
A Flexible Architecture for Systematic
Implementation of SoC Security Policies

Abhishek Basak1, Swarup Bhunia1, and Sandip Ray2
1Dept. of EECS, Case Western Reserve Univ., USA, 2Strategic CAD Labs, Intel Corporation, USA

axb594@case.edu, skb21@case.edu, sandip.ray@intel.com

Abstract— Modern SoC designs incorporate several security
policies to protect sensitive assets from unauthorized access. The
policies affect multiple design blocks, and may involve subtle
interactions between hardware, firmware, and software. This
makes it difficult for SoC designers to implement these policies,
and system validators to ensure adherence. Associated problems
include complexity in upgrading these policies, IP reuse for
systems targeted for markets with differing security requirement,
and consequent increase in design time and time-to-market. In
this paper, we address this important problem by developing
a generic, flexible architectural framework for implementing
arbitrary security policies in a SoC designs. Our architecture
has several distinctive features: (1) it relies on a dedicated,
centralized, firmware-upgardable plug-and-play IP block that
can implement diverse security policies; (2) it interfaces with
individual IP blocks through their ”security wrapper”, which
exploits and extends test/debug wrappers; (3) it implements
a security policy as firmware code following exisitng security
policy languages; (4) it can implement any security policy as
long as relevant oberservable and controllable signals from the
constituent IPs are acessible through the security wrappers;
and (5) it realizes a low-overhead communication link between
security wrappers of IP blocks and the centralized, dedicated
controller. The approach builds on and extends the recent
work on developing a centralized infrastructure IP for SoC
security, referred to as IIPS, that interface with IP blocks using
their boundary scan based wrappers. While this architecture is
generic and independent of security policy types, we provide case
studies with several common policies to show the flexibility and
extendibility of the architecture. We also evaluate its viability in
terms of overhead in area and power.

I. INTRODUCTION

Recent years have seen rapid proliferation of embedded and
mobile computing devices. Such devices come in a variety
of form factors, including smartphones, tablets, automotive
controls, wearables, medical and fashionable implants, and
smart sensors. Given their diversity and personalization, se-
curity has emerged as a critical concern for them. Most
of these devices contain confidential assets, which must be
protected against unauthorized access. Examples of secure
or sensitive assets present in virtually all modern comput-
ing systems include cryptographic and DRM keys, premium
content, firmware, programmable fuses, and personal end-user
information. Unauthorized or malicious access to these assets
can result in leakage of company trade secrets for device
manufacturers or content providers, identity theft for end users,
and even destruction of human life. Consequently, it is vital to
ensure that secure assets in computing devices are adequately
protected.

Most embedded and mobile computing devices are archi-
tected around one or more System-on-Chip (SoC) designs.
An SoC architecture involves coordination and communication
of a number of pre-designed hardware blocks of well-defined
functionality (referred to as “intellectual properties” or “IPs”).
Security assets in SoC designs spread across different IPs, and
access restrictions to these assets are defined by highly subtle,
complex, and sometimes ambiguous security policies [1], [2],
[3], [4]. These policies are defined by system architects as well
as different IP design and SoC integration teams and often
refined or modified during system development. This makes it
highly challenging to validate a system against the security
policies, develop architectures to provide built-in resilience
against unauthorized access, or update system-level security
requirements e.g., in response to changing customer needs.
To exacerbate the issue, security policies are rarely specified
in any formal, analyzable form. Some policies are described
(in natural language) in different architecture documents, and
many remain undocumented.

In this paper, we propose a generic architecture for system-
atic implementation of diverse system-level security policies
for modern SoC designs. The cornerstone of our architecture
is a dedicated, plug-and-play, centralized IP block, referred
to as E-IIPS (Extended Infrastructure IP for Security). It
is a microcontroller-based firmware-upgradable module that
realizes system-level security policies of various forms and
types using firmware code following exisitng secuirty policiy
languages, such as SAPPER [2]. The E-IIPS module interfaces
with the constituent IP blocks in a SoC using ”security
wrappers” integrated with the IPs. These security wrappers
extends the existing test (e.g. IEEE 1500 boundary scan
based wrapper) and debug wrapper (e.g. ARM’s coresight
IP interface) of an IP. These security wrappers detect local
events relevant to the implemented policies and enable com-
munication with the centralized E-IIPS module. The architec-
ture can be implemented on SoC designs incurring modest
hardware overhead. Each security policy to be implemented
is programmed into the E-IIPS module as firmware code,
which realizes communication of E-IIPS with the wrapper
interface of IPs. The E-IIPS module intervenes when a policy
violation is detected. The wrapper and the E-IIPS architectures
are flexible and agnostic to the SoC design functionality or
security policy requirements. They can be applied in a scalable
manner to existing SoC designs with varying number of IP
blocks. We demonstrate how to use the proposed architecture



to facilitate implementation and validation of system-level
SoC security policies through several case studies invlocing
common security polcies of various types.

E-IIPS builds on our recently reported infrastructure IP for
SoC scurity, IIPS [5]. IIPS alleviates SoC designers from
separately addressing security issues through design modifi-
cations in multiple cores, and provides ease of integration
and functional scalability. However, it was limited to protec-
tion against low-level hardware security vulnerabilities, e.g.IP
piracy, hardware Trojan, side-channel analysis, and scan-based
information leakage. E-IIPS extends IIPS for implementing
security policies in SoC integration.

The paper makes three important contributions. We develop,
for the first time to our knowledge, an on-chip flexible
architecture using a configurable centralized controller IP for
implementing, exploring, and analyzing diverse SoC security
policies. Second, we present a general interface of security pol-
icy enforcement with functional IPs, that extends the existing
test/debug wrappers and makes use of existing communication
fabrics in SoC designs. Finally, we present simulation results
on validating the module, estimating its hardware overhead,
and demonstrating its capabilities in achieving protection of
secure resources within SoC.

The remainder of the paper is organized as follows. Sec-
tion II provides the relevant background on security policies in
SoC designs. In Section III, we discuss our policy enforcement
architecture, and explain its proposed usage in SoC design
execution. We present some illustrative case scenarios in
Section IV. In Section V, we present simulation results to
estimate overheads introduced by the architecture, in terms
of area, performance, and routing complexity. Section VI
discusses related work, and Section VII concludes the paper.

II. SOC SECURITY POLICIES

Modern SoC designs include a large number of critical
assets, which must be protected against unauthorized access.
At a high level, such access control can be defined by confi-
dentiality, integrity, and availability requirements [6]. Security
policies map such requirements to “actionable” design con-
straints that can be used by IP implementors or SoC integrators
to define, analyze and implement protection mechanisms.
Following are two representative examples for a typical SoC.

• Example 1: During boot, data transmitted by the crypto
engine cannot be observed by any IP in the SoC other
than its intended target.

• Example 2: A secure key container can be updated for
silicon validation but not after production.

Example 1 is a confidentiality requirement while Example 2
is an integrity constraint; however, the policies provide defini-
tions of (computable) conditions to be satisfied by the design
for accessing a security asset. Furthermore, access to an asset
may vary depending on the state of execution (e.g., boot time,
normal execution, etc.), or position in the development life-
cycle (e.g., manufacturing, production, etc.).

Unfortunately, security policies in a modern SoC design
are significantly complex, and developed in ad hoc manner

Fig. 1. Schematic of Proposed Architecture in a representative SoC.

based on customer requirements and product needs. Below
we summarize some policy classes. It is beyond the scope
of this paper to provide a comprehensive compendium of
different policies, or even to discuss any of them in detail. The
description below merely provides a flavor of some existing
policies, and the interested reader is encouraged to refer to the
cited bibliography for additional detail.

Access Control [7], [8], [9]: This is the most common class
of policies, and specifies how different agents in an SoC can
access an asset at different points of the execution. Here an
“agent” can be a hardware or software component in any
IP. Examples 1 and 2 above are examples of such policy.
Furthermore, access control forms the basis of many other
policies, including information flow, integrity, and secure boot.

Information Flow [10], [11]: Values of secure assets can
sometimes be inferred without direct access, through indirect
observation or “snooping” of intermediate computation or
communications of IPs. Information flow policies restrict such
indirect inference. Following is an example:

• Key Obliviousness: A low-security IP cannot infer cryp-
tographic keys by snooping only the data from crypto
engine on a low-security NoC.

Information flow policies are difficult to analyze. They of-
ten require highly sophisticated protection mechanisms and
advanced mathematical arguments for correctness, typically
involving hardness or complexity results from information
security. Consequently they are employed only on critical
assets with very high confidentiality requirements.

Liveness [12]: These policies ensure that the system performs
its functionality without “stagnation” throughout its execution.



A typical liveness policy is that a request for a resource by
an IP is followed by an event response or grant. Deviation
from such a policy can result in system deadlock or livelock,
consequently compromising system availability requirements.

Time-of-Check vs. Time of Use (TOCTOU) [13], [3]: This
refers to the requirement that any agent accessing a resource
requiring authorization is indeed the agent that has been autho-
rized. A critical example of TOCTOU is in firmware update,
where the policy requires that firmware eventually installed on
an update is the same one that has been authenticated.

Observe that the above policies relate to integration charac-
teristics of SoC designs, not individual IPs. For this paper, we
assume that the IPs themselves are trustworthy, i.e., the under-
lying threat model includes external attacks through software
or SoC interface but not malicious hardware introduced in the
IPs. Our threat model is reasonable for SoC designs involving
primarily in-house rather than third-party IPs or in cases where
(orthogonal) IP trust verification has been accomplished to rule
out malicious backdoors or Trojans.

III. ARCHITECTURE

Fig. 1 illustrates our proposed architecture. It includes two
main components: (1) a centralized security policy controller
IP (referred to as E-IIPS or extended IIPS in the rest of the
paper), and (2) security wrappers around individual IPs to
facilitate communication with E-IIPS. To facilitate configura-
bility across different products and use cases, E-IIPS is defined
as a microcontrolled soft IP. SoC designers can program
security policies through E-IIPS as firmware modules that are
then stored in a secure ROM or flash memory; secure policy
update is supported through an authenticated firmware update
mechanism. E-IIPS communicates with other IPs via corre-
sponding security wrappers as follows. For enforcing different
security policies, E-IIPS may need different local IP-specific
collateral. For instance, suppose a policy prohibits access of
internal registers of IP A by IP B when A is in the middle of a
specific security-critical computation. To enforce the policy, E-
IIPS must “know” when B attempts to access the local registers
of A as well as the security state of the computation being
performed by A. The security wrappers provide a standardized
way for E-IIPS to obtain such collateral while abstracting
the details of internal implementation of individual IPs. In
particular, the wrappers implement a protocol to communicate
with E-IIPS during the execution. Based on the policies
implemented, E-IIPS can configure the wrapper of an IP at
boot time to provide internal event information under specific
conditions (e.g., security status of internal computation, read
requests to specific IPs, etc.); the security wrappers monitor
for configured conditions and provide requested notification to
E-IIPS. IP development teams are responsible for augmenting
individual IP with the security wrapper, by extracting security-
critical information (see below).

Design Choices. A key design choice for E-IIPS is its central-
ized firmware-upgradable architecture, i.e., it is implemented

Fig. 2. Architecture of a generic IP security wrapper.

as a single reusuable IP block in the SoC. This choice is gov-
erned by the need to provide a single place for understanding,
exploration, upgrade, and validation of system-level security
policies. Indeed, the current complexity in security policy
analysis and modification is precisely that the policies are
“sprinkled” across the different IPs in the SoC. Our centralized
architecture is specifically intended to alleviate this complex-
ity. On the other hand, this choice implies that communication
wih E-IIPS is a bottleneck for system performance. We address
this issue by making the security wrappers “smart” so that
only security-relevant information is communicated to E-IIPS,
possibly under the latter’s directive. Finally, the choice of a
microcontrolled rather than hardware implementation stems
from the need to update security policies on-field, either due
to customer requirements or in response to a known exploit
or design bug. On the other hand, this makes E-IIPS itself
vulnerable to attacks through firmware updates. In Section III-
D we discuss authentication mechanisms to address this issue.

A. IP Security Wrappers

Security wrappers extract security-critical events from the
operating states of the underlying IP for communication with
E-IIPS. Note that the naive approach of simply extracting all
data, control, and status signals from IPs to E-IIPS would
incur prohibitive communication and routing overhead. To
address this problem, we develop security wrappers on IPs
that incorporate “smartness” to detect security-critical events
of interest in the IP while providing both a standard communi-
cation interface between the IP and the E-IIPS and a standard
template-based design that can be easily integrated on top of
the IP implementation.

How can the wrapper identify security-critical events while
still providing a standardized template-based design? The
key observation is that IPs in a SoC can be divided into
a small collection of broad categories and security-critical
events. Table I shows some of the broad IP categories together
with some of the security-critical information relevant to
each. For instance, “Memory IPs” include all IPs controlling
the access to different memory hierarchies, e.g., memory
controllers, Direct Memory Access (DMA) modules, cache
controllers, flash control logic etc., and processor cores include



TABLE I
REPRESENTATIVE SET OF SECURITY CRITICAL EVENTS ACCORDING TO IP TYPE

Type of IP Example IPs Type of Events Associated Metadata
Memory IP Memory/cache controller, read/write request to specific address, page size, burst size(DMA)

DMA engine DMA access, execution mode ECC type, low power clock rates

Processor CPU, GPU, ethernet controller start/end of critical system threads, system stored operation logs, flag or
Core audio and video card interrupt, firmware upgrade request register settings, process duration

Communication Bus Controller, Bridge, Router, data transfer request, source/destination address transfer packet size, serial frequency
Core USB controller, PCIExpress peripheral IP transfer request, idle modes arbiter priority, bus clk. rate

Hard logic AES, SHA engines, firmware integrity check start/end duration of operation,
Custom IP FFT, DWT block secure key access, FFT request by video card local clk domain

general purpose CPUs, GPUs, as well as cores controlled
by microcode/firmware e.g., ethernet, UART controller, audio,
video cards etc. The security-critical events of interest also
standardize substantially within each IP category. For instance,
events in a Memory IP include read and write requests to
specific address ranges by particular IPs (including DMA), as
well as functional/standby modes. On the other hand, events
in a processor core include start and end of critical system
or application processes and threads, computations generating
exceptions, interrupts by system controllers (often utilized by
adversaries to jump to critical system addresses), etc. Finally,
any event is associated with metadata that is sufficient for
information about the event, e.g., DMA access details can be
analyzed from page size, DMA burst size, and address range.
This metadata is communicated by the security wrapper to
E-IIPS, often under request from the E-IIPS (see below). Of
course, in addition to standardized events, there are some IP-
specific requirements in each IP. Our framework allows the
SoC integrator to request additional security-critical events
from specific IP which can then be mapped into its wrapper.

B. Security Wrapper Implementation

Our security wrapper design is frame-based, with a standard
format for security-critical event definitions, which can be in-
stantiated into corresponding events for specific IPs. A typical
IP security wrapper architecture is shown in Fig. 2(a). Fig. 3(a)
illustrates an event frame. The wrapper typically consists of an
activity monitor logic (to identify whether the IP is active), an
event type detector, and a buffer to store the event metadata.
Some events require also corresponding local clock domains.
The wrapper also incorporates registers (see below) that would
be configured by E-IIPS at boot time to specify particular
events which need notification. The frame-based interface is
used to provide a standardized communication mechanism
with E-IIPS. In general, E-IIPS provides two types of signals
to a security wrapper: (1) disable to block IP functions
(in varying granularity depending on policy) in response to a
suspected securty compromise, and (2) request to request
more data or send controls. We exploit the existing boundary
scan interface of the IP to transmit data in parallel shift/access
mode in high bandwidth demands for certain functional secu-
rity validation.

Fig. 3. (a) Fields of a typical event frame; (b) An example communication
protocol between wrapper and security engine.

C. Security Policy Controller

E-IIPS acts as the “security brain” of the SoC, providing
programmable interface to different security policies. Its key
functionality is to analyze events communicated by the se-
curity wrappers, determine the security state of the system,
and communicate IP-specific request and disable sig-
nals. Fig. 4 shows the top-level architecture of E-IIPS. The
architecture includes the two major components, viz., (1) a
Security Buffer that provides access to the IP-specific event
logs from the security wrappers, and (2) the Policy Enforcer
that forms the analysis component of E-IIPS.

Security Buffer. The security buffer interfaces with the Policy
Enforcer through a buffer controller that defines how the buffer
frames are analyzed by the Policy Engine. We implement the
buffer storage through a standard static segmentation scheme,
permitting variable-length segments based on the volume of
metadata. The event logs can be read by the controller through
ports on the buffer (controlled by the buffer controller). The IP-
buffer control logic maintains synchronization and coherence
of the security wrapper and Control Engine with data frames



Fig. 4. Central security policy controller architecture.

from IPs with different read and write speeds, segment sizes,
and event frequency.

Policy Enforcer. We implement the policy enforcer as a
microcontroller-based implementation, which can be per-
formed on a standard processor core. Functionally, the enforcer
is a microcontrolled state machine, that asserts or deasserts the
required disable or request signals for different IPs. In
addition to a microcontrol engine, it also includes a standard
instruction memory (for storing microcode or firmware imple-
menting the policies), and a small amount of data memory
for intermediate computation. The nature of the computation
involved in security policy enforcement requires some custom
modifications of existing commercial cores. We summarize a
few of the illustrative necessary modifications.

• Direct Register Writes. Modifications to processor reg-
gister file update logic is made to allow direct register
updates, avoing extra cycles for instruction and operand
fetch from memory. This is necessary for time-sensitive
policies, including TOCTOU and some access control
policies.

• Fused Datapaths and Secure Mode. Often the event
metadata width of an IP permits fusing the datapath (e.g.,
two 32-bit registers into one 64-bit) which facilitates
concurrent analysis of multiple frames.

• Branch Prediction Buffers. Branch prediction buffer de-
sign is a critical requirement for achieving low power and
performance overhead, since security policy implementa-
tions involve the use of conditional branches with a much
higher frequency than traditional application and system
programs.

Finally, the E-IIPS module includes configuration register to
permit the SoC designer to activate only a subset of imple-
mented policies for a specific application or use case. The
register is configured at design time through a combination
of fuse/antifuses and multiplexers. It also aids in extending E-
IIPS as a plug-n-play standalone IP with a generic architecture.

D. Secure Authenticated Policy Upgrades

Recall from Section II that our threat model permits attacks
through malicious firmware or software to subvert protection
of system assets. Since E-IIPS itself is microcontrolled, it
is also vulnerable to such attacks. Unfortunately, it is not

possible to protect E-IIPS by merely disabling updates to its
firmware. Since a key reason for a microcontrolled design
is to permit policy upgrades on-field, it is critical to permit
such upgrades through firmware updates. To address this
problem, we implement an authentication mechanism based
on challenge-response keys. Keys are generated at power-on
using a standard technique based on Physically Unclonable
Functions (PUF), that exploits intrinsic process variations on
silicon to ensure robustness. Since keys are generated at
power-on, we avoid on-chip key storage access control attacks
through software or firmware. Finally, we avoid TOCTOU
attacks during firmware updates by requiring single-threaded
firmware updates, i.e., a firmware update cannot be interrupted
by an overlapping update request.

E. Policy Implementation in SoC Integration

Security policy implementation through our framework re-
quires collaboration between IP developer and SoC system
integrator.

IP Provider: The IP provider identifies the key standard
security-critical events in the IP, based on the IP type (Table I);
this content is incorporated into frames along with registers for
configuration, to build the security wrapper.

SoC Integrator: The SoC integration team implements the
security policies chosen for the application through the Policy
Enforcer firmware of E-IIPS. Furthermore, since E-IIPS is
centralized and IPs are delivered with security wrappers inte-
grated, the SoC integration validation team is responsible for
verification of policies against system-level use-cases through
simulation, hardware accelerator, FPGA, or post-silicon.

IV. USE CASE SCENARIOS

We present 2 use case scenarios of how generic security
policies in the domain of secure-crypto and access control
are mapped into our proposed architecture. The policy type,
its function and the involved IPs in our implementation are
shown in Table II.

A. Use Case I: Secure Crypto

Policy: Crypto-processor data paths including encryption en-
gine need to be functionally validated at power-on before any
execution.

The above policy ensures trustworthiness of the system at
boot time. The validation stipulated by the policy includes
checks for correct operation of encryption (e.g., AES) and hash
(e.g., SHA-1) engines as well as ensuring the stochasticity

TABLE II
POLICIES FOR USAGE CASE ANALYSIS

Sec. Policy Desc. IPs involved
Secure Crypto Verify functionality of E-IIPS, mem. cntrllr, crypto-

Verification AES engine at power-on proc., test-access cntrl.

Access Control Prevent DMA access to E-IIPS, mem. cntrllr, DMA
system level addresses



Fig. 5. Flow/message diagram representation of implementation of case I.

(randomness) of bits output by the True Random Number
Generator (TRNG). Often an undetected functional failure of
the crypto data path etc. results in compromise of the system
security, mostly in terms of availability of resources (leading
to denial of service attacks etc.). In this study, we provide
a sample implementation of how a SoC designer maps the
AES engine verification in to the proposed platform. The flow
of operations/messages between the E-IIPS and IP security
wrappers through the standard interfaces is illustrated in Fig. 5.

In our implementation, the E-IIPS waits for the system
boot process to finish (including power-on-self tests, firmware
integrity check, system software load to memory) before
proceeding with the AES verification. This ensures the full
trustworthiness of other system components during the check.
The “boot mode finish” is indicated by a particular value of
system mode register, mapped to the memory. In response,
the E-IIPS disables external system interfaces of peripheral
cores, JTAG and other test/debug ports to eliminate possible
attack surfaces. It also blocks transition to system execution
mode. E-IIPS configures a set of known plaintext and key
inputs in a buffer in the crypto-processor wrapper at boot
time through potentially using the serial/parallel boundary scan
interface for high bandwidth communication (not shown in
Fig. 5). The appropriate crypto test access port settings are
asserted by the JTAG/TAM controller, in response to E-IIPS
configuration request during boot. The desired cipher outputs
are stored inside E-IIPS boundary. E-IIPS sends a particular
plaintext/key buffer index to crypto-wrapper for execution.
The computed cipher text is communicated through frames
(or boundary scan) to the E-IIPS for verification. If it matches
the desired, the proactive holds are lifted and the system goes
to the normal execution phase. The exact sequence in terms of
event detection and message communications is summarized:

Fig. 6. Flow/message diagram representation of implementation of case II.

• Memory Control Wrapper (MCW) detects event “system
boot finish” and transfers frame to E-IIPS.

• E-IIPS reads the event from security buffer and asserts the
disable interface to peripheral cores and test/debug ports.
It blocks system execution by write to register mapped
in memory through the MCW request interface.

• Receiving confirmation through frames that these actions
have been performed by IP wrappers, the E-IIPS sends
the plain text and key buffer index through the crypto
processor wrapper (CPW) request interface.

• The cipher text is computed, 5 frames are generated inside
CPW, the first one containing the event “Encryption
Complete” and metadata indicating that next 4 frames
(of 32 bits) constitute the 128 bit cipher output.

• CPW sends the frame 1. E-IIPS sets the appropriate CPW
request signals for the next 4 frames.

• E-IIPS verifies the computed cipher text.

This also shows an use case where the P1500 boundary
scan infrastructure can be suitably used for high bandwidth
data/control communication in our framework, thereby reduc-
ing routing complexity and overhead.

B. Use Case II: Access Control

Policy: Direct Memory Access (DMA) is prohibited in
system-specific (ring 0/1 in 4 ring system) addresses of dif-
ferent IPs in the SoC memory space.

Most current SoCs involve DMA to the system memory
through a dedicated DMA controller to reduce the workload
on the processor cores. DMA by I/O peripherals (in memory-
mapped I/O schemes) are utilized by attackers to snoop assets
and modify system-level code. Policies like the one above
protect against these security threats.



Fig. 7. Current architecture of functional toy SoC model

As illustrated in Fig. 6, E-IIPS configures the IP-specific
system-level address ranges at boot time in the memory
controller through its security wrapper (MCW). When an
access from the DMA controller is detected by MCW, the
requested address is checked with the system specific ranges
inside the wrapper logic. In case of no violation, the system
memory bus is granted for DMA. In case of system address
overlap, the request is blocked, the violation is logged as an
event, and is communicated to the E-IIPS through frames by
MCW. E-IIPS maintains a buffer of DMA violations in the
recent past. If the number exceeds a threshold within a set time
(configured by SoC designer), memory access requests from
the DMA controller are disabled. The specific events/message
flows and interface signals, as shown in Fig. 6 are summarized:

• E-IIPS configures system address ranges in memory con-
troller register through MCW request interface at boot.

• When a DMA request is detected, the MCW checks the
corresponding address. If violation is detected, the request
is blocked. The event is sent as a frame to E-IIPS.

• E-IIPS updates count of DMA violations and compares
with threshold. If the number exceeds within set time
limit, the DMA controller operations are disabled through
it’s disable interface.

V. OVERHEAD RESULTS

Given the dearth of appropriate open-source SoC design
models to perform experiments, we are in the process of
implementing a simple SoC design to assist in the current

TABLE III
AREA & POWER OVERHEAD OF IP SECURITY WRAPPER (AT 32NM)

IP Orig. Area Dyn. Pw. Leak. Pw.
Area(µm2) Ovhd(%) Ovhd(%) Ovhd(%)

AES(128 bit) 101620 2.1 − −
SPI Controller 3947 9.2 11 9.7

DLX µP core 290496 6.8 − 5.4
(w. 4KB I/D mem.)

FFT(128 point) 1810 10.2 − 16.1

- negligible

TABLE IV
AREA & POWER OF CENTRAL SECURITY CONTROLLER(AT 32 NM)

Die Area(µm2) Dynamic Power(mW) Leakage Power(mW)

2831860 13.67 34.13

research. Our toy model has IPs of different functionalities
interacting with each other to perform specific system func-
tions. The IPs are obtained from opencores [14] in Verilog
RTL models. The current version of this model at the time of
this writing is illustrated in Fig. 7. In this model, all memory
are implemented as register files for ease of synthesis. IP
address spaces are mapped to the memory. These IPs can
access the memory directly, analogous to DMA. At present, all
IP-IP communication are point-to-point. The model has been
functionally validated in Modelsim.

All IPs are wrapped with security abstraction layers. Events
detected by these wrappers include a major representative
subset of those listed in Table I, e.g., read/write requests
to memory, duration of processes, specific conditional jumps
in µP core, transfer start/end of SPI module etc. The 32-
bit frame formation logic and metadata buffers are present.
IPs contain configuration registers which are configured by
E-IIPS at boot time (master system reset asserted). The E-
IIPS is implemented with a single DLX 32-bit RISC core (5
stage pipeline). Firmware (security policies) is stored in local
instruction memory of 4 KB. 2 bit disable and request signals
are output to each IP from the controller.

To obtain representative overhead values, the IPs were syn-
thesized at 32nm predictive technology library. The calculated
area, dynamic (at 1GHz clock) and leakage power overheads
are provided in Table III. The overheads are mostly minimal.
In some scenarios, the power reduces after re-synthesizing
with wrappers due to internal (heuristic) optimizations and
hence reported as negligible. E-IIPS was synthesized at 32nm
and the resulting area and power (at 1GHz clock) values
are provided in Table IV. Finally, the area overhead of the
control engine was estimated with respect to our toy model
and commercial SoCs from Apple and Intel at 32nm (∼ 1GHz
clock) and provided in Table V. The 32KB system memory
(major area component) area was estimated with established
SRAM models. As our toy SoC is rather small with only
handful of IPs, the overhead is comparatively higher. The
overhead for the controller is minimal in realistic scenario.
For a generic SoC design, we can conclude that the hardware
overheads due to the proposed architecture would be minimal.
After analysis with NoC fabrics of different types, the routing
complexity and transfer power/energy would be evaluated as
part of future work.

VI. RELATED WORK

The notions of high-level security requirements in a com-
puting system were developed in the 1990s as part of re-
search on information security [6]. Early research on security
policies looked primarily on software systems and developed
analysis frameworks for access control and information flow



TABLE V
DIE AREA OVERHEAD OF CENTRAL CONTROLLER(AT 32 NM)

SoC Die Area(µm2) Overhead of controller(%)

Our Toy Model 13.1X106 21.7

Apple A5 (APL2498) 69.6X106 4.06

Intel Atom Z2520 ∼ 40X106 7.1

policies [10], [15]. More recently, researchers have tried
to develop languages for formal representation of hardware
security policies [2]. On the other hand, with the increasing
prominence of SoC designs, there has been significant research
interest in SoC security. However, most recent research in
this area has focused on hardware security, i.e., protection of
the system against a malicious hardware Trojan [16], various
forms of counterfeiting attacks [17], and attacks to leak secret
information through side channels or on-chip resources such as
scan or debug infrastructure. A recent work has also targeted
developing a centralized and scalable framework, referred to
as an infrastructure IP for security, for efficiently realizing
countermeasures against these attacks [5]. Infrastructure IPs
refer to a range of IPs that are dedicated to facilitate SoC
functional verification, testing or yield improvement [18].
On the contrary, the proposed solution can be viewed as
an extended infrastructure to implement system-level security
policies in SoC. There are also number of works that report ef-
ficient protocols [3] involving functional IP blocks, crypto IPs,
and security wrapper and associated architecture-level custom
modification for speific security policies [4]. However, they
do not propose a generic architecture involving a reusuable
centralized IP and its flexible interface with the IP blocks, as
proposed in this paper.

VII. CONCLUSION

We have presented a novel architectural framework for
implementing diverse security policies in a system-on-chip.
It enables systematic implementation of security policies, and
hence can greatly facilitate the process of secure SoC design
involving various security assets and can potentially reduce the
design/hardware overhead. Furthermore, it enables effective
validation and debug and update of security policies during
post-silicon validation, which often imposes major roadblocks
in SoC production cycle. The architecture consisting of a
centralized security policy controller, referred to as E-IIPS,
and generic security wrapper per IP block, is easily scalable
to large number of IPs and flexible to accommodate IP blocks
of varying structural properties. The proposed E-IIPS module
builds on extends the functionality of recently reported infras-
trucutre IP for security, which was proposed for implementing
multitude of security functions (e.g. protection against scan-
based attack, Trojan attacks, power analysis attack and hard-
ware piracy) using a shared centralized architectural fabric.
The E-IIPS module we have presented in this paper, when
combined with the capability of implemeting conventional
hardware security functions, can serve as even more powerful

secuity infrastrucure IP. We have verified functional correct-
ness of the architecture through extensive simulations and
evaluated the hardware overhead. The hardware overhead for
the proposed architecture is expected to go down significantly
for realistic SoCs. Future work will include automatic synthe-
sis of security policies into the proposed architectural fabric
using existing security policy languages and extension of the
architecture to account for untrusted third-party IPs.

REFERENCES

[1] John Rushby, “Noninterference, Transitivity, and Channel-Control Se-
curity Policies,” SRI, Tech. Rep., 1992.

[2] X. Li, “Sapper: A Language for HardwareLevel Security Policy En-
forcement,” in Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2014.

[3] S. Krstic, J. Yang, D. W. Palmer, R. B. Osborne, and E. Talmor, “Security
of SoC Firmware Load Protocol,” in IEEE HOST, 2014.

[4] M. R. Sastry, I. T. Schoinas, , and D. M. Cermak, “Method for enforcing
resource access control in computer system,” in US Patent 20120079590
A1.

[5] X. Wang, Y. Zheng, A. Basak, and S. Bhunia, “IIPS: Infrastructure IP
for Secure SoC Design,” IEEE Transaction on Computers, 2014.

[6] S. J. Greenwald, “Discussion Topic: What is the Old Security Paradigm,”
in Workshop on New Security Paradigms, 1998, pp. 107–118.

[7] M. Miettinen, S. Heuser, W. Kronz, A. Sadeghi, and N. Ashokan,
“ConXsense: automated context classification for context-aware access
control,” in ASIACCS, 2014, pp. 293–304.

[8] M. Conti, B. Crispo, F. Fernandes, and Y. Zhauniarovich, “CRePE: A
system for enforcing Fine-grained Context-related Policies on Android,”
IEEE Transactions on Information Forensics and Security, vol. 7, no. 5,
pp. 1426–1438, 2012.

[9] R. Hull, B. Kumar, P. Patel-Schneider, A. Sahuguet, S. Varadarajan,
and A. Vyas, “Enabling Context-aware and Privacy-conscious User
Data Sharing,” in 2004 IEEE International Conference on Mobile Data
Management, 2004, pp. 187–198.

[10] J. Goguen and J. Meseguer, “Security Policies and Security Models,” in
Proc. 1982 IEEE Symposium on Security and Privacy, 1982, pp. 11–20.

[11] T. Amtoft, S. Bandhakavi, and A. Banerjee, “A Logic for Informa-
tion Flow in Object-Oriented Programs,” in Proceedings of the 33rd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL 2006). ACM Press, Jan. 2006, pp. 91–102.

[12] B. Alper and F. B. Schneider, “Recognizing Safety and Liveness,”
Distributed Computing, vol. 2, no. 3, pp. 117–126, 1987.

[13] N. Borisov, R. Johnson, N. Sastry, and D. Wagner, “Fixing Races for Fun
and Profit: How to Abuse Atime,” in Proceedings of the 14th USENIX
Security Symposium, 2005, pp. 303–314.

[14] “www.opencores.com.”
[15] J. T. Haigh and W. D. Young, “Extending the Non-Interference Version

of MLS for SAT,” in Symposium on Security and Privacy, 1986.
[16] R. S. Chakraborty, F. Wolff, S. Paul, C. Papachristou, and S. Bhunia,

“MERO: A Statistical Approach for Hardware Trojan Detection,” in
Workshop on Cryptographic Hardware and Embedded Systems, 2009.

[17] U. Guin, D. DiMase, and M. Tehranipoor, “Counterfeit Integrated
Circuits: Detection, Avoidance, and the Challenges Ahead,” Journal of
Electronic Testing, vol. 30, no. 1, pp. 25–40, 2014.

[18] Y. Zorian, “Embedded memory test and repair: Infrastructure IP for SOC
yield,” in International Test Conference, 2002, pp. 340–349.


