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ABSTRACT
We present an outline of the field of Multilevel Design Un-
derstanding by first defining and motivating the related prob-
lems, and then describing the key issues which must be ad-
dressed in future research.

CCS Concepts
•Hardware → Electronic design automation; Hard-
ware description languages and compilation;

Keywords
Design understanding, electronic design automation

1. INTRODUCTION
The design process is essentially a creative process which

is reliant on the ability of designers to balance the inter-
actions between a complex set of constraints to arrive at
successful solutions. In order for designers to manage this
task, they must collectively have a complete understanding
of the behavior of the system, the mapping between behav-
ior and structure, and the impact of each design feature on
constraints such as power, performance, cost, and security.
Design tasks require reasoning across multiple levels of ab-
straction in order to determine the impact of high-level de-
sign decisions, or to trace a design characteristic back to the
feature which caused it. In a real design, cross-abstraction
reasoning is difficult because the relationships between the
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different abstractions of a design are not captured. Designer
time is expended discovering these cross-abstraction rela-
tionships in order to perform design, verification, and main-
tenance tasks. This paper summarizes a special session cov-
ering the state-of-the-art in Design Understanding, research
in approaches to provide designers with the design infor-
mation needed in a concise and straightforward way. The
volume of design information is enormous, so a significant
part of the problem is determining what subset of informa-
tion is relevant to the designer to assist with the particular
design problem currently at hand.

2. THE COMPLEXITY OF SPECIFICATION
The life of a computing system arguably begins with ar-

chitects developing architectural models, and tuning various
design parameters for target performance and power con-
sumption. The result of this process is the definition of the
high-level architectural specification of the system, which de-
fines the functional requirements for the system design. This
specification is used as a guide for most downstream activ-
ities, e.g., decompose system functionality, implement vari-
ous design blocks, perform code reviews, design pre-silicon
and post-silicon validation test-benches, define assertions,
etc. Clearly, the specification documents ought to provide an
obvious, authoritative source of design understanding that
is already available as part of any industrial design flow.

Unfortunately, architectural specifications in practice do
not live up to the promise of an “authoritative source” for
design requirements. One reason is that they are rarely de-
veloped with the rigor, discipline, and formality warranted
for something used so extensively throughout the system
life cycle. System functionality is typically described infor-
mally with prose mixed with charts, diagrams, and tables.
Furthermore, these descriptions are spread across a large
number of different documents, each document several hun-
dreds of pages long and covering different aspects of the
design (e.g., functionality, power, security, communication,
etc.). Unsurprisingly, these documents contain inconsisten-



Figure 1: The key elements of a computing system
life-cycle. Tape-out refers to the time when the de-
sign is mature enough to get to the first fabrication.
PRQ or “Product Release Qualification” refers to
the decision to initiate mass production of the prod-
uct.

cies, ambiguities, even errors.
The lack of a cohesive, clear, unambiguous specification

has been generally known as the Achilles heel of validation
in particular; it is common to hear researchers in various fo-
rums on verification and validation to lament on the state of
specification definition and single it out as a key factor con-
tributing to validation complexity. Such accusations are not
without substance: ambiguous, erroneous, or inconsistent
specifications not only prolong validation, but in cases can
lead validation planning to wrong directions or miss critical
coverage requirements. Identification of such problems late
in the implementation or validation phases can lead to late
design churns, complex patches, point fixes, de-featuring,
and in some cases cancellation of the product.

Given the critical effect of specification on system design
on the one hand, and the sordid state of practice in specifi-
cation definition on the other, a variety of formalisms have
been proposed in recent years to provide ways of standard-
izing specifications. These range from formalisms based on
temporal logic [1], a plethora of charts, diagrams, and mes-
sage flows [11, 5, 28], as well as formats for specific design
collaterals such as control register and interfaces [2]. Nev-
ertheless, there has been no consensus in industry today on
unified adoption of any formalism.

Why is it that we cannot impose a rigor and formalism into
a topic so important as design specification, while knowing
that informal, ambiguous treatments lead to serious conse-
quences for the business? The short answer is that most
of the formalisms are not compatible with the complex de-
velopment flows of modern computing systems. In order to
derive an effective approach to specification, it is therefore
imperative to understand closely how the development oc-
curs, and how the specifications are used at different points
of this flow. To that end, this section gives a brief introduc-
tion to an industrial system development activity, focusing
in particular on the specification aspect.

Fig. 1 gives a high-level overview of the system design
activities along the life-cycle of a computing system devel-
opment. A high-level specification document, also referred
to as“HAS”(High-level Architectural Specification) is devel-
oped around the middle of the planning phase and is used as
an input for architectural exploration, and is generally one
of the first system-level design documents generated.

Ideally, the HAS provides a high-level specification of sys-

tem functionality. So why is this insufficient? The trouble
is that the HAS is developed at a point where very little
of the architectural features has been concretized. Those
features get defined through architectural explorations of
the system, using different architectural models derived from
the HAS. The architectural parameters include critical fea-
tures such as cache sizes, pipeline depths, bus bandwidths,
etc., and are embodied in a new set of documents called
MAS (Micro-Architectural Specifications). Significantly, the
exploration may result in refinement of the high-level re-
quirements themselves, e.g., exploration of different power-
management capabilities may result in the conclusion that a
certain power profile as specified by the HAS is unattainable
under the other constraints for the product; the architectural
requirements at that point must be modified to account for
this discovery, and the consequent architectural exploration
must account for the result. Overall, architectural explo-
ration is a highly iterative process resulting in continuous
refinement of the HAS; clearly, this already breaks the view
of the HAS as created originally as the authoritative source
of design requirement. One important factor to keep in mind
is concurrency of design development. Implementation of
key components typically start concurrently with architec-
tural exploration, and are thus based on the original HAS. If
architectural exploration results in a HAS change affecting a
design component under active implementation, the refine-
ment needs to be propagated directly to the implementation
teams (and the HAS at this point may be obsolete).

For modern systems such as phones or tablets, several
other factors add to the complexity induced by the HAS
and MAS inter-dependencies described above. Most of these
systems use the System-on-Chip (SoC) design methodology.
The idea is to develop a system quickly by integrating pre-
designed hardware (or software) blocks, often referred to as
an “Intellectual Property” of IP. Each IP, of course, comes
with an architectural specification (which, by the above de-
scription, may not fully correspond to the implementation).
The HAS for the SoC then defines the aggregation and com-
position of these IPs, and the MAS defines the system-level
architectural parameters. Note that by this process, we al-
ready have a large number of specification documents in
play, (e.g., one per IP, the system-level HAS, and system-
level MAS), each of which is concurrently developed with
inconsistencies galore.

Figure 2: System Life Cycle from Security View.

Unfortunately, the above is only the tip of the iceberg.
In addition to the above, in a modern system design, there
are high-level flows defining requirements, architecture, and
implementation of security, power management, validation,



Figure 3: System Life-cycle from Post-silicon Vali-
dation View.

physical layout, etc. Each of these flows involve activities
at various stages of system development. To illustrate the
point, Fig. 2 shows the system life-cycle view focusing on
activities related to security, and Fig. 3 focuses on the ac-
tivities related to post-silicon validation. Each of these are
critical activities, performed concurrently with functionality
along the system design life-cycle, but by different teams
each with a very different view of the life-cycle. Perhaps
more pertinently for the topic of this section, each activity
generates and consumes a large number of different docu-
ments, including access control and protection requirements,
debug requirements, on-chip instrumentation architecture,
etc. Each such document, in its turn, refers to the archi-
tectural definitions from different IP documents. To make
matters worse, there are numerous trade-offs between the
different flows that need to be addressed, e.g., security and
post-silicon debug involve significant conflicts and competi-
tions [23].

Given the above, it should be clear that specification defi-
nition is a complex enterprise. To our knowledge there is no
formalism or infrastructure that comprehends the conflict-
ing needs from design specification by different architecture,
design, and validation activities, and their subtle dependen-
cies. On the other hand, this clearly is a very important
area of research: as we move in an era where we are envi-
sioning computing system applications of the scale of smart
cities, highways, and multiplexes, it is imperative to be able
to comprehend the design requirements at least to the point
where we can say whether we have built what we intended
to build; without such accountability the entire computing
infrastructure can fall like a house of cards with disastrous
consequences. The onus is thus on researchers in design un-
derstanding to develop an infrastructure for creating, main-
taining, and comprehending specifications.

3. DESIGN AUTOMATION FROM NATURAL
LANGUAGE SPECIFICATIONS

The task of interpreting natural language specifications
has traditionally been exclusively manual because, gener-
ally speaking, only humans with expert design knowledge
have the ability to properly interpret specification docu-
ments. However, a number of researchers in electronic de-
sign automation have attempted to automate the design and
validation tasks using information contained in natural lan-

guage documents. Design automation from natural language
has the potential to provide many benefits including reduced
time-to-market, reduced number of design errors, and early
identification of incomplete and inconsistent specifications.

Attempts to perform synthesis from natural language can
be found as early as the late 1980s as part of the first re-
search in high-level synthesis. Researchers have generated
partial designs from natural language specifications [9] by
identifying a set of concepts expressed, together with a tex-
tual pattern for each concept. The approach taken in [4]
defines a grammar to parse natural language expressions,
and generates VHDL snippets. More recently, researchers
have improved on the sophistication of the analysis by rely-
ing on the semi-formal structure of test scenarios described
by acceptance tests [27]. A UML class diagram is gener-
ated based on the entities referred to in the scenario, and
a UML sequence diagram is generated from the sequence
of operations described. Researchers have performed text
mining of hardware specifications to create a domain on-
tology describing relationships between components in the
design [25]. Several previous research efforts have attempted
to generate properties and assertions using different formal
languages including ACTL[7], SystemVerilog [22, 10], and
OCL [14]. However, each of these approaches imposes limi-
tations on the generation process in order to make the prob-
lem tractable. Several techniques rely heavily on manual
interaction to convert the original natural language into a
form which is easier to process [22, 14, 7]. Some techniques
only process a tightly constrained English subset [7].

3.1 Key Problems
Automation from natural language is a many-to-many

mapping problem between the space of natural language de-
scriptions and the space of formal behavioral descriptions.
When performing any such mapping, two essential problems
must be addressed.

• Ambiguity: A single natural language specification
may map to multiple formal behaviors.
• Linguistic Variation: Many different natural lan-

guage specifications may map to the same formal be-
havior.

Ambiguity is clearly bad for the design process and must
be eliminated, or at least managed. Linguistic variation is
positive from the perspective of the user because it allows
him/her greater flexibility of expression. However linguistic
variation increases the complexity of the synthesis process
because more alternatives must be handled by the tool.

Ambiguity in natural language has been defined as the ex-
istence of multiple, alternative linguistic structures for a sin-
gle document. In practice, an ambiguous document results
in the existence of multiple, non-equivalent computational
models. Structural ambiguity describes the condition when
there are multiple valid parses for a given sentence. The
following sentence shows an example of structural ambigu-
ity, “The transmitter initializes the receiver in active mode”.
In this sentence, the prepositional phrase “in active mode”
might refer to either the transmitter of the receiver. The
two different assumptions would result in two different valid
parses of the sentence, and different resulting designs. Func-
tional ambiguity describes the condition where the behavior
is not fully specified, so the computational model is incom-
plete. The following sentence is an example of functional
ambiguity, “When an error is detected, the machine must



enter a valid state”. The particular valid state which must
be entered is not stated so many valid computational mod-
els can satisfy this constraint. Functional ambiguity may be
either intentional or unintentional. Intentional functional
ambiguity, sometimes referred to as vagueness, is inserted
by the specification author in order to give more freedom to
the designers when details are not essential. In the exam-
ple above, the valid state entered by the machine may be a
detail which is not essential to the function of the design.

Linguistic variation describes the aspect of language which
enables a single concept to be expressed in multiple ways.
For a design automation tool to be useful, it should accept
a wide enough range of linguistic variation to allow reason-
able freedom to the designer. Linguistic variation can be
morphological resulting from the existence of synonyms in
the language. For example, the verbs “set” and “assign” are
often used interchangeably in design documents. This type
of variation can be modeled in a straightforward way using
a thesaurus to identify words with the same meaning. Each
word associated with the same meaning can be considered
equivalently and result in identical design/verification arti-
facts. Linguistic variation can also be syntactic where sen-
tences with different structures have the same meaning. An
example in the hardware domain would be the sentences,
“Assign X to one” which is written in the active voice, and
“Signal X is asserted” which is written in the passive voice.

4. AUTOMATIC FEATURE LOCALIZATION
IN HARDWARE DESIGNS

To fulfill tight time-to-market constraints, more and more
blocks from previous designs are reused or third party IP
blocks are licensed. However, such blocks are often only
poorly documented making adjustments to the blocks a dif-
ficult task. Moreover, design teams consist of many members
resulting in frequent exchange of persons that need then to
be trained. We consider techniques for automatic feature
localization in hardware designs. These approaches support
a developer in understanding a design by localizing parts of
the code that implement a certain feature of interest.

4.1 Problem Description
Feature localization is understood as follows. A feature

is some functionality of a circuit design that is triggered by
some input stimuli and can be observed as an output re-
sponse. This view on features explicitly does not account
for non-functional aspects such as throughput or power-
consumption.

The main goal is to understand the functionality of a given
design. Thus, the problem is to identify the parts of the
source code implementing a feature.

The assumption is that the designer is able to provide
some (or better multiple) use cases to trigger the execution
of a feature. For each use case, the feature(s) performed are
known, yielding a mapping between use cases and features.
The better the designer describes the parts of the use case
needed to trigger the execution, the better will the localiza-
tion be. Similarly, if the designer is able to specify where
the execution of the functionality can be observed, the bet-
ter the localization will be. This information is treated as
additional input to improve the resolution of the algorithms.

4.2 Solutions

Figure 4: Highlighting Code

Figure 5: Dynamic Dependency Graph (DDG)

For software feature localization has been proposed early
on already [6] using concept analysis to relate multiple fea-
tures with source code. The underlying analysis when ex-
ecuting the source code has been performed by gathering
coverage information for statement coverage.

This simple approach was extended to hardware where
the application to Register Transfer Level description [17]
as well as descriptions on Electronic System Level [20] is
equally possible. As an advantage of using standard cov-
erage metrics any simulation tool capable of gathering the
relevant information can be applied to perform feature local-
ization. However, concurrency that is inherent in hardware
and many structural dependencies cannot easily be analyzed
using these metrics. A first improvement over the previous
approaches is to replace the earlier discrete grouping of code
pieces into related and unrelated parts per feature by a con-
tinuous approach [17] proposed for debugging before [12].
This allows to reflect the likelihood of a piece of source code
to be related to a feature by a given color, e.g., green denotes
the code is related to the feature under consideration, red
denotes the code is not related to the feature, in between the
color continuously changes from green to red. Additionally,
the hue expresses confidence, i.e., if a large amount of data
supports the conclusion bright, colors are used; given only a
few use cases as support, the code is shown in dark colors.
Figure 4 illustrates this for a piece of source code.

By using mutation testing [24], the degree of automation is
improved [16]. Mutation testing in this case decides whether
a certain change in the design affects the feature under con-
sideration. If this is the case, the modified code pieces are
assumed to be related to the feature. Since mutation testing
requires a sufficient amount of use cases, the generation of
use cases and their annotation with related features has been
automated. Still the strength of the analysis using mutation
testing is limited as only coarse relations between changes
and their effects are reflected without any insight into the
design.

The use of Dynamic Dependency Graphs (DDGs) provides
a much more powerful tool that still relies on dynamic analy-
sis without the need for using static approaches [18]. A DDG
can be created during simulation of a use case, yielding the
relations between all code pieces executed as exemplary il-



lustrated in Figure 4.2. By using the additional information
about relevant output and relevant pieces of input stimuli,
the DDG can be reduced to pieces relevant for a feature.
Using this information as coverage metric and relating it to
source code allows for a much more precise analysis com-
pared to the previous techniques [19]. In a case study, this
approach was even more precise than the available docu-
mentation.

5. REVERSE ENGINEERING
The problem of reverse engineering (RE) is, given a low

level netlist of gates, find a word-level netlist description
which has the same behavior. It can be considered as gen-
eralized technology mapping problem. It can also be con-
sidered as a technique similar to feature localization but on
a lower level of abstraction, i.e., gate level instead of reg-
ister transfer level. An instance would be to start with an
AIG (and-inverter graph, the subject graph) and a list of
components (the library) which contains word-level compo-
nent such as adders, multipliers, and shifters, of various bit-
widths, and to find instances of these components in the sub-
ject graph. One can assume that the library is complete, so
that every node in the subject graph can be covered. Thus
the library might include also the gate types which make
up the subject graph. In the classical technology mapping
problem, there are two classes of methods employed, struc-
tural matching and Boolean matching. Boolean matching is
the more powerful because it suffers less from structural bias.
In recent years, Boolean matching has become the dominant
choice because very efficient techniques have been developed
for this. For example, cut-based mapping, NPN classifica-
tion, pre-computation, table look-up, choice nodes, etc. are
used in an advanced Boolean matching based method (see
e.g., [21]). Also, typically there are many objective functions
to be optimized; area, delay, power, CNF clause count, and
wire count. Mapping is usually based on combinations of
these. Iteration of mapping with changing optimizing crite-
ria is also used. In RE there is a single objective: to find as
many of the high level components in the subject graph as
possible. RE is of interest for a number of reasons:

1. RTL may not be available; the design may be heritage
and there was no initial RTL, it may be an AIG is being
passed between various tools with no accompanying
RTL, it may have come from having bit-blasted an
RTL and synthesized at the bit level,

2. Creating a word-level description of a design to enable
verification or synthesis.

3. Analyzing a competitor’s chip

4. Detecting Trojan hardware

In general, RE is very difficult, but there are circumstances
where the problem is made simpler. According to [15] the
two main steps to solve a reverse engineering problem are:
(1) block identification and (2) matching blocks against com-
ponents in a library. The first step is considered the more
complex part of reverse engineering and no satisfactory so-
lutions have been found so far. This implies that we are
faced with a variety of possibilities in which blocks can oc-
cur and in how they are related to the component. Hence,
the second step can be regarded as generalized equivalence
checking.

EC PIEC

NPIEC

PICEC

SPIEC

SPICEC

SNPIEC

Figure 6: Equivalence checking problems

5.1 Equivalence Checking Problems
We consider different generalizations of equivalence check-

ing to perform block matching of a block represented by a
function f to a block represented by a function g. For exam-
ple, if the number of inputs and outputs of the block equals
the number of inputs and outputs of the component and if
also the order is known, then matching the component to the
block can be done with combinational equivalence checking
(EC). EC is the problem of deciding whether two Boolean
functions f(x1, . . . , xn) and g(x1, . . . , xn) are equal. The
problem can likewise be considered for functions that have
multiple outputs. It has high significance in formal verifica-
tion and is successfully applied to prove circuit equivalence
in industrial environments (e.g., [13]).

However, the assumption that the order of inputs and out-
puts is known is very strict and quite unlikely in practical
reverse engineering problems as it requires a high precision
from the block identification algorithm. If the order is un-
known, other variants of EC can be used to perform block
matching. Permutation-independent equivalence checking
(PIEC) asks whether two functions are equivalent under a
specific permutation of primary inputs and primary out-
puts. Negation-and-permutation-independent equivalence
checking (NPIEC) generalizes the problem by additionally
allowing negation of primary inputs and primary outputs.
Besides in reverse engineering and formal verification, these
problems also play a central role in Boolean matching and
technology mapping (e.g., [3]).

Further generalizations were recently proposed particu-
larly for the application in reverse engineering. In the per-
mutation-independent conditional equivalence checking (PI-
CEC, [8]) problem, the block f has additional control inputs,
which are known in advance. The problem is to find an as-
signment to the control inputs such that the resulting func-
tion is equivalent to g under a permutation of input and
output variables. In the subset permutation-independent
equivalence checking (SPIEC, [26]) problem, the block f can
have more input and output variables than g. The problem
is to find injective functions that map input and output vari-
ables of g to variables of f such that g is equivalent to the
resulting subfunctions.

Fig. 6 summarizes the discussed equivalence checking prob-
lems. An arrow from problem A to problem B means that
A generalizes B. As an example PIEC generalizes EC, since
EC is a specialized version of PIEC in which the input and
output permutation is known.

In the context of reverse engineering, algorithms have been
presented based on constraint satisfaction programming to
solve SPIEC (see, e.g., [26]) or based on Satisfiability Mod-
ulo Theories (SMT) (see, e.g., [8]). In the short run good
algorithms for block identification are required to tackle re-
verse engineering in a larger scale. However, solving block
matching for a variety of different scenarios and in an ef-



ficient manner is the backbone of reverse engineering flows
and therefore also requires special attention.

6. CONCLUSIONS
In this paper we have provided an overview of some of the

main problems associated with the field of Multilevel Design
Understanding. As growing design complexity continues to
be a burden on the efficiency of the design process, we expect
to see increasing interest in these research questions.
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