
Security Policy Enforcement in Modern SoC
Designs
Invited Paper

Sandip Ray
Strategic CAD Labs, Intel Corporation

Hillsboro, OR 97124. USA
sandip.ray@intel.com

Yier Jin
EECS Dept., University of Central Florida

Orlando, FL 32816. USA
yier.jin@eecs.ucf.edu

Abstract— Modern SoC designs contain a large number of
sensitive assets that must be protected from unauthorized access.
Authentication mechanisms which control the access to such
assets are governed by complex security policies. The security
policies affect multiple design blocks and may involve subtle inter-
actions among hardware, firmware, OS kernel, and applications.
The implementation of security policies in an SoC design, often
referred to as its security architecture, is a subtle composition
of coordinating design modules distributed across the different
IPs. Toward this direction, this paper gives an overview of
SoC security architectures in modern SoC designs and provides
a glimpse of their implementation, as well as their design
complexities and functional shortcomings. Design of security
architectures involves a complex interplay of requirements from
functionality, power, security, and validation. We also outline
some of the research needs in the area for developing robust,
trustworthy SoC designs.

I. INTRODUCTION

Modern embedded and mobile computing devices, e.g.,
smartphones, tablets, wearables, implants, smart sensors, etc.
are increasingly getting used in a large number of personal-
ized activities, including shopping, banking, providing driving
directions, and tracking health and wellness conditions. Con-
sequently, these devices have access to significant sensitive,
personal data including our bank and credit card information,
email contacts, browsing history, location, even intimate phys-
iological information such as heart-rates and sleep patterns. In
addition to personalized end-user information, these devices
contain highly confidential collateral from architecture, design,
and manufacturing, such as cryptographic and digital rights
management (DRM) keys, programmable fuses, on-chip debug
instrumentation, defeature bits, etc. Malicious or unauthorized
access to secure assets in a computing device can result
in identity thefts, leakage of company trade secrets, even
loss of human life. Consequently, a crucial component of a
modern computing system architecture includes authentication
mechanisms to protect these assets.

Modern computing systems are typically developed as
system-on-chip (SoC) designs, i.e., a single integrated circuit
encompassing the system functionality. An SoC design in-
volves composition of a large number of design modules (often
referred to as intellectual properties or IPs) that coordinate

with through a number of on-chip communication fabrics to
implement the system functionality. Secure assets in such a
design are sprinkled across the different IPs, and their access
control requirements are defined by a collection of highly
complex security policies. The policies specify the conditions
under which a security asset can be accessed at any point in
the system execution. An SoC design consequently requires
a security architecture, i.e., a mechanism of authentication to
ensure that the system enforces and manages these policies.

Unfortunately, in spite of its obvious importance, there has
been little work on standardization or systematic definition
of security architecture of SoC designs. Consequently, au-
thentication mechanisms used in current industrial practice
are ad hoc, point approaches for specific policies and system
implementations, and typically depend on low-level, often
unspecified, architectural and design invariants. Exacerbating
the issue is the fact that the policies themselves, as well as
the design invariants used in their implementation, are rarely
formalized or even documented, making it non-trivial and
sometimes impossible to validate if the final design indeed
enforces proper authentication for all design assets: such
information is buried within a plethora of architectural and
design documents, specified in ambiguous natural language
descriptions, and often left implicit. Unsurprisingly, security
vulnerabilities abound in modern SoC designs, as evidenced
by the frequency and ease in which activities like identity theft,
DRM override, device jailbreaking, etc. are performed.

In this paper, we describe some of the key design consider-
ations involved in the systematic definition of an SoC security
architecture. The goal is to facilitate a global understanding
of the problem, and the constraints that must be addressed
in order for the architecture to be usable. We believe that
such a solution would require significant collaboration among
a large number of research communities, including processor
architecture, SoC designs, security, and validation, and our
hope is that this paper would facilitate such collaborations by
providing a unified exposition of the issues involved.

The remainder of the paper is organized as follows. Sec-
tions II and III identify two key ingredients of security
architecture of modern SoC designs, viz., the kind of policies



being implemented and the adversarial threat models involved.
In Section IV we discuss the considerations involved in the
design of a modern SoC security architecture from these
ingredients, and point out the complexities involved. Section V
briefly discusses some of the efforts undertaken recently, both
in industrial practice and academic research, to mitigate these
complexities through standardization of skeletal architectural
designs. We also point out some of the limitations and weak-
nesses of the current state of the practice. We conclude in
Section VI.

II. SECURITY POLICIES

Security policies identify the authentication, access, and
protection requirements for the different assets in the design.
At a high level, the policies are typically instances of confi-
dentiality, integrity, and availability requirements [1]. The role
of a policy is to define an instantiation of these requirements
for specific assets, and provide an “actionable” specification
for the SoC system architect and designer on the protection
mitigation strategies that need to be implemented. For exam-
ple, the following sample policies define some of the policies
for cryptographic keys, programmable fuses, and executable
firmware. Note that these policies are merely illustrative and
do not represent the security policy set of any specific company
or design.

• Boot confidentiality: During boot, no IP can access any
internal registers of the crypto engine.

• Fuse integrity: A programmable fuse can be updated for
silicon validation but not after production.

• Key authentication: Crypto engine can respond to key
access requests by other IPs with actual keys only if the
IP has been authenticated, and the system is not executing
in debug mode; in debug mode, the crypto engine will
respond with dummy keys.

• Firmware integrity: Firmware executing on any IP must
have been previously signed or authenticated by the
firmware authentication engine.

The above examples, albeit hypothetical, illustrate some
important characteristics of security policies. In particular,
access to an asset S by an agent A can be restricted depending
on the stage of the execution (e.g., boot vs. normal) or the
point of the design in the system life-cycle (e.g., debug vs.
deployment). Furthermore, policies may need to be updated
on-field, either in response to bugs or errors detected after de-
ployment or in response to changing environmental conditions.
For example, assume the original security policy permitted the
access to a cryptographic key K by a trusted IP A. However,
if subsequently a bug or vulnerability is discovered in A that
could compromise the security of K then the policy may need
to be revised.

Roughly, security policies can be categorized into the fol-
lowing four classes. A companion paper [2] provides some
additional details of these policy classes.

Access control [3], [4]: This common class of policies defines
which IP has access to an asset at any point in the system

execution. In our examples, boot confidentiality, fuse integrity,
and key authentication are access control policies.

Information flow [5]: Information flow policies go one step
ahead of access control by constraining what can be inferred
from accessed data. Typically, information flow policies are
implemented by a collection of access control policies together
with additional constraints as necessary. For example, the key
authentication policy above may be one component of an
information flow policy that requires that no unauthenticated
IP can infer the original crypto keys in debug mode.

Liveness: Liveness refers to the requirement that the function-
ality of the system is not compromised through implemen-
tation of protection mechanisms. Note that a trivial system
that simply denies access to all assets would typically satisfy
access control requirements; such system would not satisfy
liveness requirements. Typical liveness policies ensure protec-
tion against denial-of-service attacks, by requiring legitimate
access requests to eventually succeed.

Time-of-check vs. time-of-use (TOCTOU) [6], [7]: TOC-
TOU policies ensure that the authentication mechanisms
deployed to ensure access control cannot be bypassed or
“spoofed”, by requiring that the authenticated agent is really
the agent accessing the asset it is authenticated for. The
firmware integrity policy above is an example of a TOCTOU
policy, e.g., it requires that an authenticated firmware cannot be
tampered with in the intermediate stages of system execution
between its authentication and final deployment.

In addition to ensuring access restrictions on assets at
individual IPs, there are policies protecting the integrity and
confidentiality of assets during communication. Such policies,
also referred to as fabric policies, form a significant portion of
the security requirements of a modern SoC design. The follow-
ing categories provide a flavor of the diversity of requirements
that must be accounted for during on-chip communications.

Message immutability: If IP A sends a message m to IP B
then the message received by B must be exactly message m.

Redirection and masquerade prevention: If A sends a
message m to B, then the message must be delivered to B. In
particular, it should be impossible for a (potentially rogue) IP
C to masquerade as B, or for the message to be redirected to
a different IP D in addition to, or instead of B.

Non-observability: A private message from A to B must not
be accessible to another IP during transit.

The above policies may seem to be “obvious”. However,
it may still be highly subtle and nontrivial to enforce these
policies. As an example of the subtleties that need to be
accounted for, consider the SoC configuration in Fig. 1.
Suppose that IP IP0 needs to send a message to the DRAM.
Ordinarily, the message would be routed through Router3,
Router0, Router1, and Router2. However, such a route
permits message redirection via software. To understand how
this can be done, note that each router includes a base address
register (BAR) which is used to route messages for specific



Fig. 1. An Illustrative Toy SoC Configuration. Typical SoC designs include
several on-chip fabrics with differing speed and power consumption profiles.
For this toy configuration, we assume a high-speed fabric with three routers
connected linearly, and a low-speed fabric with two routers also connected
linearly.

destinations. However, one of the routers in the proposed
path, Router0 is connected to the CPU; the BARs in this
router are subject to potential overwrite by the host operating
system, which can consequently redirect a message passing
through Router0 to a different destination. Consequently, a
secure message cannot be sent from IP0 through DRAM via
this route unless the host operating system is trusted. Note
that understanding the potential of redirection in this scenario
requires knowledge of operation of the fabrics, functioning of
routers within a NoC (e.g., the use of BARs), as well as the
capabilities of the software potentially in an adversarial role.

We conclude the discussion on policies by noting that the
above fabric policies are generic requirements for all on-chip
communication networks used for communicating sensitive
information. In addition to these, most SoC designs typically
include additional asset-specific communication constraints.
For instance, a potential fabric policy relevant to secure boot
is listed below. This policy ensures that a key generated by
the fuse controller cannot be sniffed during propagation to the
crypto engine for storage.

• Boot-time key nonobservability: During he boot pro-
cess, a key from the fuse controller to the crypto engine
cannot be transmitted through a router to which any IP
with user-level output interface is connected.

III. THREAT MODELS

In order to ensure that an asset is protected, the designer
needs, in addition to the security policy governing the pro-
tection requirements, a comprehension of the power of the
adversary against which to protect. Indeed, effectiveness of
virtually all security mechanisms in SoC designs today are
critically dependent on how realistic the model of the adver-
sary is, against which the protection schemes are considered.
Conversely, most security attacks rely on breaking some of the
assumptions made regarding constraints on the adversary while
defining protection mechanisms. When discussing adversary
and threat models, it is worth noting that the notion of

adversary can vary depending on the asset being considered:
in the context of protecting DRM keys, the end user would
be considered an adversary, while the content provider (and
even the system manufacturer) may be included among ad-
versaries in the context of protecting private information of
the end user. Consequently, rather than focusing on a specific
class of users as adversaries, it is more convenient to model
adversaries corresponding to each policy and define protection
and mitigation strategies with respect to that model.

Defining and classifying the potential adversary is a highly
creative process. It needs considerations such as whether the
adversary has physical access to the system, which compo-
nents they can observe, control, modify, or reverse-engineer,
etc. Recently, there has been some attempts at developing a
disciplined, clean categorization of adversarial powers. One
potential categorization, based on the interfaces through which
the adversary can gain access to the system assets, can be used
to classify them into the following six broad categories (in
order of increasing sophistication). Note that there have been
significant research into specific attacks in different categories,
and a comprehensive treatment of different attacks is beyond
the scope of this paper; the interested reader is encouraged to
look up some of the references for a thorough description of
specific details.

Unprivileged software adversary: This form of adversary
models the most common type of attack on SoC designs.
Here the adversary is assumed to not have access to any
privileged information about the design or architecture beyond
what is available for the end-user, but is assumed to be smart
enough to identify or “reverse-engineer” possible hardware
and software bugs from observed anomalies. The underlying
hardware is also assumed to be trustworthy, and the user
is assumed no physical access to the underlying IPs. The
importance of this naı̈ve adversarial model is that any attack
possible by such an adversary can be potentially executed by
any user, and can therefore be easily and quickly replicated
on-field on a large number of system instances. For this type
of attacks, the common “entry point” of the attack is assumed
to be user-level application software which can be installed
or run on the system without additional privilege. The attacks
then rely on design errors (both in hardware and software)
to bypass protection mechanisms and typically get a higher-
privilege access to the system. Examples of these attacks
include buffer overflow, code injection, BIOS infection, return-
oriented programming attacks etc. [8], [9].

System software adversary: This provides the next level of
sophistication to the adversarial model. Here we assume that
in addition to the applications, potentially the operating system
itself may be malicious. Note that the difference between the
system software adversary and unprivileged software adver-
sary can be blurred, in the presence of bugs in the operating
system implementation leading to security vulnerabilities: such
vulnerabilities can be seen as unprivileged software adver-
saries exploiting an operating system bug, or a malicious
operating system itself. Nevertheless, the distinction facilitates



defining the root of trust for protecting system assets. If the
operating system is assumed untrusted, then protection and
mitigation mechanisms must rely on lower-level (typically
hardware) primitives to ensure policy adherence. Note that
system software adversary model can have highly subtle and
complex impact on how a policy can be implemented, e.g.,
recall from the masquerade prevention example above that
it can affect definition of communication fabric architecture,
communication protocol among IPs, etc.
Software covert channel adversary: In this model, in ad-
dition to system and application software, a side-channel or
covert-channel adversary is assumed to have access to non-
functional characteristics of the system, e.g., power consump-
tion, wall-clock time taken to service a specific user request,
processor performance counters, etc., which can be used in
subtle ways to identify how assets are stored, accessed, and
communicated by IPs (and consequently subvert protection
mechanisms) [10], [11].
Naı̈ve hardware adversary: Naive hardware adversary refers
to the attackers who may gain the access to the hardware
devices. While the attackers may not have advanced reverse
engineering tools, they may equipped with basic testing tools.
Common targets for this type of attacks include exposed debug
interfaces and glitching of control or data lines [12]. Embedded
systems are often equipped with multiple debugging ports
for quick prototype validation and these ports often lack
proper protection mechanisms, mainly because of the limited
on-board resources. These ports are often left on purpose
to facilitate the firmware patching or bug-fixing for errors
and malfunctions detected on-field. Consequently, these ports
also provide potential weakness which can be exploited for
violating security policies. Indeed, some of the “celebrated”
attacks in recent times make use of available hardware inter-
faces including the XBOX 360 Hack [13], Nest Thermostat
Hack [14], and several smartphone jailbreaking techniques.
Hardware reverse-engineering adversary: In this model, the
adversary is assumed to be able to reverse-engineer the silicon
implementation for on-chip secrets identification. In practice,
such reverse-engineering may depend on sniffing interfaces
as discussed for naı̈ve hardware adversaries. In addition, they
can depend on depend on advanced techniques such as laser-
assisted device alteration [15] and advanced chip-probing
techniques [16]. Hardware reverse engineering can be further
divided into two categories: (1) chip level reverse engineer-
ing; and (2) IP core functionality reconstruction. Both attack
vectors bring in security threats to the hardware systems, and
permit extraction of secret information (e.g., cryptographic and
DRM keys coded into hardware), which cannot be otherwise
accessed through software or debugging interfaces.
Malicious hardware intrusion adversary: A hardware intru-
sion adversary (or hardware Trojan adversary) is a malicious
piece of hardware inside the SoC design. It is different from
a hardware reverse-engineering adversary in that instead of
“passively” observing and reverse-engineering functionality of
the rest of the design components, it has the ability to com-

municate with them (and “fool” them into violating requisite
policies). Note that as with the difference between system
software and unprivileged software adversaries above, many
attacks possible by an intrusion adversary can, in principle,
be implemented by a reverse-engineering adversary in the
presence of hardware bugs. Nevertheless, the root of trust and
protection mechanisms required are different. Furthermore,
in practice, hardware Trojan attacks have become a matter
of concern specifically in the context of SoC designs that
include untrusted third-party IPs as well as those integrated
in an untrusted design house. Protection policies against such
adversaries is complex, since it is unclear a priori which IPs to
trust under this model. The typical approach taken for security
in the presence of intrusion adversaries (and in some cases,
reverse-engineering adversaries) is to ensure that a rogue IP A
cannot subvert a non-rogue IP B into deviating from a policy.

IV. DESIGNING A SECURITY ARCHITECTURE

Given a plethora of complex policies and protection re-
quirements under different classes of potential adversaries,
how would we go about designing authentication mechanisms
to ensure policy enforcement? Unfortunately, the state of the
practice in this area by far is extremely manual and depends
heavily on human creativity and observation. In particular, a
security architect roughly iterates through the following five
steps until convergence.

1) Asset Definition. Identify all the system assets govern-
ing protection. This requires identification of IPs and the
point of system execution where the assets originate.
Some assets (e.g., fuse configurations, e-wallet keys,
etc.) are “hard-coded” in specific IPs as provisioned
by manufacturers or original equipment manufacturers
(OEMs). Others are generated under specific scenarios
at different points of system execution.

2) Policy Specification. For each asset, identify the policies
that involve it. Note that a policy may “involve” an
asset without specifying direct access control for it. For
example, a policy may specify how a secure key K can
be accessed by a specific IP. This in turn may imply
how the controller of the fuse where K is programmed
can communicate with other IPs during boot process for
key distribution.

3) Attack Surface Identification. For each asset, identify
potential adversarial actions that can subvert policies
governing the asset. This requires identification, anal-
ysis, and documentation of each potential “entry point”,
i.e., any interface that transfers data relevant to the
asset to an untrusted region. The entry point depends
on the category of the potential adversary considered in
the attack, e.g., a covert-channel adversary can make
use of non-functional design characteristics such as
power consumption or temperature to infer the ongoing
computation.

4) Risk Assessment. The potential for an adversary to
subvert a security objective does not, in and of it-
self, warrant mitigation strategies. The risk assessment



and analysis are defined in terms of the so-called
DREAD paradigm, composed of the following five
components: (a) Damage potential;(b) Reproducibility;
(c) Exploitability, i.e., the skill and resource required
by the adversary to perform the attack; (d) Affected
systems, e.g., whether the attack can affect a single
system or tens or millions; and (e) Discoverability. In
addition to the attack itself one needs to analyze the
likelihood that the attack can occur on-field, motives of
the adversary, etc.

5) Threat Mitigation: Once the risk is considered substan-
tial given the likelihood of the attack, protection mech-
anisms are defined and the analysis must be performed
again on the modified system.

Implementation example: Consider protecting a system
against code injection attacks by malicious or rogue IPs by
overwriting code segments through direct memory access
(DMA) access. The assets being considered here are appro-
priate regions of memory hierarchy (including cache, SRAM,
secondary storage), and the governing policy may be to define
DMA-protected regions where DMA access is disallowed. The
security architect needs to go through all memory access points
in the system execution, identify memory access requests to
DMA-protected regions, and set up mechanisms so that DMA
requests to all protected accesses will fail. Once this is done,
the enhanced system must be evaluated for additional potential
attacks, including attacks that can potentially exploit the newly
set-up protection mechanisms themselves. Such checks are
performed typically via negative testing, i.e., looking beyond
what is specified to identify if the underlying security require-
ments can be subverted. For our DMA protection example,
such testing may involve looking for ways to access the DMA-
protected memory regions, other than directly performing a
DMA access. The process is iterative and highly creative,
resulting in a collection of increasingly complex line-up of
protection mechanisms, until the mitigation is considered
sufficient with respect to the risk assessment.

It should be clear that performing the above activities
manually over the range of system assets and policies, in
the presence of subtleties related to implicit expectations, po-
tential adversaries that break the risk/mitigation analysis, and
complex interplay between functional behavior and security
constraints, is a daunting task. Admittedly, there is a host
of available tools to assist in the different steps, e.g., tools
for documenting steps in threat and severity identification
identifying security scenarios, etc. [17], [18] Nevertheless, the
key architectural decisions and analysis still depend highly on
human insights.

V. TOWARDS ARCHITECTURE STANDARDIZATION

The issue of non-standard, ad hoc security mechanisms is
acknowledged in the industry today as a key road-block in
ensuring trustworthiness of critical computing systems. The
situation is exacerbated with increasingly stringent time-to-
market requirements which provide little time for comprehen-

sive manual review or analysis of system assets, threats, and
mitigation strategies.

To circumvent the problem, there have been recent at-
tempts at standardizing a set of mechanisms for implementing
access control for different assets. Below, we discuss three
such frameworks: Samsung KNOX, Intel R© Software Guard
Extension (SGX), and ARM Trustzone R©. Note that while
there are differences in design, the overall goal for all the
above mechanisms are similar, viz., provide a mechanism for
ensuring Trusted Execution Environment (TEE) with guaran-
teed isolation of sensitive data. The underlying architectural
plans are also similar, viz., a combination of hardware support
(e.g., secure operating modes, virtualization), and software
mechanisms (e.g., context switch agents, integrity check).

Samsung KNOX [19]: This architecture is specifically tar-
geted towards smartphones and provides secure separation
features to enable information partition between business and
personal content coexisting on the same system. In particular,
it permits hot swap between these two content worlds (e.g.,
without requiring system restart). The key ingredient of this
technology is a separation kernel that implements informa-
tion isolation. This architecture permits several system-level
services, including the following:

• Trusted boot, i.e., preventing unauthorized OS and soft-
ware from being loaded onto the device at startup;

• Trust-zone based integrity measurement architecture
(TIMA), which continually monitors kernel integrity;

• Security enhancement (SE) for Android, an enforce-
ment mechanism providing protection of system/user
data based on confidentiality and integrity requirements
through separation; and

• KNOX container, which offers a secure environment
in which protected business applications can run with
guaranteed information separation from the rest of the
device.

ARM Trustzone [20]: TrustZone technology is a system-
wide approach to security on high performance computing
platforms. The TrustZone implementation relies on partition-
ing the SoC’s hardware and software resources so that they
exist in two worlds: secure and non-secure. Hardware supports
access control and permissions for the handling of secure/non-
secure applications and the interaction and communication
among them. The software supports secure system calls and
interrupts for secure run-time execution in a multitasking
environment. These two aspects ensure that no secure world
resources can be accessed by the normal world components,
except through secure channels, enabling an effective wall-of-
security to be built between the two domains. This protection
extends to I/O connected to the system bus via the TrustZone
enabled AMBA3 AXI bus fabric, which also manages memory
compartmentalization.

Intel SGX: SGX [21] is an architecture for providing a trusted
execution environment provided by the underlying hardware
to protect sensitive application and user programs them against



potentially malicious operating systems. Rather than providing
two isolated worlds for trusted and untrusted executions as
in Trustzone, SGX permits applications to initiate secure
enclaves or containers which serve as so-called “islands of
trust”. It is implemented as a set of new CPU instructions
that can be used by applications to set aside such secure
enclaves of code and data. This enables (1) applications to
preserve the confidentiality and integrity of sensitive data
without disrupting the ability of legitimate system software
to manage the platform resources; and (2) end users to retain
control of their platforms, applications, and services even in
the presence of malicious system software.

The above infrastructures provide a foundation (i.e., a mech-
anism of isolation) for implementing security policies. How-
ever, they are a far cry from a standardized approach for im-
plementing policies themselves. To provide such approaches,
it is necessary to (1) develop a language for succinctly
expressing security policies; (2) architecting a parameterized
“skeleton” design that can be easily instantiated to diverse
policy implementations; and (3) developing techniques for
synthesizing policy implementation from high-level descrip-
tions. Recent academic and industrial research has attempted
to mitigate some of these issues. Li et al. [22] provide a
language and synthesis framework for certain security policies.
Basak et al. [2] provide a microcontrol-based framework for
implementing certain class of security policies. There have
been optimized architectural support for specific classes of
policies,e.g., control-flow integrity [23], Trojan resistance [24].
Finally, there has been work on a generic, distributed access
control protection mechanism by permitting the asset owner
to assign security attributes [25]; this provides a flexible
mechanism to permit or restrict further redistribution (or
even declassification/reclassification of the security attribute)
of the asset by any agent during any subsequent access.
However, in spite of such work on pieces of the problem,
we are still far away from a robust, configurable security
architecture as necessary for robust system design. Some key
deficiencies include interplay of secure access control with on-
chip instrumentation, definition of security architectures that
are configurable for different phases of system life-cycle, and
lack of a centralized IP for policy implementation in the SoC
design, which makes it difficult to evaluate policy compliance.

VI. SUMMARY

We have provided an overview of the state of practice in
SoC security architecture. We have summarized the state of
the practice and research directions, and discussed how it falls
short of our needs for trustworthy and secure system design.

This paper does not propose any solution to the problem: our
goal has been to bring a holistic picture of the problem to the
attention of research community. We hope that our exposition
will provide a starting point for researchers interested in
developing a unified, standardized security architecture, and
help comprehend the main design choices involved in a usable
solution. We believe that a solution to this problem is crucial

to the future of computing, and that collaborative research be-
tween architects, designers, and security researchers is critical
to developing such a solution.

REFERENCES

[1] S. J. Greenwald, “Discussion Topic: What is the Old Security Paradigm,”
in Workshop on New Security Paradigms, 1998, pp. 107–118.

[2] A. Basak, S. Bhunia, and S. Ray, “A Flexible Architecture for Systematic
Implementation of SoC Security Policies,” in Proceedings of the 34th
International Conference on Computer-Aided Design, 2015.

[3] M. Miettinen, S. Heuser, W. Kronz, A. Sadeghi, and N. Ashokan,
“ConXsense: automated context classification for context-aware access
control,” in ASIACCS, 2014, pp. 293–304.

[4] R. Hull, B. Kumar, P. Patel-Schneider, A. Sahuguet, S. Varadarajan,
and A. Vyas, “Enabling Context-aware and Privacy-conscious User
Data Sharing,” in 2004 IEEE International Conference on Mobile Data
Management, 2004, pp. 187–198.

[5] J. Goguen and J. Meseguer, “Security Policies and Security Models,” in
Proc. 1982 IEEE Symposium on Security and Privacy, 1982, pp. 11–20.

[6] N. Borisov, R. Johnson, N. Sastry, and D. Wagner, “Fixing Races for Fun
and Profit: How to Abuse Atime,” in Proceedings of the 14th USENIX
Security Symposium, 2005, pp. 303–314.

[7] S. Krstic, J. Yang, D. W. Palmer, R. B. Osborne, and E. Talmor, “Security
of SoC Firmware Load Protocol,” in IEEE HOST, 2014.

[8] L. Davi, A.-R. Sadeghi, and M. Winandy, “Dynamic Integrity Mea-
surement and Attestation: Towards Defense Against Return-oriented
Programming Attacks,” in Proceedings of the 2009 ACM workshop on
Scalable trusted computing, ser. STC’09, 2009.

[9] F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A.-R. Sadeghi, and
T. Holz, “Counterfeit object-oriented programming: On the difficulty
of preventing code reuse attacks in C++ applications,” in Proceedings
of the 36th IEEE Symposium on Security and Privacy, 2015.

[10] P. C. Kocher and B. J. J. Jaffe, “Differential Power Analysis,” in 19th
Annual International Cryptology Conference, 1999, pp. 398–412.

[11] P. C. Kocher, “Timing Attacks on Implementations of Diffie-Hellman,
RSA, DSS, and Other Systems,” in 16th Annual International Cryptol-
ogy Conference, 1996, pp. 104–113.

[12] S. Ray, J. Yang, A. Basak, and S. Bhunia, “Correctness and Security at
Odds: Post-silicon Validation of Modern SoC Designs,” in Proceedings
of the 52nd Annual Design Automation Conference, 2015.

[13] Homebrew Development Wiki, “JTAG-Hack,”
http://dev360.wikia.com/wiki/JTAG-Hack.

[14] G. Hernandez, O. Arias, D. Buentello, and Y. Jin, “Smart Nest Thermo-
stat: A smart spy in your home,” in Black Hat USA, 2014.

[15] R. Rowlette and T. Eiles, “Critical Timing Analysis in Microprocessors
Using Near-IR Laser Assisted Device Alteration (LADA),” in IEEE
International Test Conference, 2003, pp. 264–273.

[16] Http://www.chipworks.com/.
[17] “Microsoft Threat Modeling & Analysis Tool version 3.0,” 2009.
[18] J. Srivatanakul, J. A. Clark, and F. Polac, “Effective Security Re-

quirements Analysis: HAZOPs and Use Cases,” in 7th International
Conference on Information Security, 2004, pp. 416–427.

[19] Samsung, “Samsung KNOX,” www.samsungknox.com.
[20] ARM, “Building a secure system using trustzone technology,” ARM

Limited, 2009.
[21] Intel, “Intel R© Software Guard Extensions Programming Reference,”

https://software.intel.com/sites/default/files/managed/48/88/329298-
002.pdf.

[22] X. Li, V. K. anf J. Oberg, M. Tiwari, V. Rajarathinam, R. Kastner,
T. Sherwood, B. Hardekopf, and F. T. Chong, “Sapper: A Language
for Hardware-Level Security Policy Enforcement,” in International
Conference on Architectural Support for Programming Languages and
Operating Systems, 2014.

[23] L. Davi, M. Hanreich, D. Paul, A.-R. Sadeghi, P. Koeberl, D. Sullivan,
O. Arias, and Y. Jin, “Hafix: Hardware assisted flow integrity extension,”
in Proceedings of the 52nd Annual Design Automation Conference,
2015.

[24] L. Changlong, Z. Yiqiang, S. Yafeng, and G. Xingbo, “A System-On-
Chip bus architecture for hardware Trojan protection in security chips,”
in EDSSC, 2011.

[25] M. R. Sastry, I. T. Schoinas, , and D. M. Cermak, “Method for enforcing
resource access control in computer system,” in US Patent 20120079590
A1.


