0 is set to high, violating Assertion. Only
events represented by fall of solid edges for Clients 0 and 1 are observed.
Solid lines constitute a a partial counterexample trace. Dotted lines extend
this to a complete execution trace which illustrates the bug in simulation.

Client 1 exclusive request

Client 0 shared grant

Client 2 shared request

Client 0 shared request

Client 1 exclusive grant

Fig. 3. A certified partially observed post-silicon trace. Only the events
corresponding to the rise or fall of a solid edge are observed. Here Home
initiates processing the request of Client 1 first, and does not set the access
request line for any other client before granting access to Client 1. Dotted
lines represent a possible extension of the trace.

bug in simulation. Finally, decidability makes it possible to
synthesize some functions in the definition of P into silicon;
we return to this point after discussing integrity units.

Theorem 1 requires σ to contain all critical events. In
practice, the number of observable events is restricted to a
finite threshold. However, we reconstruct unobserved events
through the integrity unit. For our assertion, the following
unit IT suffices. Let T be the upper bound on the number
of observable bus transactions; IT counts the number n of
critical events among outstanding transactions, signalling an
(observable) exception if n exceeds T . The following theorem
(certified by ACL2) extends Theorem 1 by accounting for IT .

Theorem 2: Let PT be a monitor that records only the
critical events for a cache line c up to a threshold T . Let τ be
a bounded sequence of bus transactions, σ be a subsequence
of τ containing the critical events for c. If IT does not signal
exception on τ and PT passes σ then M passes τ .

Theorem 2 is a statement of partial correctness, with the
integrity unit providing the logical precondition. Fig. 3 shows
a partial trace passed by the combination of PT and IT .
Theorem 2 guarantees that the trace indeed satisfies assertion.

The simplicity of Theorem 2 perhaps belies its flexibility.
PT and IT merely represent a logical decomposition of M.
However, both are compositions of SULFA functions each
of which can be mechanically synthesized into hardware
description with provably equivalent semantics. Thus, when
silicon real-estate is available, we can mechanically produce
an augmented hardware design with some functions in the
definition of PT built into silicon. In the absence of available
hardware, IT itself can be further decomposed into in-silicon



and external components without affecting the formal guaran-
tee: in the example, IT is essentially similar to the checker in
Fig. 1; thus, Fig. 1(C) represents one way of its decomposition.

The discussion above underlines the trade-off between hard-
ware cost and logical guarantee. As the in-silicon component
is augmented to include a functionality of PT , observability
is ameliorated at the expense of hardware: building the entire
PT into silicon provides a complete verification accuracy at
prohibitive hardware cost. In practice, the in-silicon unit is
designed to provide a deterministic communication pattern for
the portion of the trace not visible to the external analyzer.

IV. RELATED WORK

One of the earliest uses of formal methods to improve
post-silicon observability is by Gopalakrishnan and Chou [1].
They use constraint solving and abstract interpretation to
compute state estimates for memory protocols. Ahschlager and
Wilkins [9] use model checking techniques for post-silicon
debug: the approach is to develop a formal property describing
the observed bug and use make use of model-checking to
generate a trace that encounters the bug. Safarpour et al. [10]
use SAT solving to find circuit locations to automatically
detect and repair errors using a stuck-at fault model. There has
also been work on developing on-chip monitors for enhancing
observability [11], [12], [13]; however, there has been little
work on decomposing such monitors into on-chip and off-chip
components. De Paula et al. [14] use SAT-solving techniques
to successively “backspace” from a crashed post-silicon state
to provide an execution trace that is used for off-line debug-
ging. However, they do not address verification or provide a
means for a formal guarantee on post-silicon accuracy.

V. CONCLUSION AND FUTURE WORK

We have presented a framework for connecting pre- and
post-silicon verification through formally certified partitioning
of monitors. Our approach provides a flexible mechanism for
transferring pre-silicon verification collateral to post-silicon,
and giving a formal assurance on post-silicon accuracy. To our
knowledge, our work represents the first connection between
pre- and post-silicon analysis through formal proof.

One strength of our framework is the ability to reuse extant
design artifacts: pre-silicon checkers and monitors, post-silicon
assertions and coverage events, on-chip integrity units, etc.,
are available either as components of functional verification
or as policy enforcement hardware. We use them judiciously
to provide an integrated framework for certifying partial traces.

Our work is motivated by the desire to enable a tightly
integrated, formal, bidirectional communication between pre-
silicon and post-silicon. A deeply embedded HDL with formal
semantics permits the interrogation of pre- and post-silicon
results and annotations as database queries. Our partitioning
mechanism exploits this foundation by using formal proofs as
a conduit between pre- and post-silicon verification.

Our framework is in very early stages. In future work,
we will tighten the connection between pre- and post-silicon
verification and explore opportunities for further automation.

For instance, we have only used functional verification artifacts
to assist in post-silicon checking, but scalability may require
cooperation from the protocol design, e.g., time stamps on
messages to determinize communication to assist in recon-
struction of unobserved trace fragments.

Acknowledgements: This work has been funded in part by
the Semiconductor Research Corporation under Grant No. 08-
TJ-1849. We thank Ganesh Gopalakrishnan for insightful
discussions.

REFERENCES

[1] G. Gopalakrishnan and C. Chou, “The Post-silicon Verification Problem:
Designing Limited Observability Checkers for Shared Memory Pro-
cessors,” in 5th International Workshop on Designing Correct Circuits
(DCC 2004), M. Sheeran and T. Melham, Eds., Mar. 2004.

[2] R. Leatherman, “On-chip Instrumentation as a Verification Tool,” in
FMCAD 2006 Workshop on Pre- and Post-silicon Verification: Methods
and Research Opportunities, G. Gopalakrishnan, Ed., Nov. 2006.

[3] M. Abramovici, P. Bradley, K. Dwarkanath, P. Levin, G. Memi, and
D. Miller, “A Reconfigurable Design-for-Debug Infrastructure for SoCs,”
in Proceedings of the 43rd Design Automation Conference (DAC 2006).
ACM/IEEE, 2006, pp. 7–12.

[4] R. S. Boyer and W. A. Hunt, Jr., “The E Language,” in International
Workshop on Hardware Design and Functional Languages (HFL 2007),
A. K. Martin, C. Seger, and M. Sheeran, Eds., 2007.

[5] E. Reeber and W. A. Hunt, Jr., “A SAT-Based Decision Procedure
for the Subclass of Unrollable List Formulas in ACL2 (SULFA),” in
Proceedings of the 3rd International Joint Conference on Computer-
Aided Reasoning (IJCAR 2006), ser. LNAI, U. Furbach and N. Shankar,
Eds., vol. 4130, 2006, pp. 453–467.

[6] E. A. Emerson and V. Kahlon, “Exact and Efficient Verification of
Parameterized Cache Coherence Protocols,” in Proceedings of the 12th
International Conference on Correct Hardware Design and Verifica-
tion Methods (CHARME 2003), ser. LNCS, D. Geist, Ed., vol. 2860.
Springer-Verlag, July 2003, pp. 247–262.

[7] A. Pnueli, S. Ruah, and L. Zuck, “Automatic Deductive Verification with
Invisible Invariants,” in Proceedings of the 7th International Conference
on Tools and Algorithms for Construction and Analysis of Systems
(TACAS 2001), ser. LNCS, T. Margaria and W. Yi, Eds., vol. 2031.
Springer-Verlag, 2001, pp. 82–97.

[8] S. K. Lahiri and R. E. Bryant, “Constructing Quantified Invariants
via Predicate Abstraction,” in Proceedings of the 5th International
Conference on Verification, Model Checking and Abstract Interpretation
(VMCAI 2004), ser. LNCS, B. Stefen and G. Levi, Eds., vol. 2937.
Springer-Verlag, 2004, pp. 267–281.

[9] C. Ahlschlager and D. Wilkins, “Using Magellan to Diagnose Post-
Silicon Bugs,” Synopsys Verification Avenue Technical Bulletin, vol. 4,
no. 3, pp. 1–5, Sept. 2004.

[10] S. Safarpour, H. Mangassarian, A. Veneris, M. H. Liffiton, and K. A.
Sakallah, “Improved Design Debugging Using Maximum Satisfiability,”
in Proceedings of the 7th International Conference on Formal Meth-
ods in Computer-Aided Design (FMCAD 2007), J. Baumgartner and
M. Sheeran, Eds. Austin, TX: IEEE Computer Society, Nov. 2007, pp.
13–19.

[11] M. Boule, J. Chenard, and Z. Zilic, “Adding Debug Enhancements
to Assertion Checkers for Hardware Emulation and Silicon Debug,”
in International Conference on Computer Design. IEEE Computer
Society, 2006, pp. 294–299.

[12] A. J. Hu, J. Casas, and J. Yang, “Efficient Generation of Monitor Cir-
cuits for GSTE Assertion Graphs,” in Proceedings of the International
Conference on Computer-Aided Design (ICCAD 2003). IEEE/ACM,
Nov. 2003, pp. 154–163.

[13] S. Park and S. Mitra, “IFRA: Instruction Footprint and Recording for
Post-silicon Bug Localization in Processors,” in Proceedings of the 45th
Design Automation Conference (DAC 2008). ACM/IEEE, 2008, pp.
373–378.

[14] F. M. De Paula, M. Gort, A. J. Hu, S. Wilton, and J. Yang, “BackSpace:
Formal Analysis for Post-Silicon Debug,” in Proceedings of the 8th
International Conference on Formal Methods in Computer-Aided Design
(FMCAD 2008), A. Cimatti and R. B. Jones, Eds. Portland, OR: IEEE
Computer Society, Nov. 2008, pp. 1–10.


