
Transaction Flows and Executable Models:
Formalization and Analysis of Message-passing

Protocols

Muralidhar Talupur
murali.talupur@gmail.com

Sandip Ray
Strategic CAD Labs
Intel Corporation

sandip.ray@intel.com

John Erickson
MIC Methods, Tools, and Verification,

Intel Corporation
john.erickson@intel.com

Abstract—The lack of appropriate models is often the biggest
hurdle in applying formal methods in the industry. Creating
executable models of industrial designs is a challenging task, one
that we believe has not been sufficiently addressed by existing
research. We address this problem for distributed message pass-
ing protocols by showing how to synthesize executable models of
such protocols from transaction message flows, which are readily
available in architecture descriptions. We present industrial case
studies showing that this approach to creating formal models is
effective in practice. We also show that going the other way, i.e.,
extracting flows from executable models, is at least as hard as the
model-checking problem. These results indicate that transaction
flows may provide a superior approach to capture design intent
than executable models.

I. INTRODUCTION

Over the last decade, significant advance has been made in
the formal verification of industrial-scale designs. Formal tools
scale to hardware designs with millions of gates and software
systems with millions of lines of code [1], [2], [3]. However
routine applications of formal methods have been confined to
certain niche areas, e.g., floating-point units, device drivers,
etc. A key factor constraining the use of formal methods
is the unavailability of appropriate models [4]. Constructing
formally analyzable models of industrial designs is a complex
enterprise, requiring significant expertise both in the artifact
being modeled and in the formalism used. The model must
be small and abstract to be tractable, while preserving the
behaviors of interest from the original design for the analysis
to be meaningful. Furthermore, there is a significant cost to
maintaining models to keep up with the design evolution.
Not surprisingly, most successful adoptions of formal methods
have been in areas where the target was the implementation
itself (e.g., Register-Transfer Level (RTL) designs in hardware,
or C/C++ implementations of software). Unfortunately, this
means that verification occurs late in the design life-cycle,
after these artifacts have been implemented. Moreover, for
such low-level implementations, formal tools do not scale
to complete designs [5]. The situation is exacerbated with
shrinking time-to-market schedules, that make it infeasible
to fix late-discovered deep errors which warrant significant
design change. The result has been complex patches, point-
fixes, and systems shipped with errors and vulnerabilities. To
address these issues it is critical to facilitate easy creation of

This work was done when the first author was at Intel Corporation.

maintainable, high-level models early in the design life-cycle;
the models can then serve as (1) targets for early analysis for
catching architecture-level bugs, and (2) specifications driving
later phases of development.

In this paper, we address the problem of efficiently devel-
oping high-level executable models for asynchronous message-
passing protocols. Such protocols include cache coherence,
resource allocation, bus locking, etc., and form the bedrock
of modern multicore and multiprocessor systems as well as
SoC designs. Errors in these protocols tend to be particularly
difficult to detect since they involve unanticipated, subtle
interleavings of concurrent communications that are difficult
to exercise through simulation. Furthermore, protocol errors
discovered late are difficult to fix, since they typically involve
design changes in a number of participating components.

Our approach is based on automatic generation of exe-
cutable models of the protocols from artifacts already created
by architects during the system design process. These arti-
facts typically take the form of diagrams specifying different
message transactions. Fig. 1 shows two such diagrams for
a toy cache coherence protocol. Observe that they provide
a “transaction-centric view” of the protocol: executions are
broken into transaction scenarios, and a diagram specifies the
message communications for each transaction. A traditional
distributed system model, on the other hand, provides an
“agent-centric view”: for each participating agent agt, it spec-
ifies the behavior of agt under all possible system scenarios.
We will refer to these models as executable models. They have
a closer correspondence to downstream implementations (e.g.,
RTL or software) which are also developed on agent-by-agent
basis. Traditionally executable models are manually created by
formal methods experts after studying architecture documents.

The main insight for our work is that, with a little additional
information, the seemingly informal transaction descriptions
created by architects can be used to synthesize executable
models. The paper makes four contributions. First, we develop
a formal foundation for specifying protocol transactions. Two
key ingredients of this foundation are (i) transaction message
flows (or simply, flows); and (ii) a definition of compliance that
formalizes correspondence between transaction-centric and an
agent-centric views. Second, we develop a framework for
synthesizing executable models from flows. This makes it
feasible for architects, having little familiarity with formal



Fig. 1: Two architecture diagrams showing ReqExcl (request
for exclusive line access) transaction for a toy cache coherence
protocol. Agents are the clients (numbered as 1 and 2) and a
memory controller or Directory. (a) The scenario in which no
other agent has a copy of the cache line. So the line is granted
immediately. (b) The scenario where another agent has a copy
of the cache line. This copy must be invalidated (and its data
written back) before the same line can be granted to 1.

methods, to develop, and analyze executable models of com-
plex industrial protocols, e.g., our tool has been used by
architects at Intel to synthesize highly complex protocols in
Intel’s many-integrated-core (MIC) processors. Third, we re-
port industrial case studies showing that protocol specifications
via flows is effective in practice: model generation could be
accomplished at a fraction of the time required by a formal
methods expert to manually build a model. Finally, we show
that while generation of models from flows is relatively simple,
identifying flows from models is at least as hard as model-
checking. This indicates that flows provide a strictly richer
semantic information than an executable model.

The rest of the paper is organized as follows. Section II
defines flows and formalizes the notion of compliance between
flows and models. In Sections III and IV we discuss our
approach to synthesize models from flows. In Section V
we discuss the converse problem, viz., extracting flows from
models, and show that extracting (an appropriate notion of)
compliant flows from a modelM is as hard as model-checking
M. In Section VI we discuss application of automated syn-
thesis of flows to models in practical case studies. We discuss
related work in Section VII and conclude in Section VIII.

II. SYSTEMS, TRANSACTIONS, AND EXECUTABLE
MODELS

A. Executable Model

Our formalization of an executable model is based on
guarded transitions. Such formalisms are well-known in con-
currency literature [6], [7], and form the basis of system mod-
eling in model-checking tools like Murphi [8] and SPIN [9].

A distributed system involves coordinated computation by
a collection of agents with indices or ids. In our formalism ids
are numbers {1, . . . , n}. The system state is given by the local
state of each agent and the states of communication channels.
The local state of agent i is specified by the value of a finite
collection vars(i) of state variables. For each pair of agents

i, j, where i 6= j chans(i, j) is a finite set of channels from i
to j. To send a message m to j, agent i places it in some c ∈
chans(i, j). All variables (both state variables and channels)
are assumed to take values from a fixed, bounded, finite set
S. We assume that S includes a special “empty” value ⊥ to
represent an empty channel. For each agent i, denote the set
vars(i)∪(

⋃
j 6=i chans(i, j)) by Πi. An assignment of a variable

v ∈ Πi is given by v := exp where exp is an expression
over Πi ∪ S. Unless otherwise noted we keep the syntax of
operations involved in expression exp unspecified, but assume
that any expression in this paper can be evaluated over S. A
guard gi for agent i is a Boolean expression over Πi ∪ S .

Definition 1 (Rule): A rule for agent i is a construct of the
form r : gi → ai where r is a symbol called rule name, (1)
giis a guard for i and (2) ai is a collection of assignments of
some variables v ∈ Πi.

Definition 2 (Executable Model): An executable system
model (or simply, model) M of n agents is a pair M , 〈R, I〉
where R is a set of rules with unique rule names and I
is an initial set of assignments to all variables in Πi, for
i ∈ {1, . . . , n} to constants in S.

We assume that each c ∈ chans(i, j) is assigned to ⊥ in
I . A system state s is an assignment to all the variables in
Πi, for all i ∈ {1, . . . , n}. Given a system state s and a rule
r : gi → ai for agent i, we say that r is enabled at s if and
only if g evaluates to true in state s.

Definition 3 (Rule Firing): Given a rule r : gi → ai for
agent i, we say that s′ is the result of firing of r from s if the
following two conditions hold

• r is enabled in s; and

• s′ is derived from s as follows: If there is no assign-
ment to v in r then v is assigned the same value in s′
as in s. Otherwise, if there is an assignment v := exp
in r then v is assigned the value obtained by evaluating
exp in s.

Definition 4 (Execution Trace): A sequence of rules τ ,
[r1, . . . , rk] is called an execution trace of model M , 〈R, I〉
(where ri ∈ Rfori = 1 . . . k) if there exists a sequence
[s0, . . . , sk] of system states with I = s0 such that following
two conditions hold.

• ri is enabled in si−1; and

• si is the result of firing ri in si−1.

B. Flows and Flow Model

The notion of message flows is similar to Message Se-
quence Charts (MSCs) [10] used in the specification of multi-
agent transaction systems. In particular, a flow is a partially
ordered set of events, specifying the transactions of a protocol.
An event is a 5-tuple 〈AGT, GD, RECV, SEND, UP〉 as described
below. Fig. 2 shows the formalization of the ReqExcl1 flow in
Figure 1.

• AGT ∈ {1, . . . , n} specifies the index (or id) of the
agent executing the event.

• GD is guard for ΠAGT∪S and UP is set of assignments
to variables in ΠAGT.



1) 〈1, true,−, [〈ReqE,Dir〉],−〉
2) 〈Dir,¬ busy ∧ ¬ gntd, [〈ReqE, 1〉], [〈GntE, 1〉], [valid[1] := true; gntd := true]〉
3) 〈1, true, [〈GntE,Dir〉],−, [state := E]〉

Fig. 2: Formalization of three events in ReqExcl1 flow of Fig. 1. Although process ids are restricted to be numbers in the
formalization, we use the symbol Dir for the directory process for pedagogical reasons.

• SEND and RECV are lists of messages. Each message
is a tuple 〈MSG, ID〉 where MSG is the actual message
and ID is the index of the receiving agent (in case of
SEND) or the sending agent (in case of RECV).

We use e.GD, e.AGT, etc. to denote the individual compo-
nents of event e. As with rules, meaning is assigned to events
via guarded commands: e is enabled whenever e.GD holds and
the list of messages specified in e.RECV are available in the
incoming channels of e.AGT; the execution causes the updates
to the local state of e.AGT as specified by e.UP and the list of
messages in e.SEND to be sent through the outgoing channels
of e.AGT.

Based on the above semantics, we impose following
syntactic requirements and restrictions on events: (1) e.GD
is a Boolean expression over the state variables of e.AGT;
(2) e.SEND provides a list of assignments to the outgoing chan-
nels of e.AGT where the right hand side of each assignment
is a tuple 〈MSG, ID〉 specifying the message and receiver id;
(3) e.RECV is similarly a list of tuples 〈MSG, ID〉 containing
the message and sender id.

Definition 5 (Transaction Flows and Flow Model): A
transaction Message Flow (or simply, Flow) is a pair 〈f,≺〉,
where f is a set of events and ≺ is a partial order relation
over f .

Informally, ≺ specifies the temporal ordering on the events
in a flow. For Fig. 1, we can view each diagram as a linearly
ordered sequence of events; the two diagrams represent two
flows describing the two different ways in which a request for
exclusive access can be handled. Note that for this and many
common cases, the events in a flow f form a sequence, i.e.,
the partial order ≺ is in fact a total order. Nevertheless, there
are situations where the generality of partial order is necessary,
e.g.in the “diamond transaction” shown in Fig. 3. For the rest
of the paper, we use f instead of 〈f,≺〉 to refer to a flow
when the relation ≺ is clear from context.

1) Mapping between rules and events: There is an direct
connection between rules and events. For the purpose of
formalization, we assume fixed syntactic mappings rl2ev and
ev2rl that translate a rule into an event and vice versa. The
mapping ev2rl maps an event e to a rule of the following
form. Here the right hand side of the rule, specified as a list
of items enclosed by 〈〉 represents a sequence of assignments
to local and channel variables.

e.GD ∧ (chans[(e.RECV).ID, e.AGT] = (e.RECV).MSG)
→ 〈e.UP; (chans[e.AGT, (e.SEND).ID] := (e.SEND).MSG);

chans[e.AGT, (e.RECV).ID] := ⊥〉

Correspondingly, the mapping rl2ev takes a rule rl and
extracts the five fields above to get an event ev. The only
possible source of ambiguity in a rule rl is about the identity

Fig. 3: A transaction requiring ≺ to be a partial order. The
execution of e1 enables both e2 and e3, and both these events
must be executed before e4 can be enabled.

of the sender of messages in case rl involves multiple agents.
In our model, messages are communicated using fixed uni-
directional channels, and it is simple to identify the sender.1
This agent can be viewed as the executing agent of the event.

2) Flows as templates: Given the correspondence between
events and rules, a flow provides a template or a pattern
for system execution, grouping together related rules with a
temporal ordering on their firing. A flow can be invoked or
instantiated several times, even concurrently, during a run of
the system. To make precise the relation of an execution trace
with flows, we need to disambiguate between these instances.
The notion of tagging accomplishes that by augmenting a flow
with a “tag”. Here we assume that we have an unbounded set
T of tags (which is different from all the previously defined
sets, viz., variables, values, events, rules, etc.).

Definition 6 (Tagged Events and Flows): A tagged event
is a pair [e, t] where e is an event and t is a tag. If 〈f,≺〉 is
a flow, then a tagged flow 〈[f, t],≺〉 is obtained by replacing
each event e ∈ f with the corresponding tagged event [e, t].

Definition 7 (Legal Tagging): Given a set of flows F and
a set T of tags, a set [F, T ] ⊆ {[f, t] : f ∈ F, t ∈ T} is a legal
tagging if and only if for f, f ′ ∈ F such that f 6= f ′, if [f, t]
and [f ′, t′] are members of [F, T ] then t 6= t′.

Informally, we want a unique tag to be associated with each
instance of a flow in an execution trace of the system. The
definition of compliance makes this notion explicit.

Definition 8 (Precedence-Preserving Mapping): Let τ ,
[r1, . . . , rk] be an execution trace of model M, F be a set of
flows, and [F, T ] be a legal tagging of F . Let rl2ev# be a one-
to-one mapping from rules in τ to tagged events in [F, T ]. We
say rl2ev# is precedence preserving if for each ri, i = 1 . . . k

1In practice, the message names usually gives away the sender identity.



there exists a tagged flow [f, t] ∈ [F, T ] and a tagged event
[e, t] ∈ [f, t] such that the following conditions hold:

• rl2ev#(ri) = [e, t]

• rl2ev(ri) = e

• for each p ∈ f such that p ≺ e, there exists k < i
such that rl2ev#(rk) = [p, t].

Definition 9 (Compliance): Let τ , [r1, . . . , rk] be an
execution trace, and let F be a set of flows. We say that τ
is compliant with F if there exists a precedence preserving
mapping rl2ev# from members of τ to events in a legal
tagging [F, T ]. A model M is compliant with flows F if
every trace of M is compliant with with F .

Flows provide a generalization of control flow graph to
a distributed setting. The definition of compliance essentially
stipulates that the trace τ can be viewed as a composition of
a collection of flow instances. The requirement of precedence
preserving mapping guarantees that each such instance can
be uniquely identified with a tag and respects the precedence
constraints imposed by flows.

We end this section by briefly comparing the notion
of flows introduced here with a related notion in previous
work [11], [12] which was also called “flows”. Flows in
previous papers did not consider state annotations and up-
dates. The more refined notion used here is necessary for
synthesizing protocols, while previous work only used flows
to infer invariants. Nevertheless, we use the same name in
this paper for two reasons. First, the definition here strictly
supersedes the previous notion, viz., the previous usages can
be accomplished with the current notion. Second, the notions
are similar, both in structure and in “spirit”, e.g., both aim to
exploit the transaction-centric view of protocols.

III. SYNTHESIZING MODELS FROM FLOWS

Fig. 4 shows the high-level steps for applying our frame-
work for synthesizing executable models. The user starts from
an initial (possibly incomplete) set of flows F that captures the
algorithmic aspects of protocol being designed, and progres-
sively refines this set in response to feedback from a model-
checker. In more detail, we automatically synthesize a (com-
pliant) model M from F , and model-check M against a set of
user-provided assertions I and a collection of sanity conditions.
If model-checking detects deadlock or invariant violation, or
a sanity condition fails, a counterexample is provided together
with diagnostic information (cf. Section VI). The user modifies
F , possibly by adding more flows or adjusting some existing
one, so that the erroneous behavior is ruled out. The process is
iterated until model-checking succeeds. Note that all the steps
are automatic other than the obviously creative step of “fixing”
F to rule out the counterexample.

The approach requires a set of assertions. The assertions we
use are simple and straightforward, e.g., for cache coherence
protocols the obvious assertion is the coherence property itself.
Sanity checks are also included to ensure that the generated
model M (and, by implication, F ) exhibit certain desired
behaviors. We discuss some generic sanity checks in the next
section. In addition, domain-specific sanity conditions can be
added by the user. For instance, a simple sanity check for cache

Fig. 4: Synthesis-Refinement Loop for Interacting with Flows

coherence protocols is that for every agent a there is a trace
where a can get into shared and exclusive states.

A. Synthesizing M

Consider synthesizing a model from a set of flows F . A
first naı̈ve approach may be simply mapping each event e
in each flow f ∈ F to ev2rl(e). To see why this does not
work, note that ev2rl is a function of e alone and not the
preceding events of e in f . Hence we are not guaranteed that
rule ev2rl(e) is enabled respecting the ordering relation “≺”.
The key task in synthesizing a model M is to create rule guards
in M such that for any execution trace τ each rule r ∈ τ
respects “≺”. To achieve this, we augment the state variables
for each agent a by the following additional components:

• A “local tag list” Ta for each agent a, that dis-
ambiguates concurrently executing flows (including
different instances of the same flow) involving a.

• A mapping ηa : Ta → Id × ∪b 6=aTb that associates
every local tag of a with a set (possibly empty) of
local tags of other agents b that a communicates with.

• A set of “history variables” Ha[f, t] ⊆ Ef , where Ef

is the set of events in flow f , for each agent a, flow
f , and each possible tag value t. The history variable
Ha[f, t] records the firing of events in the instance of
flow f with tag t. For example, if event e ∈ Ha[f, t]
then it means event e occurring in f has been fired by
agent a with associated local tag t.

The local tags are different from the global tag introduced
in Section II. Since each agent has only local visibility, it
is impossible to ensure that the tags chosen for concurrently
executing flows are globally unique. The crux of the synthesis
consists of “book-keeping” to disambiguate between different
active transactions based on local history and tags.

Suppose that f is a flow which includes an event e. Then
we generate a rule ev2rl∗(e, f) by extending the rule ev2rl(e)
with (1) additional assignments updating the relevant tag and
history variables and (2) additional conjuncts on the guard. Let
a be the agent executing e, that is, e.AGT = a.

Updates to History and Tag. Fig. 5 shows how these variables
are updated. Note that we must update history variables of a
each time a rule ev2rl(e) fires.



Fig. 5: Updating History and η Variables when agent a fires
event e

Additional Guard. The additional guard conjunct is given by
the expression ga[e, f ] , ∃t : ∀e′ : e′ ≺ e ⇒ e′ ∈ Ha[f, t].
That is, ga[e, f ] is true only when all events preceding e′ in
flow f have been executed. Note that although we wrote the
guard as a quantified first-order expression, for any system
involving a finite set of flows and active tags, it can be written
as a Boolean expression by enumeration.

Fig. 5 defines an algorithm for each agent to keep track
of the local tag it uses to communicate with other agents
in specific flow instances. This information is sufficient to
create a global tag as required by compliance definition (cf.
Theorem 1). Indeed, the elaborate tagging and history updates
mirror typical RTL implementation of protocols with multiple,
concurrently executing flow instances. Although essential for
correctness, this part of protocol design is typically boring
to humans while still being tricky to get right. Indeed, many
errors in protocols arise by incorrect handling of such disam-
biguation procedures. By synthesizing it automatically, we free
the human to focus on the algorithmically interesting parts.

The history and tag variables can make the synthesized
model unbounded, e.g., we need a history variable Ha[f, t]
for each possible tag value t. In practice, we impose finiteness
by setting an upper bound to the set of possible tag values. This
is reasonable in our case since our protocols are implemented
in hardware with finite resources; consequently, most protocol
definitions already include an upper bound on the possible tag
values to impose implementability. Nevertheless, the model is
more restrictive than flow descriptions. In particular, the set
of possible tags constrains the number of possible concurrent
instantiations of a flow. We can avoid this constraint to some
extent by reusing tags of completed flows.

The correctness of the procedure is given by Theorem 1.
Here ev2rl∗ and rl2ev∗ are augmentations of ev2rl and rl2ev
respectively so that the domain of ev2rl∗ (and range of rl2ev∗)
include additional guards and updates to the history variables.

Lemma 1: Let τ , [r1, . . . , ri] be any execution trace of
the model M obtained by applying the above procedure to F .
Then there exists f ∈ F such that rl2ev∗(ri) is an event in

f and for each e ≺f rl2ev
∗(ri) there exists k < i such that

rl2ev∗(rk) = e.

Proof sketch: The proof follows from induction on the
length of τ . In the induction step, we note that using the guard
specified for Additional Guard and rules for history variable
update, for each event e such that e ≺ rl2ev∗(ri), ev2rl∗(e, f)
must be executed for ri to be enabled.

Theorem 1: If M is an executable model synthesized from
a set of flows F , then M is compliant with F .

Proof sketch: Let τ , [r1, . . . , rk] be any execution trace
of M . It is sufficient to show that there is a legal tagging [F, T ]
and precedence preserving mapping rl2ev# from rule firings
in τ to [F, T ]. Below we provide a construction of T . The
result then follows from Lemma 1.

We construct [F, T ] inductively. Recall that each rule firing
r in τ is associated with a unique 〈AGT, TAG, FLOW〉 triple.
We have to map every tuple 〈AGT, TAG, FLOW〉 seen in the
execution τ to a global tag so that all local tags used for the
same instance of a flow f by different agents get mapped to
the same global tag.

For the base step, the unique tuple of the first rule r1 is mapped
to global tag of 1. In the inductive step, suppose the tuples for
rules [r1, ..., ri−1] have been mapped to global tags Ti−1 ,
{1...g} such that Ti−1 is a legal tagging. We then consider the
following cases for ri.

Case 1: There exists e ≺ rl2ev∗(ri) such that both e and
rl2ev∗(ri) are events in f and e.AGT = (rl2ev∗(ri)).AGT.
Then by Lemma 1 there exists a k < i such that ev2rl∗(e, f) =
rk. By induction hypothesis, ev2rl∗(e) is tagged by Ti−1 and
this global tag can be used for ri.

Case 2: If there is no e satisfying Case 1 then either rl2ev∗(ri)
is an initial event of f or all preceding events of rl2ev∗(ri)
are executed by an agent different from (rl2ev∗(ri)).AGT. In
the former case, we can augment Ti−1 with any unused tag
and map that to ri. In the latter case, (rl2ev∗(ri)).AGT must
have received a non-empty set P of tuples 〈AGT, TAG, FLOW〉
from preceding rule firings. If all these are mapped to the
same global tag g we use that for the current rule as well.
Otherwise, we pick an unused global tag g and map the tuple
of the current rule ri and all the tuples in P to g.

IV. ADDITIONAL CHECKS TO ENSURE REALIZABILITY

The notion of compliance only ensures that each trace
in the model M can be viewed as an interleaving of flow
instances, but not that all flows in F can be exercised by some
trace. Consider the trivial model Mtr in which the guard for
each rule is the logical false. Since the only trace ofMtr is the
empty trace, Mtr is compliant with F . To ensure that every
flow is “necessary”, we introduce the following additional
sanity check.

Non-Triviality Check. We say that a flow f ∈ F is exercised
by M if there is a trace τ in M such that τ is not complaint
with the set of flows F \ {f}. M is non-trivial with respect
to F if every flow f ∈ F is exercised by M .

The non-triviality check ensures that without f , there is
no way to decompose τ into interleaving instances of flows



from F . In general, it can require exhaustive exploration of
M . However, it is efficient in practice since model-checking
quickly discovers traces exercising all flows (cf. Section VI-A).

In addition to non-triviality, we perform two other checks
which catch frequently observed mistakes in flows. These
checks are done on the flows F directly, not on the synthesized
model M . First check is that for every message m sent by
some event e in flow f , there is some other event e′ in f ,
e ≺ e′ such that e.RECV includes m. The second check, called
prefix consistency is more subtle. Here we assume that for
flow 〈f,≺〉, the relation ≺ is a total order over the events
{e1(f,a), . . . , e

2
(f,a)} executed by agent a (so that they form a

sequence). This is a general restriction and follows well-known
tradition of distributed system definitions [7].

Prefix Consistency Check. Let f1 and f2 be two flows
such that the event sequences executed by agent a
are [e1(f1,a), . . . , e

k
(f1,a)

] and [e1(f2,a), . . . , e
l
(f2,a)

] respectively.
Then f1 and f2 are prefix consistent if the following holds
for n = 2, . . . ,min(k, l): If the first (n − 1) events of both
sequences is identical, and the GD and RECV fields of en(f1,a)
and en(f2,a) are identical, then so must be the UP and SEND
fields.

The motivation for prefix consistency comes from the fact
that when two or more flows share a prefix there may be
“misunderstanding” among agents regarding which flow is
being executed (usually leading to a deadlock). For instance,
suppose en(f1,a) and en(f2,a) cause the same message mb

a to
be sent from agent a to b, but local updates on a and the
expected response from b are different. Suppose a executes
en(f1,a). Receipt of message mb

a can enable b’s response to
en(f2,a) in addition to en(f1,a). That is, from the perspective of b,
the flow its participating in is f2 whereas from the perspective
of a it is f1. Consequently, the response sent by b is discarded
by a which continues to wait for a response to en(f1,a), leading
to a deadlock. Indeed, we introduced this check after observing
that this phenomenon is quite common for many industrial
protocols and leads to subtle errors.

Finally, note that the checks described in this section
only ensure that flows pass a minimum quality screening;
they cannot ensure that only correct models are synthesized.
Indeed, the quality of synthesized model is only as good as
the flows. In practice, particularly in the initial iterations of
the refinement loop of Fig. 4, flows do contain errors that
have to be fixed by the user through analysis of model-
checking counterexamples. The main advantage of using flows
over directly writing executable models from scratch is that it
provides an easier and more intuitive way of creating models.

V. EXTRACTING FLOWS FROM MODELS

In this section we consider the inverse problem of the
preceding section, i.e., extracting a set of compliant flows from
a given executable model. In addition to being of theoretical
interest, e.g., for comparing the semantic richness of flows vis-
a-vis models, an efficient flow extraction algorithm has practi-
cal utilities. For instance, flows can yield powerful invariants
facilitating formal verification [11], [12]. Moreover, there are
legacy models of industrial protocols which are large and hard

to understand; extracting flows may facilitate understanding by
exposing the underlying transaction structures.

Flow Extraction Problem. Let M be any executable model.
Construct a finite set F of flows such that (1) M is compliant
with F , and (2) each flow f ∈ F is exercised by M .

Condition 2 ensures that for each f in F , an instantiation
of f occurs in some trace τ of M . This rules out trivial cases,
e.g., defining each rule in M to be a flow with a single event
and calling the rule set to be the set of “extracted” flows.

Unfortunately, the flow extraction problem as stated is as
hard as model-checking M . To see that, let I be an arbitrary
predicate over M , and consider the model M+ obtained by
extending M with the single rule r : I → NOP, where NOP
does not involve any updates. Let F be a set of flows satisfying
Conditions 1 and 2 above. Then ¬I is an invariant of M if and
only if no f ∈ F includes the event rl2ev(r). This follows by
noting that r occurs in some trace if and only if I is true of
some reachable state of M .

In spite of the result above, it is often possible to extract
approximate flows from a sufficient set of bounded executions
of M by heuristically inferring event precedence. Indeed, in
many cases, we empirically found such an approach to produce
flows similar to those created by architects. Thus, for legacy
protocols with no available flows, such approximations can
be used as substitutes to mine invariants. However, the result
shows that extracting “perfect” flows is an intractable reverse-
engineering problem.

VI. APPLICATIONS

A. Flows2HLM Synthesizer

We developed a tool, Flows2HLM, to synthesize models
from flows. The tool implements the framework in Section III,
augmented with the following facets to facilitate adoption.

Parameterized Flows. The definition of flows required each
event to include the id of the executing agent. But in practice,
ids only specify the type of the executing agent (e.g., Directory
agent vs. Cache agent). Two or more agents of the same
type occurring in the same flow are disambiguated by using
numbers along with type. Our tool supports such parametric
flows. The key change required in the algorithm is to add
agent ids to the local tags to disambiguate same events
from parametric flows executed by different concrete agents.
Dealing with parametric flows keeps the synthesized model
small and manageable.

Murphi Types. The model generated by Flows2HLM is a
Murphi [8] model. Apart from adding tagging information and
event precedence, it also adds a Murphi header file declaring
the types of variables. Type inference in this case is simple,
since all variables are finite enumerated types.

Flows2HLM follows the refinement loop of Section III,
using Murphi as the model-checker. In addition to generic
assertions (e.g., cache coherence) and the sanity checks dis-
cussed in Section IV, the user can write project-specific sanity
checks, constraints, etc. The generated model and any assertion
violations are reported to the user, together with diagnostic



information culled from the counterexample. The crucial di-
agnostic information is the interaction of flows leading to the
failure. Typos and “shallow” errors are typically identified (and
easily repaired) in initial synthesis iterations. For example, an
error in message type manifests in a deadlock, as follows.
Suppose agent a is inadvertently declared to send b a message
of type E instead of correct type C; then b, which expects
C, waits indefinitely, leading to a deadlock. Finally, while
there is no guarantee, the initial iterations coupled with random
simulations are enough to see that all flows are being exercised;
thus, the non-triviality check of Section IV is easily satisfied.

B. Synthesizing Industrial Protocols

Flows2HLM has been used to synthesize several cache co-
herence protocols for Intel’s next-generation many-integrated-
core (MIC) processors; recently, it has been applied to bus
lock and credit management protocols as well (cf. Table I).
For pedagogical reasons, we also synthesized two academic
cache protocols, German [13] and Flash [14], and their flows
are publicly available [15]. We invite the reader to explore
them, to appreciate the intuitive nature of flow specifications.

We elaborate a bit on our experience with Intel 2, since it
is the most complex protocol synthesized by Flows2HLM so
far (and perhaps the most complex cache coherence protocol
formally analyzed). Interestingly, the synthesis was done fully
by an architect with no prior formal modeling experience.
The initial definition took two days and constituted 40 flows.
Several sanity checks were added by the architect, e.g., that
the cache for each agent can get to an exclusive state. This
description contained many shallow errors which were detected
by Flows2HLM, including the deadlock scenarios discussed
above. Subsequently subtle bugs were exposed, including an
unexpected response to a local snoop message which required
adding a new flow to fix. Overall six major bugs were found,
which required significant modification of flows; any one of
them, if leaked into RTL, would have led to a costly RTL
churn. The effort took a month, including modification to
Flows2HLM; in contrast, an earlier effort developing a hand-
written Murphi model of similar complexity by a formal
verification expert had required 6 months.

In addition to facilitating use of formal models by archi-
tects, a major gain of our approach is easy maintenance and
modification of protocols. For Intel 2, the architect subse-
quently made major changes to flows to create a derivative
protocol in matter of days, something that would be very
hard with hand-written executable models. Furthermore, the
architect used counterexamples returned by model-checker
during the synthesis effort to estimate downstream RTL vali-
dation complexity. If model-checking counterexamples involve
complex interleaving of several flow instances with a number
of agents, one may expect bugs in further elaborated RTL im-
plementations to also exhibit similar characteristics and hence
require significant validation effort. Based on this insight,
the architect simplified the initial protocol to keep the RTL
validation complexity manageable.

Finally, since annotations are written manually as part of
flow description, our approach provides reduction in speci-
fication detail over hand-written executable models only if
they are small. This has been the case for most message-
passing protocols we have seen, including academic cache

coherence protocols as well as SoC and MIC protocols in
Intel. Annotations account for less than 10% of model size
in all our examples, and less than 5% for the larger protocols.
This is not due to bloating from auto-generated code; hand-
written models of protocols of comparable complexity were
typically of a similar size. Note that for microarchitectural
protocols, which involve lower level details like message
buffering and arbitration, annotations may form a larger part
of the description. Investigating application of flows for such
protocols is an interesting future work.

VII. RELATED WORK

Several protocol description techniques have been created
in recent years, e.g., table-based methods, message sequence
charts (MSC), etc. [16], [4], [17], [10]. However, they have
not been widely adopted in industrial practice. We speculate
that a key bottleneck is the need to think about protocols in
terms not natural to the architects. For instance, table-based
methods require manually projecting system-level transactions
to each agent and carefully tracking the set of transactions that
the agent can participate in concurrently. Furthermore, a local
change in one transaction requires modification of multiple
tables. The comparison with MSCs [10] is more interesting.
MSCs capture a diverse range of distributed computing ar-
tifacts, including interface protocols and real-time systems;
consequently, they include several bells and whistles. While
graphical formats provide a more intuitive visualization than
text for small protocols, they become unwieldy and inflexible
for protocols with 40 flows. Rather than identifying a subset of
MSCs for specifying protocols, we found it easier to develop a
simple language analogous to MSCs directly based on artifacts
we observed the architects to use in informal specifications.

There has been recent related work on synthesizing dis-
tributed protocols. Udupa et al. [18] synthesize models from
concolic execution snippets via user-guided iterative refine-
ment using counterexamples from a model checker. Concolic
snippets are analogous to tabular specification, with each snip-
pet corresponding to a row. Synthesis based on snippets cannot
account for the context of an event execution, i.e., preceding
events in a flow. We found flows to provide a more effective
and natural starting point. Alur et al. [19], use scenarios and
temporal properties to synthesize protocols; they address the
problem of automatically synthesizing a model even when the
number of scenarios is inadequate. There is superficial corre-
spondence between scenarios and flows. However, while flows
are self-contained, redundancy-free descriptions of protocol
transactions, scenarios are sample executions. The problem
addressed by Alur et al. is to automatically synthesize a
model when the number of scenarios is inadequate. In contrast,
we take the set of flows F itself to be the description of
system transactions; thus, assertion violation in our refinement
loop identifies inconsistency between the flows in F but no
automatic repair mechanism. The analogous repair problem
in our setting, e.g., repairing protocol model by supplying a
completely missing flow, would be unsolvable: if a flow is
missing it cannot in general be inferred from other flows.
Finally, using temporal assertions to capture behaviors of
complex distributed protocols is hard and requires significant
expertise in formal logic, making it unusable for architects.
In our experience, flow-based design capture is more closely
aligned to industrial design development.



Protocol Type No. of Flows Murphi Model LOC State Annotation LOC
German Cache Coherence 4 600 30

Flash Cache Coherence 10 1400 100
Intel 1 Cache Coherence 36 5000 200
Intel 2 Cache Coherence 43 6500 200
Intel 3 Bus Lock 3 1600 120
Intel 4 Credit Management 3 200 20

TABLE I: Some protocols synthesized with our tool

VIII. CONCLUSION

We formalized the notion of transaction message flows, and
provided a method to synthesize executable models. We also
showed that flows contain strictly richer semantic information
than models: while generating models from flows is easy,
extracting flows from models is intractable. To our knowledge,
ours is the only technique for automated protocol modeling
that has found consistent use in industry. The cache coherence
protocols analyzed via Flows2HLM are some of the most
complex ones to ever undergo formal verification. Note from
Table I that the industrial cache coherence protocols have about
an order of magnitude more flows than German, Flash, etc.
that constitute representative benchmarks for state-of-the-art
automatic formal verification techniques.

The problem of synthesizing models arose out of the need
to analyze these highly complex industrial protocols early in
the design life-cycle. Previous work [11], [12] addressed this
problem by mining invariants from transaction-level descrip-
tions to facilitate formal verification of protocol models at this
scale. Nevertheless, a limiting factor for its practical adoption
was the complexity of creating these formal models. This
bottleneck, together with the observation that flow diagrams in
architecture documents often represent “authoritative” source
of protocol descriptions for designers and validation engineers,
motivated the approach presented here. The results of this
paper, together with the previous results [11], [12], suggest that
flows provide a powerful and efficient method for modeling,
analysis, and understanding of protocols.

In future work, we plan to exploit flows further in protocol
modeling and analysis. One application is generating test
harness for RTL simulation, e.g., flows can be used to encode
environment behaviors when exercising the RTL implemen-
tation of an agent. Another future work is to use repair
techniques to fix missing annotations in user-provided flows,
perhaps through a user-guided refinement loop. Finally, tabular
specifications, although difficult for architects, are useful for
downstream RTL designers; it will be interesting to explore
synthesis of tabular specifications from flows.

REFERENCES

[1] R. Kaivola, R. Ghughal, N. Narasimhan, A. Telfer, J. Whittemore,
S. Pandav, A. Slobodová, C. Taylor, V. Frolov, E. Reeber, and A. Naik,
“Replacing testing with formal verification in intel coretm i7 proces-
sor execution engine validation,” in 21st International Conference on
Computer-Aided Verification, 2009.

[2] T. Ball and S. K. Rajamani, “The SLAM toolkit,” in Computer Aided
Verification, 13th International Conference, CAV 2001, Paris, France,
July 18-22, 2001, Proceedings, 2001.

[3] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem, C.-H.
Gros, A. Kamsky, S. McPeak, and D. R. Engler, “A Few Billion Lines
of Code Later: Using Static Analysis to Find Bugs in the Real World,”
Communications of the ACM, vol. 5, no. 2, 2010.

[4] D. James, T. Leonard, J. O’Leary, M. Talupur, and M. Tuttle, “Extract-
ing Models from Design Documents with Mapster,” in Proceedings
of the 27th Annual ACL Symposium on Principles of Distributed
Computing (PODC 2008), R. A. Bazzi and B. Patt-Shamir, Eds., 2008,
p. 456.

[5] S. German, “Tutorial on Verification of Distributed Cache Memory
Protocol,” in 5th International Conference on Formal Methods in
Computer-Aided Design (FMCAD 2004), A. J. Hu and A. K. Martin,
Eds., 2004, http://www.cs.utah.edu/∼ganesh/presentations/fmcad04\
tutorial2/german/steven-tutorial.pdf.

[6] S. S. Owicki and D. Gries, “Verifying properties of parallel programs:
An axiomatic approach,” Commun. ACM, vol. 19, no. 5, 1976.

[7] L. Lamport, “Proving the correctness of multiprocess programs,” IEEE
Trans. Software Eng., vol. 3, no. 2, pp. 125–143, 1977.

[8] D. L. Dill, A. J. Drexler, A. J. Hu, and C. H. Yang, “Protocol Verification
as a Hardware Design Aid,” in IEEE International Conference on
Computer Design, 1992.

[9] G. J. Holzmann, “The model checker SPIN,” IEEE Trans. Software
Eng., vol. 23, no. 5, 1997.

[10] ITU-TS Recommendation Z.120, “Message Sequence Chart (MSC)
Annex B: Algebraic Semantics of Message Sequence Charts, ITU-TS,
Geneva,” 1995.

[11] M. Talupur and M. R. Tuttle, “Going with the Flow: Parameterized
Protocol Verification using Message Flows,” in Proceedings of the
8th International Conference on Formal Methods in Computer-Aided
Design (FMCAD 2008), A. Cimatti and R. B. Jones, Eds., 2008.

[12] J. W. O’Leary, M. Talupur, and M. R. Tuttle, “Protocol Verification
using Flows: An Industrial Experience,” in Proceedings of the 9th
Internation Conference on Formal Methods and Computer Aided Design
(FMCAD 2009), A. Biere and C. Pixley, Eds., 2009, pp. 172–179.

[13] A. Pnueli, S. Ruah, and L. Zuck, “Automatic Deductive Verification with
Invisible Invariants,” in Proceedings of the 7th International Conference
on Tools and Algorithms for Construction and Analysis of Systems
(TACAS 2001), T. Margaria and W. Yi, Eds., 2001.

[14] J. Kustin and et. al, “The Stanford FLASH Multiprocessor,” in Pro-
ceedings of the 21st Annual International Symposium on Computer
Architecture (ICSA 1994), 1994.

[15] M. Talupur, S. Ray, and J. Erickson, “Flows and Murphi Models for
German and Flash Protocols,” 2014, See URL http://www.cs.cmu.edu/
∼tmurali/flow examples.

[16] C. L. Heitmeyer, M. Archer, R. Bharadwaj, and R. D. Jeffords, “Tools
for constructing requirements specifications: the SCR Toolset at the age
of nine,” Computer Systems: Science & Engineering, vol. 20, no. 1,
2005.

[17] W. Damm and D. Harel, “LSCs: Breathing Life into Message Sequence
Charts,” Formal Methods in System Design, vol. 19, no. 1, pp. 45–80,
2001.

[18] A. Udupa, A. Raghavan, J. V. Deshmukh, S. Mador-Haim, M. M. K.
Martin, and R. Alur, “TRANSIT: Specifying Protocols with Concolic
Snippets,” in 34th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (PLDI 2013), 2013.

[19] R. Alur, M. Martin, M. Raghothaman, C. Stergiou, S. Tripakis, and
A. Udupa, “Synthesizing Finite-state Protocols from Scenarios and
Requirements,” 2014.


