
Can’t See the Forest for the Trees: State Restoration’s
Limitations in Post-silicon Trace Signal Selection

Sai Ma1, Debjit Pal1, Rui Jiang1, Sandip Ray2, Shobha Vasudevan1

1Coordinated Science Laboratory, University of Illinois at Urbana-Champaign.
{saima1, dpal2, rjiang3, shobhav} @illinois.edu

2 Stategic CAD Labs, Intel Corporation. sandip.ray@intel.com

ABSTRACT
State Restoration Ratio (SRR) has been the de facto stan-
dard for evaluating quality of signals selected for post-silicon
tracing and debug. Given a set S of selected signals, SRR
measures the fraction of (gate-level) design states that can
be inferred from observing signals in S at each cycle. Unfor-
tunately, in spite of its widespread use, we found that SRR
is intrinsically unsuitable as a metric for evaluating trace
signal quality, as it captures neither the higher-level func-
tionality of the design nor the constraints and requirements
on trace signals imposed by architectural, physical, or se-
curity requirements. In this paper, we argue with strong
empirical evidence that SRR must be replaced by a metric
that closely models high-level behavioral coverage. We pro-
pose assertion coverage as a first step in this direction. We
also present a new algorithm, based on Pagerank, for post-
silicon trace selection. Pagerank is not designed to maximize
SRR. We found that Pagerank has upto 70% higher behav-
ioral coverage than SRR optimizing methods, and the RTL
PageRank has upto 30% higher behavioral coverage than the
netlist PageRank algorithm. Assertion coverage of PageR-
ank RTL is upto 50% while SRR based methods have less
than 5% assertion coverage.

1. INTRODUCTION
Post-silicon validation entails running tests and software

on fabricated, pre-production silicon implementation of a
hardware design to ensure that it operates correctly while
running actual applications under on-field operating condi-
tions. Since silicon executes at target clock speed, it runs
several orders of magnitude faster than pre-silicon validation
platforms. This permits exploration of deep design states
that cannot be encountered in the pre-silicon environment.
Post-silicon validation is a critically important [24], but also
expensive activity, accounting for the majority of validation
expense in modern SoC designs [28].

A fundamental problem of post-silicon validation is lim-
ited observability and control. Due to limitations in the
number of output pins, and area and power overheads of
internal trace buffers, only a few hundreds among the mil-
lions of internal signals can be traced or controlled during
silicon execution. These signals must be selected a priori
through analysis of pre-silicon design collaterals, so that the
design can be instrumented with hardware to route them
to an observation point (e.g., pins, trace buffers, etc.). If
critical signals are missed, their omission can be identified
only during post-silicon, as an inability to root-cause an ob-
served failure. At that point, rectifying the omission would
require a significant change in the observability architecture
together with silicon respin, which is not feasible.

This work was supported in part by National Science Foun-
dation (NSF) under Grant 1-483534-239012-191100.

Given the severity of the impact of missing necessary ob-
servability, there has been significant research in the “signal
selection problem”, i.e., disciplined identification of trace-
able signals that can maximize the design visibility as nec-
essary for post-silicon debug, under observability restric-
tions [10–18, 21, 22, 26, 27]. While there are significant dif-
ferences in the specific approaches proposed, virtually all
related work uses the same metric, called state restoration
ratio for evaluating their approaches. State restoration ratio
(SRR) measures the number of design states reconstructed
from the signals observed: a set S of signals is considered
superior to another set S′ if more design states can be in-
ferred from observing S than S′ (Section 2.3). Most signal
selection algorithms include heuristics to efficiently identify
signals that maximize SRRs.

In this paper we show that, in spite of its wide use as a de
facto standard in signal selection research, SRR is in fact a
poor metric for determining the quality of post-signal trace
signals. This casts serious doubts on the practical applica-
bility of all related signal selection algorithms that are based
on optimizing SRR. Unsurprisingly, we found no study re-
porting on the usage of these methods on industrial design:
all reported applications are on small benchmarks (e.g., IS-
CAS89), that are not representative of the complexities of an
industrial IC. Based on our observation, we strongly recom-
mend that the post-silicon research community move away
from SRR and consider alternative metrics for signal selec-
tion based on behavioral coverage.

Why is SRR a poor metric for qualifying post-silicon trace
signals? Post-silicon validation targets exercising deep and
interesting functional behavior of the design, e.g., booting
an oprating system, running target user-level applications,
executing different power-management modes, etc. For each
such behavior, certain specific design states are critical while
others might be irrelevant. A metric for post-silicon trace
signals should reward (or favor highly) the selection of sig-
nals that facilitate understanding, interpretation, and vali-
dation of such high-level functionalities during silicon exe-
cution. On the other hand, restorability as a metric takes a
“myopic” view of state reconstruction, attempting to max-
imize restoration of gate-level states without prioritization.
Consequently, an attempt to maximize SRR leads to pat-
terns like (i) treating all signals equally, instead of using the
natural design structure where some signals are more im-
portant than others; (ii) favoring big arrays in the design
which are not very useful for debugging and (iii) not con-
sidering the context or conditions under which particular
signals needs to be monitored.

The paper makes three important contributions.
Our first contribution is to show through empirical evi-

dence and analysis that SRR is severely limiting as a gen-
eral metric for post-silicon signal selection. We argue that
a different metric is necessary that directly correlates with
the extent of coverage of the execution flow of the design.

Our second contribution is a new metric, assertion cover-
age, as a step towards the definition of a metric that cap-
tures design specification. In particular, assertions corre-
spond closely to invariants and coverage conditions inferred
through trace signals during post-silicon debug. We define
assertion coverage for an assertion A as the set of signals
sufficient to evaluate A. Note that in many cases, mapping
an assertion to the part of the design it covers can be au-
tomatic [9]; furthermore, such mapping often exists as part
of pre-silicon validation collateral. Nevertheless, assertions
can have drawbacks arising from subjectivity and incom-
pleteness, and we treat assertion coverage as only a first
step towards a more comprehensive alternative metric for
signal selection. We do not argue for assertion coverage as
the absolute metric for post-silicon validation, but as a way
to initiate a functional coverage based metric that departs
from the low return SRR metric.

Our third contribution is a new signal selection algorithm
that performs significantly better than algorithms designed
to maximize SRR in achieving functional coverage. Our al-
gorithm is adapted from Google PageRank algorithm [23]. It
ranks some signals as more important than the others based
on connectivity in the structural netlist or the RTL variable
dependency graph. Higher ranked signals are better candi-
dates for tracing. It also avoids inclusion of entire arrays,
and selects relevant signals instead. Finally, it typically se-
lects the signals and their operating conditions together due
to their high co-occurrence and consequent similar ranking.

We applied the PageRank algorithm at the gate level as
well as to the RTL design. At the gate level, we applied
PageRank to the structural netlist. For RTL, we applied it
to the variable dependency graph. The reason for apply-
ing PageRank in these two modes is to study the relative
benefits, if any, of signal selection in an RTL data structure
over gate level: applying the same algorithm at both levels
would prevent the variability in analysis due to algorithmic
differences. We compared our two PageRank based methods
with respect to SRR and behavioral coverage metrics. Our
analysis on an RTL model of an USB controller shows that
on the average, overall behaviorial coverage achieved by sig-
nals selected by PageRank on netlist have higher coverage
than the SRR maximization by up to 42% (average 19.6%).
PageRank applied at RTL has a consistently higher behav-
ioral than SRR maximization methods by up to 70% (aver-
age 33%) as compared to previous methods. The PageRank
RTL method has up to 49% higher coverage than PageRank
at netlist level when measuring assertion coverage. The SRR
maximization methods generate signals with very low asser-
tion coverage in our experiments. This is primarily due to
these signals selecting only a subset of bits of several signals
instead of the entire signal.

Interestingly, we found that none of the algorithms (in-
cluding PageRank at netlist and RTL) are able to cover
system level assertions, since they do not trace interface sig-
nals. This illustrates that optimizing for a functional cov-
erage metric like assertion coverage will lead to interface
signals being emphasized over internal signals. We do not,
therefore, intend PageRank to be the final solution for signal
selection based on functional coverage. Nevertheless, using
it as a case study illustrates how moving away from opti-
mizing SRR can yield techniques with better coverage on
interesting observability requirements.

Our experiments are performed on a publicly available
USB RTL design [6]. We select this design instead of the
ISCAS89 benchmarks used in previous signal selection work
for two reasons. First, the design is larger and more complex,
reflecting design features of typical hardware IPs used in in-
dustrial SoC designs. This complexity helps illustrate the
divergence between gate-level state restorability and func-
tional behavior. We speculate that the flaws about SRR

pointed to by this paper have not been observed by previ-
ous signal selection research because this difference is not
pronounced in relatively smaller benchmarks. Second, we
perform experiments on a PageRank based signal selection
algorithm at both RTL and gate-level designs, to provide a
relative comparison of signal quality. Since ISCAS89 and
related benchmarks are at gate-level, it would be difficult
to use them to analyze the value of an RTL signal selection
over a gate-level approach.

2. PRELIMINARIES

2.1 PageRank Algorithm
Google’s PageRank algorithm ranks a web page as im-

portant if it is hyperlinked from many important web pages.
This ensures that all the hyperlinks don’t have equal weights.
PageRank computes an importance score of each web page
based on its incoming hyperlinks. Let p denote a web page.
Let B(p) denote the set of pages that have an outgoing link
to p and let F(p) denote the set of pages that p has outgoing
links to. Let ε be a constant between 0 and 1 and let n be
the number of the web pages. The PageRank PR(p) of p is
defined as:

PR(p) = (1− ε)
∑

pi∈B(p)

PR(pi)

|F (pi)|
+
ε

n
(1)

The first term in the PageRank of Equation 1 represents
the probability that a random surfer will navigate to a web
page. If the surfer is caught in a cycle of web pages, then it
is unlikely that the surfer will continue in the cycle forever.
The second term accounts for the surfer eventually coming
out of the cycle and navigate to a random webpage.

2.2 Variable Dependency Graph
We define the variable dependency graph based on the se-

mantics of the Verilog Hardware Description Language [8].
An expression is a function defined over values, variables and
operators. A left reference refers to a variable reference that
appears in an expression on the left hand side of a Verilog
statement. A right reference refers to all variable references
that are not left references. Let vi and vj be two Verilog
variables. We say that vi depends on vj if there exists a
Verilog assignment to vi that will execute only if a right ref-
erence to vj is evaluated. Formally we define a dependency
graph as a directed graph G = (V, E) with vertices V and
directed edges E. Let each vertex v ∈ V denotes a Verilog
variable and let each directed edge (vi, vj) denote a depen-
dence between variables vi and vj . If (vi, vj) ∈ E, then vj
depends on vi.

2.3 Signal Reconstruction and SRR calcula-
tion

We show calculation of SRR using the simple circuit of
the Figure 1. Let us assume that the trace buffer can record
values of 2 signals. The restored values of the other signal
states using the method of [10] are shown in the Table 1.
The signals that are chosen using total restorability compu-
tations are A and C. The selected signals are shown in grey.
The state restoration ratio (SRR) is given by the ratio of the
number of signal values restored plus the number of signals
traced to the number of signal values traced. Since 10 signal
values are traced and 22 values are restored, the SRR with
this selection is 3.2.

3. INADEQUACY OF SRR AS A METRIC

Figure 1: Example circuit

Table 1: State restoration applying [10]
Signal Cyc1 Cyc2 Cyc3 Cyc4 Cyc5

A 0 0 0 0 1
B 1 0 1 0 X
C 1 1 0 1 0
D X 0 0 0 0
E X 1 0 0 0
F X X 1 0 0
G X 0 0 0 0
H X X 0 1 0

3.1 A motivating example
In this Section we present a motivating example for the

limitations of the SRR metric using an academic processor
LC3b [2]. We applied a method that is designed to maximize
SRR SigSeT [10] to the LC3b. It selects the complete ISDU
FSM state registers, some bits of the PC and some bits
of IR at the top of the list. With this set of signals, we
can recreate a few control states, but not the rest of the
processor state. Without the complete PC and IR, it is not
possible to determine which instruction is being processed
and fetched from memory next. As a point of reference,
assertion coverage of the signals selected by SigSet was 0%
for this design, implying that none of the assertions could be
evaluated using the signals generated by SRR maximization.

As a point of contrast with the above results, consider
the performance of our PageRank Algorithm that does not
seek to maximize SRR (cf. Section 4) on the same example.
PageRank selects all of the FSM state registers of ISDU
module, all 16 bits of PC and IR as complete words and NZP
branching registers. This is sufficient to check the sequence
of states in the design, the opcode and operands fetched,
all transitions in the control state machine and branching
behavior. PageRank ranks all of the control signals with
high priority while ranking eight 16-bit data registers lower.
PageRank achieved an assertion coverage of 78.5% for this
design.

3.2 Deconstructing SRR Inadequacies
The example above suggests a key problem with the util-

ity of SRR as a metric: it treats all gate-level design states as
“equals”. Reconstructing any specific design state is not con-
sidered more valuable than reconstructing any other state.
However, practical debugging experience suggests that some
signals are inherently more valuable for validation and de-
bug than others. Also, some signals can only provide useful
state information in the presence of some other signals as
well. For example, reconstructing only the lower-order bit
of a program counter (PC) provides little information on
program behavior or execution flow while reconstructing all
bits of the PC can provide significant insight. Consequently,
signals selected to optimize SRR do not necessarily facilitate
debug. In particular, SRR is not useful for signal selection
for designs with the following features.

Large Arrays. In such designs, individual array elements

are typically less valuable for debug than control signals that
affect reads and writes to the arrays. Methods optimizing
SRR, on the other hand, would tend to reconstruct individ-
ual array values.

On-chip Instrumentations. Modern IC designs include
a significant amount of on-chip hardware instrumentations
not contributing to functionality, including Design-for-Test
(DFT) features, instrumentations for security, and indeed,
hardware to enable post-silicon debug and control. Since
SRR is agnostic to design intent, selection based on SRR
typically includes a sampling of signals for different func-
tionality as well as different instrumentation features. The
result is that the traced signals are inadequate for functional
debug while not providing sufficient design visibility for val-
idating the instrumentations as well.

Complex Protocols. Most multi-core systems and SoC
designs include design blocks (referred to as “Intellectual
Property” or “IP”) that coordinate through complex proto-
cols. One of the critical applications of hardware trace is to
validate these protocol implementations during post-silicon
debug. This implies that the traced signals include the mes-
sages communicated across the IPs during system execution.
However, SRR does not account for the relative importance
of these signals. Indeed, algorithms optimizing SRR would
tend to favor signals in larger IPs with more design states
while missing smaller IPs; thus, routers in communication
fabrics through which protocol messages are communicated
would be typically ignored. fla

3.3 Asssertion coverage as a trace signal se-
lection metric

In this section, we propose a new metric, assertion cover-
age, for evaluation of post-silicon trace signals. Informally,
assertion coverage captures the notion that a key usage of
signal traces in post-silicon debug is to check if the sys-
tem satisfies expected invariants. A set of signals considered
valuable for post-silicon debug must permit the validator to
detect such properties.

Conventions. For simplicity of formalization, we assume
that the value of each signal s ranges over a Boolean; this
can be easily extended over other datatypes. For this paper,
an assertion is a bounded temporal expression over design
signals. A bounded temporal expression [25] over a set of
variables is a temporal expression includes Boolean opera-
tors and next-time (X) operator. Given an assertion A and
set S of signal values over a sequence of clock cycles, we
use standard temporal logic semantics to define the value of
A at a cycle t. Note that because of temporal operators,
the value of an assertion A at cycle t may require values of
signals at cycles other than t.

Definition 1 (Assertion Coverage). Let S be a set
of signals and A be an assertion. We say S covers A if
all the signals mentioned in A are members of S. Let κ =
{A0,A1, . . . ,Ak} be a set of assertions. Then the coverage
of κ with S is the proportion of assertions in κ covered by
S.

To illustrate assertion coverage, consider the following two
System-Verilog assertions from LC3B design

A1: (cpu/isdu/state reg[4:0] == 5’d18) → ##1
(cpu/PC/Dout reg[15:0] == $past(cpu/PC/Dout reg[15:0])
+ 16’d1)

A2: (cpu/isdu/state reg[4:0] == 5’d18) → ##1
(cpu/isdu/state reg[4:0] == 5’d33).

If cpu/isdu/state reg[4:0] is selected as trace signal, then
A2 is covered, but A1 is not covered (since the signal Dout
reg[15:0] in the consequent of A1 is not selected).

The use of assertion coverage as an optimization target
connects trace selection requirements to some of the prop-
erties of interest to silicon validators. Nevertheless, we do
not propose assertion coverage as a final end-all metric for
trace selection. For instance, it does not account for some of
the other usages of signal tracing, e.g., protocol interactions,
design behavior at specific corner cases, etc. Furthermore,
note that our definition only measures the assertions cov-
ered through the set of traced signals S, without accounting
for coverage from signal values that may be reconstructed
from S. This makes sense for checking design invariants,
since checking such conditions require observation of cov-
ered signals at each cycle. Recall that signal restoration can
only restore values at some of the traced cycles (cf. Ta-
ble 1). However, for more general coverage condition we
may need to account for restored signal values as well. Fi-
nally, The quality of the selected signals based on optimizing
assertion coverage depends on the quality of the set of asser-
tions used. Traditionally, one would need to manually de-
velop them during design verification. Of course, techniques
for automated assertion generation as well as techniques for
(independently) evaluating assertions [1, 4, 9] can assist in
developing high-quality assertions. Notwithstanding these
limitations, assertion coverage points towards a promising
direction of developing metrics that target functional be-
havior rather than blindly reconstructing design states.

4. PAGERANK BASED TRACE SIGNAL SE-
LECTION ALGORITHM

4.1 Pagerank for Netlist
Algorithm 1 [5] is the PageRank algorithm for netlist level

signal selection. We apply it on the Example circuit of Fig-
ure 1 in this section.

4.1.1 Network Construction
We parse the synthesized netlist of an RTL design to con-

struct a directed graph G = (V, E) representing the connec-
tivity between different logic elements, where every v ∈ V
represents a logic element and every directed edge (vi, vj) ∈
E represents a connection between the logic element vi and
vj . Figure 2 shows the directed graph for the example circuit
in Figure 1.

4.1.2 PageRank Value Calculation
After constructing the directed graph for the circuit, we

apply PageRank to compute the importance of each node.
The directed graph in Figure 2 has 14 logic elements (8
sequential elements and 6 logic gates). Each node transfers
its importance equally to the nodes that it links to. For
example, node A has 3 out-links, so it will transfer 1/3 of its
importance to each of the node OR1, AND1, and AND3. In
general, if a node has n out-links, it will pass on 1/n of its
importance to each of the node that it is linked. Following
this importance transition rule, we annotate every edge of
the Figure 2 with the corresponding importance value.

Initially we assume an equal rank for each of the nodes i.e.
if there are n nodes in the network, every node will have a
rank of 1

n
. In Figure 2 each node has a rank of 1/14. As each

incoming link increases the rank of a node, we update the
rank of each node by adding the importance of the incoming
links. We continue this until the rank of all of nodes stabi-
lizes. We use a standard error tolerance value in PageRank
algorithm, which is 1e-6, to check convergence in the power
iteration process. If the rank across two iterations is within
this error tolerance, the rank of that node is assumed to be
stabilized and returned. In the example network, node G
and H do not have any outgoing links and PageRank refers
them to as dangling nodes.

Figure 2: Circuit network of Figure 1 annotated with im-
portance contribution

Figure 3: Circuit nodes annotated with importance values
in successive iteration and the final importance value

Dangling nodes would cause the final rank of each node to
converge to 0 and the importance of these nodes cannot be
propagated further. Since dangling nodes and disconnected
components are quite common in the Internet as well as
in common circuits, a positive constant between 0 and 1
(typically 0.15) is introduced, which is the damping factor
ε [23]. We add a virtual directed edge from G and H to every
other node in the network and assign ε to every outgoing
edge from G and H.

After the dangling nodes adjustment, we recalculate the
rank of each of the node in the graph until the PageRank
value stabilizes. For our example, the final value of the
PageRank of each node is shown in Figure 3. According
to this PageRank value, we will select flip-flop F and G or
H as the trace buffer signals, since the trace buffer width is
2.

Let 0 < ε < 1 be a constant source of importance. Let r
denote an importance score vector over variables and let rk

denote r in the k-th iteration of the importance computation.
Let r0i = 1

n
. We compute the importance score of each of

the variable as follows:

rk+1 = (1− ε)Ark +
ε

n
(2)

4.2 PageRank for RTL
To compute the importance of each variable in an RTL de-

sign, we adapt the idea of PageRank algorithm [23] using the
idea of variable dependency graph described in Section 2.2.

PageRank computation requires a dependency graph. We
present a variable dependency graph using an adjacency ma-
trix. Let aij denote the number of right references to vari-
able i in all assignments to variable j. Let ai denote the
number of right references to variable i in all assignments.
Let A be an n × n square matrix with rowa and columns
corresponding to variables. Let Aij =

aij
ai

if ai > 0 and let

Aij = 1
n

otherwise. Intuitively, Aij is equal to the fraction
of right references to variable i that exist in all assignments

Algorithm 1 pseudo-code of PageRank algorithm

1: procedure PageRank(G, iteration)
2: ε = 0.15 {outlink count hash from G}
3: oh ← G {inlink count hash from G}
4: ih ← G {number of nodes from G}
5: n ← G {initialize PageRank}
6: for p in G do
7: opg[p] ← 1

n
8: end for
9: while iteration > 0 do

10: dp ← 0 {PageRank values from nodes with out-links}
11: for p has no out-links do

12: dp ← dp+ (1− ε)× opg[p]
n

13: end for
14: for p in G do
15: npg[p] ← dp+ ε

n
{PageRank values from random

jumps}
16: for p in G do

17: npg[p] ← npg[p]+
(1−ε)∗opg[ip]

oh[ip]
{PageRank values

from in-links}
18: end for
19: end for
20: opg ← npg
21: iteration=iteration-1
22: end while
23: end procedure

1 module arb2(clk, rst, req1, req2, gnt1, gnt2);
2 input clk, rst, req1, re2;
3 output gnt1, gnt2;
4 reg gnt_, gnt1, gnt2;
5 always @(posedge clk or posedge rst)
6 if(rst)
7 gnt_ <= 0;
8 else
9 gnt_ <= gnt1;

10 always @(*)
11 if (gnt_)
12 begin
13 gnt1 = req1 & ~req2;
14 gnt2 = req2;
15 end
16 else
17 begin
18 gnt1 = req1;
19 gnt2 = req2 & ~req1;
20 end
21 endmodule

Figure 4: Verilog Code of a 2-port Arbiter

to variable j. If no references to variable i exist in the de-
sign, then we assume a right reference to variable i exists in
an assignment to each other variable. Hence Aij = 1

n
when

ai = 0.
The global importance computation iteratively computes

the importance score of each variable in the design until the
score is stabilized. We have found through experimentation
that when ε = 0.5, the global importance score distribu-
tion of the variable agrees with the designer intuition. The
equation for computing the rank of variables in the variable
dependency graph is the same as Equation 2.

Figure 5 shows the variable dependency graph of the ar-
biter of Figure 4. Each node in the graph is labeled with its
respective variable and the PageRank score. Edge weights
denote the number of dependencies between the variables.
For example, since gnt1 depends on req1 in both lines 13
and 18 of the Verilog, the weight of the edge (req1, gnt1)
is equal to 2. Any edge without a specified weight has a a
weight equal to 1. From the final ranks after convergence,
we find that gnt , which is the arbitration signal is ranked
highest, after which gnt1 and gnt2, the two signals receiving

Figure 5: The variable dependency graph for the 2 port
arbiter. Each node annotated with its final PageRank im-
portance score

the grant are ranked. Other signals are equally (less) im-
portant. We select the top 20% of the signals rank sorted
by the PageRank algorithm.

5. EXPERIMENTAL RESULTS
In our experiments we compare PageRank on RTL, PageR-

ank on Netlist, SigSeT and HybrSel1 We primarily use the
publicly available USB 2.0 [6] design to demonstrate our re-
sult. Since SigSeT and HybrSel accept deisgns in ISCAS89
format, we use the three biggest benchmarks of ISCAS89
namely s35932, s38417, s38584 and the LC3B for compar-
ison with these algorithms. We convert LC3B and USB
into ISCAS89 netlist format for comparison with these al-
gorithms. We synthesize LC3B and USB using Synopsys
Design Compiler with NanGate 45 nm library [3] and con-
strain the library such that the synthesized DC netlist con-
tains only basic logic gates like AND, OR, NAND etc. and
DFF. We then convert the DC netlist into the ISCAS89 for-
mat. However, we could not obtain results on the USB using
HybrSel as we ran into implementation issues.

All experiments were run on an AMD Opteron 8 cores
22xx processor with 15GB of RAM. In most of our experi-
ments, we use simulation based coverage metrics for behav-
ioral coverage. This includes line coverage, FSM coverage,
condition coverage and branch coverage. We also compare
the algorithms with respect to our assertion coverage metric.

5.1 Comparative analysis of algorithms with
respect to SRR

In this experiment, we compare the SRR values of the
signals selected by four different algorithms. Since all the
ISCAS benchmarks are in netlist format, we could not run
PageRank on RTL to select signals from them. We could
not run HybrSel on the USB design. To calculate SRR val-
ues, we used the top 20% of the signals selected by each
method for each benchmark and restored signals for 5000
cycles. Table 2 shows a comparative analysis of the runtime
of the different tool during signal selection phase. To record
the maximum memory usage, we used the Massif tool in Val-
grind [7]. Table 3 shows the different SRR values calculated
on different benchmarks.

We note a considerable difference in the runtime between
HybrSel and PageRank on netlist while selecting signals
from ISCAS benchmark. In PageRank method, we iterate
until the values of the ranking matrix is stabilized. In case of
HybrSel it iteratively updates the restorability rate of each
state element based on the current signal selection which is
computationally intensive and takes more time.

On the ISCAS89 benchmarks, none of the methods per-
form consistently better. Since PageRank on netlist is not
aimed to optimize SRR, its value is not higher than SigSeT

1We were only able to gain access to SigSeT and HybrSel
from prior art (SRR maximizing algorithms). The others
were not accessible for research purposes.

Table 2: Runtime (in seconds) and maximum memory (in
MB) usage of SigSeT, HybrSel, PageRank on Netlist and
PageRank on RTL during signal selection phase
Bench SiG- Hybr- PR on PR on

Set Sel Netlist RTL
T Mem T Mem T Mem T Mem

s35932 9.52 498 17.6K 389 7.74 275.8 - -
s38417 208 702 19.4K 359 9.54 326.9 - -
s38584 150 285 8.94K 287 7.86 298.81 - -
USB2.0 181 385 - - - - 624 166.4

Table 3: Comparative Analysis of Restoration Ratio using
SigSeT [10], HybrSel [19] and Algorithm 1

Benchmark SiGSeT HybrSel PR on PR on
Netlist bf RTL

s35932 4.7 4.7 4.7 -
s38417 4.0 3.8 3.9 -
s38584 4.7 4.6 4.7 -
USB2.0 3.7 - 3.5 3.8

and HybrSel. Interestingly, although PageRank on RTL is
not designed to optimize SRR, it produces the highest SRR
value on the USB design, whereas PageRank on netlist pro-
duces least SRR value.

We note that the SRRs of the ISCAS benchmarks in Ta-
ble 3 are significantly less than the values reported in previ-
ous papers [10, 18, 20]. SRR is a ratio and defined as (total
number of signals restored + total number of signals traced)
/ (total number of signals traced). Previous work [10,18,20]
used a fixed length trace buffer of size 8/16/32 and therefore
the denominator is 8/16/32. If the average number of signals
restored is 1000, the RR value will be 126/63/32. We select
approx 350 signals in each design, making our denominator
very large. So even with 1200 signals restored, SRR value is
small.

5.2 Comparing behavioral coverage of signals
selected

5.2.1 Behavioral coverage of LC3B
In this experiment, we compare trace signals of LC3B se-

lected by PageRank and assess each one’s simulation met-
ric based behavioral coverage. We use the values of the
trace signals from both the methods and simulate the de-
sign for 250ns. The behavioral coverage values for LC3B
are shown in Table 4. Signals selected by PageRank achieve
upto 30% more behavioral coverage than the signals selected
by SigSeT.

5.2.2 Behavioral coverage of USB
In the this experiment, we compare the behavioral cov-

erage achieved with the trace signals selected by SigSeT,
PageRank on NetList and PageRank on RTL on the USB
design.

We trace values of 355 flip-flops for a simulation duration
of 175ms. Such a long trace was needed because atleast
100ms is needed to activate different important states (such
as high speed state mode of USB) of the USB line control
module. We use the traced value of the selected signals
along with 5 important input control signals as the stimulus
in RTL and measure the behavioral coverage using Synopsys
VCS. The behavioral coverage consists of four components
namely branch coverage, line coverage, condition coverage

Table 4: Comparative analysis of behavioral coverage of the
trace signals selected by applying PageRank at Netlist level
and SigSeT
L: Line Coverage, C: Condition Coverage, F: FSM Coverage,
B: Branch Coverage

Module
PR on Netlist SigSeT

L C F B L C F B
CPU 86.68 - - 69.41 56.68 - - 39.98

Figure 6: Graphs showing lack of correlation between SRR
and overall behavioral coverage on different USB modules u0,
... u5. Width of each bar ∝ SRR. PRN: PageRank Netlist,
PRL: PageRank RTL

Figure 7: Graphs showing lack of correlation between SRR and
FSM coverage on different USB modules u0, u2, u5. Width of
each bar ∝ SRR. PRN: PageRank Netlist, PRL: PageRank
RTL

and FSM coverage. Table 5 shows the behavioral coverage
values reported by VCS. In each of the methods, we do not
report FSM coverage for u4 (usbf_rf) since it does not
contain any state machines. Also, we do not report FSM
and conditional coverage for u2 (usbf_mem_arb) as it is a
combinational design module.

The behavioral coverage of signals selected by PageR-
ank on netlist is upto 42% (average of 19.6%) more than
the signals selected by SigSeT. The signals from PageRank
on RTL achieves behavioral coverage upto 70% (average of
30%) more than the signals from SigSeT. The result of this
experiment shows that compared to SigSeT, PageRank on
Netlist and PageRank on RTL select functionally relevant
signals from the USB design.

In Figure 6, 7, 8 and 9 we analyze the correlation between
SRR and the different components of behavioral coverage.
In this plot, the width of each bar is proportional to the SRR
value shown in Table 3 and the height of the each bar is equal
to the coverage achieved. Clearly, there is no correlation
between the SRR value and the coverage. Although SRR
value of PageRank on Netlist is less than that of SigSeT,
the behavioral coverage of PageRank on Netlist is higher
than SigSeT. This underscores the point that high SRR has
low to no correlation with relevance to functional behavior.

5.3 Comparison of assertion coverage
In this experiment we compare the signals of SigSeT, PageR-

ank on Netlist and PageRank on RTL with respect to asser-
tion coverage using USB design.

We use an automatic assertion generation tool to generate
module level assertions from the different modules of USB
RTL designs. We use the default setting of the assertion
generator tool to generate module level assertions. Table 6
shows the assertion coverage achieved by the signals from
different methods on different modules. Based on the defi-

Table 5: Comparative analysis of trace signals from PageRank in RTL and Netlist Level with respect to simulation based
coverage metrics u0: usbf utmi if, u1: usbf pl, u2: usbf mem arb, u4: usbf rf, u5: usbf wb L: Line Coverage, C: Condition
Coverage, F: FSM Coverage, B: Branch Coverage, O: Overall Coverage L+C+F+B

4

Module
SigSeT PR on Netlist PR on RTL

O L C F B O L C F B O L C F B
u0 29.73 35.81 28.89 15.75 38.35 49.61 71.81 38.89 28.75 58.97 59.67 76.92 57.78 38.5 65.48
u1 17.71 22.94 15.02 7.44 25.43 33.94 52.94 22.02 15.33 45.46 43.67 58.91 35.41 24.98 52.97
u2 41.44 33.45 - - 49.43 68.75 75.00 - - 62.50 100.0 100.0 - - 100.0
u4 17.71 30.98 1.67 - 20.48 33.70 60.98 2.45 - 37.68 40.12 69.34 4.91 - 46.12
u5 23.27 31.90 13.49 15.37 32.33 40.14 56.34 19.23 31.67 53.33 53.81 82.35 23.23 39.67 70.00

Figure 8: Graphs showing lack of correlation between SRR
and branch coverage on different USB modules u0, ... u5.
Width of each bar ∝ SRR. PRN: PageRank Netlist, PRL:
PageRank RTL

Table 6: Comparison of signals from SigSeT, PageRank on
Netlist and PageRank on RTL with respect to assertion cov-
erage. The 0% coverage is for system level assertions.

Module No. of SigSeT PR on PR on
Assertions Netlist RTL

usbf pe 57 1.75% 50.87% 26.31%
usbf rf 65 0% 7.69% 12.30%
usbf pd 1402 0% 0% 0%
usbf pa 44 0% 0% 0%

usbf idma 24 4.1% 8.3% 12.5%
usbf utmi ls 55 0% 0% 0%

nition of assertion coverage given in Section 3.3, we say an
assertion in the module level is covered if all the signals in
its antecedent and consequent are present in the set of trace
signals selected from the whole USB design

In this experiment, SigSeT selects partial bits of bus,
whereas PageRank on RTL and PageRank on netlist selects
complete bits of the bus signals. PageRank on RTL and
netlist have a higher assertion coverage upto 49% on usbf pe
and usbf rf than SigSeT. Table 6 reveals that overall, none
of the methods perform very well in terms of assertion cov-
erage. This is because the selected trace signals are only
20% of the total signals available in USB design and are
spread across different modules. Hence, either the signals
of antecedent or consequent or both are not present in the
selected trace buffer signals resulting in low assertion cov-
erage. If functional coverage metrics like assertion coverage
are researched further, the signal selection can optimize this
metric to avoid such a scattering across modules.

To find coverage of the system level behavior of USB de-
sign, we wrote 10 system level (inter modular) assertions.
Surprisingly, the trace buffer signals of any of the methods
do not cover any of the system level assertions. Careful ex-
amination of the selected trace signals shows that 95% of
the selected signals are internal module level signals and the
remaining 5% are interface signals. These interface signals
did not cover any of the 10 system level assertions that we
wrote. Future research in post-silicon trace signal selection

Table 7: High level functionality covered by PageRank and
SigSet selected signals on USB Netlist. P: Partial bit se-
lected
Signal Module Signal Functionality Sig PR
Name Name SeT Net
no bufs0 usbf pe A. Indicates available buffer

size is less than payload size
to switch to other buffer, B.
BUF0 is full in DMA mode
(Only BUF0 is used in DMA
mode), C. Indicates if the
BUF1 needs to be selected for
next operation by the func-
tional controller

7 X

token pid
sel

usbf pe Handshaking signals indicating
the packet accepting capacity
of the buffer

7 X

dma out
buf avail

usbf ep rf Indicates that there is a space
for at least one MAX PL SZ
packet in the buffer

7 X

inta,
intb

usbf rf A fully programmable inter-
rupt to provide full flexibility
to software, the interrupts may
be endpoint dependent or in-
dependent, indicating an error
condition or overall events that
have global meaning

7 X

state usbf pe Indicates the states of opera-
tion of the USB protocol engine

X X

state usbf utmi
ls

Indicates the states of opera-
tion of the USB protocol engine

P X

abort usbf pe Indicates to abort an ongo-
ing data transfer if the fol-
lowing conditions happen A.
Buffer overflows (Received data
packet size is too big and
Rx Data Valid is asserted), B.
Register end points matched
and protocol engine is not in
IDLE mode, C. Received packet
size is more than MAX PL SZ

7 X

chirp
count

usbf utmi
ls

A counter to initiate USB high
speed mode

7 X

pid seq
err

usbf pe An interrupt notifying USB
function controller a loss of
sync due to bad packets result-
ing in CRCs

7 X

Figure 9: Graphs showing lack of correlation between SRR
and statement coverage on different USB modules u0, ... u5.
Width of each bar ∝ SRR. PRN: PageRank Netlist, PRL:
PageRank RTL

should try to select more interface signals so that the system
level assertions can be verified during debugging.

5.4 High level functionality selected by PageR-
ank on USB netlist

To give a flavor of the type of high level functionality
captured by the signals selected, we provide a qualitative
analysis of two gate level algorithms, PageRank for netlist
and the SRR optimizing SigSet. Table 7 for each signal, we
list the corresponding RTL module and its high level func-
tionality. PageRank selects all the FSM state registers of the
USB protocol engine (usbf_pe) and USB line state module
(usbf_utmi_ls) and other important signals. SigSet, the
SRR maximization algorithm selects one signal completely,
and the other partially.

6. RELATED WORK AND CONCLUSION
Automatic selection of trace buffer signals to maximize

state restoration ratio (SRR) has been studied and many
effective methods are proposed. Some techniques advocate
signal selection based on partial restoration [15, 16, 21, 22].
Since partial restoration techniques are insufficient for signal
reconstruction, Basu et al. [10–12] proposed signal selection
based on total restorability. In this method, the group of
signals selected can completely restore a certain amount of
untraced signals; that is, it is a special case of partial SRR
with SRR value of 100%. Chatterjee et al. [13] proposed
Simulation based signal restoration, which departs from the
probabilistic analysis of signal behavior, but has determin-
istic simulations instead. Hybrid signal selection techniques
have also been developed [18], combining the probability
based methods and the simulation based signal restoration
method. Machine learning techniques have also been studied
for signal selection [27].

In conclusion, we show that state restoration ratio as a
metric does not accomplish the behavioral coverage of the
design that is desirable in practical post-silicon debug. Trace
signal selection methods that are independent of SRR max-
imization, like the PageRank, have higher behavioral cover-
age. We also conclude that RTL signal selection methods
are superior to gate level signal selection methods in terms
of behavioral coverage. Going ahead, we need to invent al-
gorithms and methods that can optimize for relevant behav-
ioral coverage.

7. REFERENCES
[1] Jasper.

http://www.jasper-da.com/products/jaspergold_apps.
[2] LC3B Processor. https:

//courses.engr.illinois.edu/ece411/mp/LC3b_ISA.pdf.
[3] Nangate FreePDK.

http://www.nangate.com/?page_id=2325.
[4] NextOp. http:

//www.nextopsoftware.com/te_technicalpapers.html.
[5] PageRank Algorithm. http://www.ccs.northeastern.edu/

home/daikeshi/notes/PageRank.pdf.
[6] USB 2.0. http://opencores.org/project,usb.
[7] Valgrind Massif Tool.

http://valgrind.org/docs/manual/ms-manual.html.
[8] Verilog Hardware Description Language.

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=
&arnumber=1620780.

[9] V. Athavale, S. Ma, S. Hertz, and S. Vasudevan. Code
coverage of assertions using RTL source code analysis. In
The 51st Annual Design Automation Conference 2014,
DAC ’14, San Francisco, CA, USA, June 1-5, 2014, pages
1–6, 2014.

[10] K. Basu and P. Mishra. Efficient trace signal selection for
post silicon validation and debug. In VLSI Design (VLSI
Design), 2011 24th International Conference on, pages
352–357. IEEE, 2011.

[11] K. Basu and P. Mishra. Rats: restoration-aware trace
signal selection for post-silicon validation. Very Large Scale
Integration (VLSI) Systems, IEEE Transactions on,
21(4):605–613, 2013.

[12] K. Basu, P. Mishra, and P. Patra. Constrained signal
selection for post-silicon validation. In 2012 IEEE
International High Level Design Validation and Test
Workshop (HLDVT), pages 71–75. IEEE, 2012.

[13] D. Chatterjee, C. McCarter, and V. Bertacco.
Simulation-based signal selection for state restoration in
silicon debug. In Computer-Aided Design (ICCAD), 2011
IEEE/ACM International Conference on, pages 595–601.
IEEE, 2011.

[14] K. Han, J.-S. Yang, and J. A. Abraham. Enhanced
algorithm of combining trace and scan signals in
post-silicon validation. In VLSI Test Symposium (VTS),
2013 IEEE 31st, pages 1–6. IEEE, 2013.

[15] H. F. Ko and N. Nicolici. Algorithms for state restoration
and trace-signal selection for data acquisition in silicon
debug. Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, 28(2):285–297, 2009.

[16] H. F. Ko and N. Nicolici. Automated trace signals selection
using the rtl descriptions. In Test Conference (ITC), 2010
IEEE International, pages 1–10. IEEE, 2010.

[17] H. F. Ko and N. Nicolici. Combining scan and trace buffers
for enhancing real-time observability in post-silicon
debugging. In European Test Symposium, pages 62–67,
2010.

[18] M. Li and A. Davoodi. A hybrid approach for fast and
accurate trace signal selection for post-silicon debug. In
Proceedings of the Conference on Design, Automation and
Test in Europe, pages 485–490. EDA Consortium, 2013.

[19] M. Li and A. Davoodi. A hybrid approach for fast and
accurate trace signal selection for post-silicon debug. IEEE
Trans. on CAD of Integrated Circuits and Systems,
33(7):1081–1094, 2014.

[20] M. Li and A. Davoodi. Multi-mode trace signal selection
for post-silicon debug. In ASP-DAC, pages 640–645, 2014.

[21] X. Liu and Q. Xu. Trace signal selection for visibility
enhancement in post-silicon validation. In Proceedings of
the Conference on Design, Automation and Test in Europe,
pages 1338–1343. European Design and Automation
Association, 2009.

[22] X. Liu and Q. Xu. On signal selection for visibility
enhancement in trace-based post-silicon validation.
Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, 31(8):1263–1274, 2012.

[23] L. Page, S. Brin, R. Motwani, and T. Winograd. The
pagerank citation ranking: Bringing order to the web.
Technical report, Stanford University, 1998.

[24] P. Patra. On the cusp of a validation wall. Design & Test
of Computers, IEEE, 24(2):193–196, 2007.

[25] A. Pnueli. The Temporal Logic of Programs. In 18th
Annual Symposium on Foundations of Computer Science,
Providence, Rhode Island, USA, pages 46–57. IEEE
Computer Society, , 31 October - 1 November 1977.

[26] K. Rahmani and P. Mishra. Efficient signal selection using
fine-grained combination of scan and trace buffers. In VLSI
Design and 2013 12th International Conference on
Embedded Systems (VLSID), 2013 26th International
Conference on, pages 308–313. IEEE, 2013.

[27] K. Rahmani, P. Mishra, and S. Ray. Scalable trace signal
selection using machine learning. In Computer Design
(ICCD), 2013 IEEE 31st International Conference on
Computer Design, pages 384–389. IEEE, 2013.

[28] S. Yerramilli. Addressing post-silicon validation challenge:
Leverage validation and test synergy. In Keynote, Intl. Test
Conf, 2006.

