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ABSTRACT

With the proliferation of connectivity and smart computing in ve-

hicles, a new attack surface has emerged that targets subversion

of vehicular applications by compromising sensors and commu-

nication. A unique feature of these attacks is that they no longer

require intrusion into the hardware and software components of

the victim vehicle; rather, it is possible to subvert the application by

providing wrong or misleading information. We consider the prob-

lem of making vehicular systems resilient against these threats. A

promising approach is to adapt resiliency solutions based on anom-

aly detection through Machine Learning. We discuss challenges

in making such an approach viable. In particular, we consider the

problem of validating such resiliency architectures, the factors that

make the problem challenging, and our approaches to address the

challenges.

CCS CONCEPTS

• Security and privacy→ Systems security; • Computer sys-

tems organization → Embedded and cyber-physical systems.
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1 INTRODUCTION

Modern automotive systems are essentially complex distributed

systems that involve coordination of hundreds of Electronic Control

Units (ECUs) communicating through a variety of in-vehicle net-

works and executing several hundred Megabytes of software code.

Automotive systems induce two additional constraints that result

in significant design complexities beyond traditional distributed
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systems. First, the systems are cyber-physical: the ECUs coordinate,

monitor, and control a variety of sensors and actuators, including

LIDAR, camera, radar, light matrix, devices for sensing angular mo-

mentum of the wheels, devices for automated brake and steering

control, etc. Second, many computational and communication tasks

must be accomplished under hard real-time requirements, e.g., a
pedestrian detection algorithm must complete a slew of complex

activities including capturing sensory data, aggregation, communi-

cation, analytics, image processing, security analysis, etc., within

the time constraints to enable successful completion of the appro-

priate actuation response such as warning or automated braking.

One upshot of increasing autonomy is a corresponding increase

in the vulnerability of these systems to cyber-attacks. Given that

the system involves complex interaction of sensory, actuation, and

computational elements, an “innocent” misconfiguration or error

in one component may result in a subtle vulnerability which can

be exploited in-field with potentially catastrophic consequences.

Recent research has shown that it is possible, — even relatively

straightforward, — to compromise a vehicle and get control over its

driving function [6, 10, 14]. The trend towards increasing autonomy

will only exacerbate this situation: the increasing dependence of

critical vehicular operations on complex electronics and software

will result in an increased attack surface as well as the increasing

ability of an attacker to create catastrophic impact from a com-

promise. Consequently, the proliferation or even adoption of
autonomous vehicles critically depends on our ability to en-
sure that they perform securely, in a potentially adversarial
environment.

A critical feature of emergent autonomous vehicles is connectiv-
ity, i.e., the ability to communicate with other vehicles (V2V), with

the infrastructure (V2I), and with other devices connected to the

Internet (V2IoT). Vehicular communications, referred to as V2X,

have become fundamental for autonomous driving. They enable

cooperative information sharing for streamlining traffic movement,

improving road safety, and efficiently utilizing traffic and trans-

portation infrastructure. Unfortunately, V2X is also a highly vul-

nerable feature that can be exploited by an adversary to disrupt

traffic movement, cause catastrophic accident, and bring down the

transportation infrastructure. A key problem with V2X is that it

obviates the need for an adversary to actually hack a vehicle: send-

ing misleading or even malformed V2X communications is often

sufficient to disrupt the connected car ecosystem. Unsurprisingly,

in a recent survey by the world’s second-largest reinsurer Munich

Re, 55% of the surveyed corporate risk managers named security

of vehicular communications as their top concern for autonomous

vehicles [16]. Perhaps even more alarming, 64% of the companies
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surveyed mentioned that they were completely unprepared to ad-

dress this threat.

In this paper, we consider the problem of introducing real-time

resiliency in connected autonomous vehicular (CAV) applications.

We consider adversaries that can target the “perception” channels

of a vehicle: we deliberately leave the mechanism of perception

undefined, allowing it to be through either sensory input or V2X

communication. An adversarial attack is a perturbation of some

(subset of) the perception channels involved in the application,

such that the input received would be different from actual. For

instance, in Cooperative Adaptive Cruise Control (CACC), a vehicle

E receives the velocity, relative position, and acceleration of its

preceding vehicle P; during an attack, the values received by E
would be assumed to be different from ground truth. The focus

of real-time resiliency is to augment the application functionality

so that E can perform safely and efficiently, even during attack.

The focus of the paper is to identify and enumerate challenges

in developing such real-time resiliency in CAV applications. In

particular, previous work has shown how to use anomaly detection

based on Machine Learning (ML) in addressing the problem [4];

however, the use of ML brings in new challenges in design and

validation. We briefly summarize our approach in addressing these

challenges, taking two illustrative CAV applications: CACC and

multi-vehicle platooning.

2 LIMITATIONS OF HARDWARE SECURITY

TECHNIQUES AND ROLE OF ML-BASED

ANOMALY DETECTION

The last decade saw significant advancement in hardware security

research, from design to validation. It is worth considering why

these solutions cannot be directly adapted to CAV resiliency. Com-

mon design approaches to address communication vulnerabilities

between untrusted entities or through untrusted communication

channels entail the use of either (1) some authentication or at-

testation paradigm to preclude masquerade, sybil, or misdirection

attacks; or (2) cryptographic techniques to ensure non-observability

of communications by malicious man-in-the-middle attackers. Note

that these techniques tend to be highly computation-intensive.

These techniques may be appropriate for many automotive func-

tionalities that do not involve real-time decisions. However, they

are not applicable if they fall in the critical path of real-time actua-

tion and decision making. This, in fact, is the case when defending

against an adversary that sends maliciously modified inputs in-

fluencing the actuation of the victim vehicle. This is particularly

crucial considering the limited computation resources available in

a vehicular system.

Boddupalli et al. [4, 5] developed an approach called ReDeM that

addresses these limitations. The approach is an ML-based anomaly

detection, that extends the application controller with specific on-

board components to provide resiliency. Fig. 1 shows the ReDeM

on-board architecture. The key idea is to include a trained ML

model that classifies inputs coming from the untrusted perception

channels as either benign or malicious. The detection component

determines the presence of anomalies in the perception inputs and

Figure 1: ReDeM-augmented CAV Application System

raises a flag if detected to initiate mitigation. The Mitigation com-

ponent is responsible for neutralizing the adverse effects of anoma-

lous perception inputs. It also computes an alternative decision

that overrides the corrupted response from the naive application

controller. The Anomaly Detector of ReDeM is founded upon an

ML model trained to learn normal behavior of the Decision Compu-

tation Module of the targeted application; a substantial deviation

of the actual value from the predicted one is flagged as an anomaly.

ReDeM addresses the computational constraints noted above by

separating the computationally expensive training of ML from the

in-field prediction. In particular, ReDeM includes a cloud-based

infrastructure for training prediction models, while the on-board

architecture collects data and performs real-time prediction. The

trained model is periodically downloaded on-board. Furthermore,

real-world data is collected and periodically transferred to a cloud

server to retrain the machine learning components.

The approach above has shown promise, in particular addressing

the computational resource constraints in automotive on-board elec-

tronics vis-a-vis the computational needs for real-time resiliency. It

also addresses the so-called small data problem that often represents

an Achilles heel in adapting ML solutions to security. The small

data problem refers to the fact that while normal behavior model is

generally plentiful in the real world, the amount of real-world at-

tack data is limited, which makes it difficult to train an ML classifier

to discriminate between normal and attack data. By formulating the

CAV resiliency in terms of anomaly detection rather than a problem

classifying between normal and attack scenarios, ReDeM avoids

the thorny problem created by lack of attack data: ReDeM models

need to only be trained to learn normal behavior while anomaly is

characterized simply as a deviation from the predicted normal.

Nevertheless, the use of ML-based anomaly detection does in-

duce new challenges. A key problem is in developing effective

approaches for validation. Validation is obviously crucial for a CAV

resiliency system, since it targets highly safety-critical applications.

However, the unique nature of ML-based resiliency makes it highly

challenging to achieve. In the rest of the paper, we discuss various

facets of the validation problem and ReDeM’s approach to address-

ing them. The goal is not to justify the ReDeM solutions. Instead,

our focus is to point to the spectrum of validation issues involved in

ML-based resiliency in connected vehicle applications: we describe

the ReDeM approaches simply to point to directions that we have

found viable.



3 THE PROBLEM OF DATA

The efficacy of any ML-based prediction system depends upon the

availability of high-quality data. This is true of ReDeM, since its key

work horse is ML-based anomaly detection. So a critical question to

ask is: how do we get copious high-quality data necessary to make

the ML-based predictions viable? We addressed this question above

in the context of achieving ML-based training after deployment:
we argued that normal driving behavior data is plentiful in real

world and this enables the on-board system to simply collect such

data under various conditions when the vehicle is on road. How-

ever, this does not address the validation issue: how can we have

enough real-world data before connected vehicle applications have

been widely deployed in field, so that we can evaluate and tune

the resiliency infrastructure? At this point, we obviously cannot

depend on availability and collection of real-world driving data for

connected vehicle applications, since widespread deployment of

CAV applications has not happened yet. Indeed, we face a “chicken

and egg” problem: until we can develop reliable resiliency solutions

we cannot expect widespread deployment, and until we have wide-

spread deployment we do not have the accurate real-world data

necessary to validate the resiliency solution.

One way to address this problem is to look for sources of driv-

ing behavior data. There are two sources, described below, each

imperfect.

Datasets. The first source includes some publicly available traffic

datasets. Some examples include KDD99 dataset [15], DSRC vehicle

communication dataset [8], Audi A2A2 autonomous driving dataset

[9], AMUSE [11], the Ford Autonomous driving dataset [1]. A key

challenge with these datasets is that they are collected for a variety

of different purposes and may not be directly suitable. For example,

our work would typically require the driving behavior of individ-

ual vehicles under a variety of environments. On the other hand,

many of the datasets include behavior of a number of vehicles each

collected for a very short duration.

Simulators. The second source is through various automotive

simulators. There is a plethora of simulators, ranging from desk-

top simulators targeting specific functionality to physical driving

simulators. Three well-known desktop simulators are SUMO [13],

CARLA [7], and VENTOS [2]. SUMO is an open source, microscopic,

multi-modal traffic simulator. Each vehicle has its own route, and

moves individually through the network. CARLA targets develop-

ment, training, and validation of autonomous driving systems. In

addition to open-source code and protocols, CARLA provides open

digital assets (urban layouts, buildings, vehicles). The simulation

platform supports flexible specification of sensor suites, environ-

mental conditions, full control of all static and dynamic actors, maps

generation, etc. VENTOS is an integrated C++ simulator for study-

ing vehicular traffic flows, collaborative driving, and interactions

between vehicles and infrastructure through DSRC-enabled wire-

less communication capability. It makes use of SUMO for vehicular

traffic mobility models together with OMNET++ [17] for wireless

communication among the different nodes. In addition to desktop

simulators, there are also physical automotive simulators. They are

generally custom-built, and enable detailed simulation and analysis

of vehicular trajectory data in diverse driving environments. The

Figure 2: RDS-1000 Simulator Used for ReDeM Data Collec-

tion

focus of these simulators have traditionally been to study human

behavior while driving. They provide a physical interface for a hu-

man driver to control the vehicle in simulation. Simulators can be

used to capture logs of a variety of synthetic driving data. However,

a problem with this data is that there is no a priori reason to believe

that these logs do indeed capture real-life scenarios. Consequently,

training and inference based on such data could be spurious.

ReDeM addresses this by using simulator log from a physical sim-

ulator, RDS1000® (https://www.faac.com/realtime-technologies/

products/rds-1000-single-seat-simulator) for data collection but

using real-world datasets to vet the collected data. Fig. 2 shows the

simulator used for data collection. The key observation is that phys-

ical simulators provide realistic simulation of driving environment

(e.g., terrain, weather, etc.). Consequently, the driving behavior of
a human driver operating on the simulator would likely mimic

how the driver would operate an actual vehicle in practice. Con-

sequently, data from such operation could be used as proxy for

“normal driving behavior” under the given condition. By sweeping

through a range of environmental conditions, we can collate a com-

prehensive dataset of normal behavior. The collated data may be

skewed by the driving idiosyncrasies of the human operating the

simulator. We address this by matching the collated driving data

with data from available datasets. Note that while sustained data

over a period of time is unavailable, there are datasets that provide

short-duration driving patterns. These snippets can then be used to

corroborate data obtained from the simulator under similar driving

conditions. We carried out this experiment with HighD dataset [12]

that provides trajectory data corresponding to real vehicles driving

in German highways. The length of individual vehicle trajectories

is approximately 15 seconds. Our experiments showed that the driv-

ing patterns from the simulator correlate closely with HighD data,

justifying our use of the simulator data for subsequent evaluation.

4 VALIDATING RESILIENCY AGAINST

ZERO-DAY ATTACKS

A key requirement for resiliency is that it provides protection

against a spectrum of attacks including those not are necessar-

ily known at deployment. Attacks evolve over the lifetime of a

vehicle. A solution that protects against a very specific mechanism
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Figure 3: A V2X Attack Taxonomy. The figure is taken from

a previous paper [4] co-authored by some of the authors of

this paper.

of attack would become ineffective as the attacker finds a new dif-

ferent attack mechanism, e.g., a solution preventing an attacker

from performing denial-of-service (DoS) attacks through jamming

vehicular communication, would be useless once the attacker finds

a different DoS attack that does not require jamming. On the other

hand, it is clearly infeasible to determine in advance all possible

mechanisms through which an attacker can compromise commu-

nication or sensory perception. Indeed, new attacks can become

feasible only after technology (and hence sophistication of attack)

advances during the in-field life of the vehicle in ways not neces-

sarily anticipated at deployment. This results in a conundrum for

security validation: how can we ensure that the resiliency system

is indeed effective, not only against known attacks but against a

spectrum of attacks that are unknown at deployment time?

ReDeM addresses this problem by noting that it is possible to

develop a resiliency system that accounts for attacks based on its

manifestation features, stealth, and impact rather than detailed

mechanism. Furthermore, it is possible to comprehensively classify

the spectrum of attacks in this manner simply from the threat model.

For instance, consider a CACC application where a vehicle follows

its preceding vehicle by maintaining a specific time headway. If the

adversary is confined to V2V communications, the only choices for

the adversary are to (1) mutate an existing message, (2) fabricate

a new message, and (3) prevent the delivery of a message. Corre-

spondingly, since the message payload constitutes the preceding

vehicle’s acceleration, the impact of an attack can be to (1) increase

the probability of collision (by reporting a lower than actual accel-

eration value), (2) reduce efficiency through an increased headway

(by reporting a higher than actual acceleration value), or (3) creat-

ing instability (e.g., through random mutation of the actual value).

Going through this argument enables us to create a taxonomy of

V2X attacks as shown in Fig. 3. Note that if our validation covers

attack space defined by the taxonomy then the above argument

suggests that we indeed comprehensively cover the space of all

attacks defined by the threat model, including unknown attacks.

Note that the taxonomy, while crucial, is only the first step in

identifying and defining attacks to be accounted for in resiliancy

evaluation. Evaluating a resiliency solution additionally requires

comprehending the the impact of these attacks. After all, it is not
critical that the resiliency solution can effectively detect or mitigate

an attack that has no significant in the first place. On the other hand,

mitigating an attack with the potential for catastrophic accident is

critical even if the attack is rare. Note that the impact depends not

only on the magnitude of the bias (deviation from normal) but also

the frequency: an attack with a small bias, but performed for a long

duration, can cause a significant impact on the victim vehicle. An

interesting observation from ReDeM is that the taxonomy can help

determine the impactful attacks. ReDeM achieves this by system-

atically exploring the attack space defined by the taxonomy and

identifying subspaces that represent attacks with high impact. As

example, Figs. 4, 6, 5, and 7 show the results of impact analysis for

continuous mutation attacks, discrete mutation attacks, and ran-

dom mutation and delivery prevention attacks on CACC. It is clear

from the analysis that continuous mutation attacks are significantly

more impactful than discrete mutation attacks and random attacks.

5 VALIDATION CHALLENGE FOR

PROBABILISTIC PREDICTION SYSTEMS

No ML system is accurate in 100% of cases. This creates a vexing

evaluation problem: how to ensure that the vehicle can perform

reliably under unpredictability of ML? Note that this cannot be

solved by simply showing high value of an accuracy metric (e.g.,
precision, recall, or f1-score). We must additionally ensure that the

functionality is preserved even in those (hopefully rare) scenarios

in which the ML component does a misprediction.

To understand this issue, suppose the adversary model for CACC

enables compromise of multiple perception channels of the victim

vehicle, e.g., communication channels providing velocity, position,

and acceleration of its preceding vehicle. Even if the resiliency

system detects an anomaly, it may not always correctly identify

its source. For instance, if the adversary manipulates velocity and

position channels, the resiliency system may only observe a dis-

crepancy between the position and velocity values and the values

of acceleration and conclude that the compromised channel is ac-

celeration. A viable resiliency solution should obviously enable

safe and efficient operation even if the mistake happens. However,

the system must additionally enable proper functionality after the

attack is completed. Since the resiliency system “thought” that the

acceleration values deviate from ground truth while in reality the

velocity and position values are compromised, the victim vehicle’s

perception of all three values would be different from reality at

conclusion of the attack. Consequently, the victim vehicle could

predict benign (ground truth) values of all three channels as anoma-

lous. The resiliency system should ensure that the victim vehicle

can recover from this situation and can continue engage in CACC.

The above issue must be accounted for during validation. We

must show that, either (1) no matter what attack is instigated, the

victim vehicle’s perception is always within tolerable limits of real-

ity; or (2) if the perception of the victim vehicle deviates significantly



Figure 4: Continuous Mutation Attacks on CACC

Figure 5: Cluster Mutation Attacks

from reality then its response still ensures safe and efficient opera-

tion, and after the attack is over it eventually returns to a state in

which benign inputs are treated as benign.

6 CONCLUSION AND FUTUREWORK

In this paper, we considered the problem of real-time resiliency in

connected autonomous vehicle applications. With increasing elec-

trification and connectivity in vehicles, such applications will come

with a large, complex, and vulnerable attack surface. We discussed

some of the new challenges in validation of such applications, and

our initial efforts to address these challenges through ReDeM.

The ReDeM framework is work in progress. In future work, we

will consider more applications in ReDeM and potentially identify

new challenges (and solutions) to validation. One target is multi-

vehicle platooning. Our recent resilient platooning research [3] is

based on a simplified implementation, but nevertheless brought

interesting challenges. We will explore realistic platoon implemen-

tations and evaluate the efficacy of ReDeM validation strategies.
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