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Abstract—Behavioral synthesis entails application of a se-
quence of transformations to compile a high-level description
of a hardware design (e.g., in C/C++/SystemC) into a Register-
Transfer Level (RTL) implementation. We present a scalable
equivalence checking framework to validate the correctness of
compiler transformations employed by behavioral synthesis. Our
approach is based on dual-rail symbolic simulation of the input
and output design representations of a transformation. We have
evaluated our framework on transformations applied to several
designs by an open source behavioral synthesis tool, and we
present initial results demonstrating the approach.

I. INTRODUCTION

With rapidly increasing complexity in modern VLSI sys-
tems, designing high-quality hardware at the Register-Transfer
Level (RTL) is challenging. Electronic System Level (ESL)
design provides a promising approach to combat this high
complexity: design functionality is specified at a high level
of abstraction (e.g., with SystemC, C/C++, or domain-specific
language), and translated to RTL by a process known as
behavioral synthesis. Several behavioral synthesis tools are
commercially available [1]–[4]. However, their adoption criti-
cally depends on our ability to certify the result of synthesis,
i.e., ensure that the synthesized RTL conforms to the ESL
description. This task is challenging because of the large
difference in abstraction between ESL and RTL.

A behavioral synthesis tool accepts an ESL description of a
design and a library of hardware resources, and applies a series
of transformations on the former to compile it to RTL. Many
of the transformations are generic compiler transformations,
geared towards reducing code complexity of the generated
design, maximizing data locality, etc. [1]. However, they are
aggressively applied to satisfy exacting efficiency needs for
synthesized hardware, often under delicate, implicit invariants.
Furthermore, the number of transformations is large: it is
common that hundreds of compiler transformations are ap-
plied during behavioral synthesis. It is unsurprising that the
transformations themselves are complex and error-prone, and
can lead to buggy synthesized hardware.

In this paper, we present a verification framework to auto-
matically certify compiler transformations in behavioral syn-
thesis through sequential equivalence checking (SEC). Central
to our approach is symbolic simulation, viz., we symbolically
execute the intermediate representation (IR) of the program
before and after application of each transformation to certify
their semantic equivalence. We demonstrate our framework
to certify the compiler transformations applied by the LegUp

behavioral synthesis tool [5] on a test suite of 6 designs from
various application domains. The most complex design has 188
lines of C, and generates over 15284 lines of RTL.

Compiler certification is an active area of research. Sec-
tion II surveys some of the literature in the area. Many of
these techniques make use of mechanical theorem proving.
However, our approach is different because of the uniqueness
of our application domain. Furthermore, implementations of
the compiler transformations in behavioral synthesis are ag-
gressive, and exploit subtle design invariants to generate highly
optimized designs; mechanical certification of such transfor-
mations by theorem proving is a non-trivial task. Furthermore,
transformation implementations of most commercial synthesis
tools are proprietary and not available to mechanical reasoning
or to customized instrumentation to generate proof obliga-
tions. Thus, we must resort to checking semantic equivalence
between the input and output of a transformation without
requiring knowledge of the actual implementation. On the
other hand, it is well-known that checking equivalence between
two arbitrary programs is undecidable. However, for behavioral
synthesis, this is ameliorated by restrictions imposed by the
synthesis tool. A behavioral synthesis tool accepts designs
that can be transformed into a hardware circuit; many generic
program features are disallowed, including dynamic memory
allocation, system calls, pointer casting, and recursive func-
tions. Finally, our framework can be easily integrated into a
commercial synthesis flow since it accounts for (and exploits)
the information available from behavioral synthesis tools. In
particular, although transformation implementations are un-
available, most commercial tools [1], [3] can provide access
to the IRs before and after the application of a transformation.
We exploit such information to guide SEC without requiring
tool vendors to expose implementation details.

The rest of this paper is organized as follows. In Section II,
we provide background on behavioral synthesis and symbolic
execution, and present related work. In Section III, we pro-
pose our framework. We discuss our experimental results in
Section IV, and conclude in Section V.

II. BACKGROUND AND RELATED WORK

A. Behavioral Synthesis

A behavioral synthesis tool compiles an ESL description of
a hardware design into RTL. Similar to a generic compiler, it
first performs lexical, syntax, and semantic analysis, and builds
an IR of the ESL description. A series of transformations is



then applied to the IR, which can be categorized into three
phases: 1) compiler transformations; 2) scheduling transfor-
mations, which entail computing for each operation the clock
cycle for its execution; and 3) hardware resource binding and
control synthesis. After these transformations, the design can
be represented in RTL. The RTL may be subjected to further
manual tweaks, optimizing it for different parameters.

B. SEC for Behavioral Synthesis

Previous work [6]–[8] developed a scalable SEC frame-
work for certifying RTL designs generated through behav-
ioral synthesis. The SEC framework compares the generated
RTL with the IR obtained after application of compiler and
scheduling transformations. However, such a framework is
meaningful as a certification mechanism only if the initial
compiler and scheduling transformations are correct. Previ-
ous work [6] proposed a theorem proving approach to this
problem: mechanically verify transformation implementations
with a theorem prover, and use these certified implementations
for transforming the design representation. However, such an
approach is impractical for several reasons. First, the number
of transformations is large, e.g., a design can undergo more
than a thousand transformations in course of behavioral syn-
thesis. Second, the complexity of their implementations makes
theorem proving prohibitively expensive in manual effort. Fi-
nally, for most commercial synthesis tools, the transformation
implementations are proprietary and consequently unavailable
for mechanical reasoning. Our approach addresses these defi-
ciencies through a more automated SEC implementation that
is oblivious to implementation details of the transformations.

C. Related Work

There has been research on formally proving compiler
transformations correct by theorem prover. One of the first
certified compilers was developed as part of the Piton project
in the 1980s [9]. More recently, CompCert [10] provides a
formally verified compiler of practical complexity. Vellvm [11]
project formalizes LLVM’s intermediate representation, and
develops a framework for reasoning about programs.

Pnueli et al. proposed the notion of translation valida-
tion [12] for validating the transformations during compila-
tion. Necula used symbolic evaluation techniques from proof-
carrying code to tackle translation validation [13].

There has also been recent research on applying symbolic
techniques to checking equivalence on software level, e.g.,
UC-KLEE [14] and SYM-DIFF [15] use symbolic techniques
to checking the equivalence of software programs.

III. EQUIVALENCE CHECKING FRAMEWORK

A. Notations and Definitions

Let P be a program, V be the set of variables of P ,
and VO ⊆ V be the set of observable variables. Intuitively,
variables that we can observe during the execution of P are
called observable variables; we assume that the VO includes
the input, output, and global variables.

Definition 1 (State): A state s , {〈v, u〉 | v ∈ V,
u is the value of v} of a program P is the set of variables
in P with their values.

Definition 2 (Observable State): An observable state sO
at state s of a program P , denoted by sO(s), is a projection of
s, where variables in sO are restricted to observable variables
in program P .

Remark: We leave the domains for the values of variables
undefined for this presentation, but assume that they can be
determined from the context. Also, we assume that the domain
can be both concrete or symbolic; this permits us to use
the same notation for both concrete and symbolic states. For
simplicity, we use s[v] to denote the value, either concrete or
symbolic, of variable v in state s.

Definition 3 (Path): A path π , s0, c1, s1, c2, s2, . . . ,
cn, sn of a program is an alternating sequence of states and
state transition conditions, starting from an initial state s0 and
ending with a terminal state sn, where ci is the state transition
condition (Boolean expression over program variables) from
si−1 to si for all 1 ≤ i ≤ n.

Definition 4 (Path Condition): Let π , s0, c1, s1, c2, s2,
. . . , sn−1, cn, sn be a path of a program P . The path condition
pc ,

∧n
i=1 ci of path π is a conjunction of all transition

conditions on π. We use π[pc] to denote the path condition
of π.

Definition 5 (Path Compatibility): Given two programs S
and T with the same set of observable variables VO, let π be
a path of S with initial state s0 and path condition pc, and π′
be a path with initial state s′0 and path condition pc′ of T . We
say π and π′ are compatible if sO(s0) = sO(s′0) and pc ∧ pc′
is satisfiable. Paths π and π′ are called a compatible path pair
of S and T .

Definition 6 (Path Equivalence): Let π be a path of pro-
gram S with terminal state sn, and π′ be a path of program
T with terminal state s′m, and suppose that programs S and
T have the same set of observable variables VO. We say path
π and π′ are equivalent, denoted by π ∼ π′, if π and π′ are
compatible, and for each variable v ∈ VO, sn[v] = s′m[v].

Informally, two paths are equivalent if they are compatible, and
they have the same observable state at their terminal states.

Definition 7 (Program Equivalence): Let S and T be two
programs, we say that program S and T are equivalent,
denoted by S ∼ T , if every compatible path pair of S and T
has the same observable state at their terminal states. Formally
let Paths(S) and Paths(T ) be all paths of program S and
T respectively, program S and T are equivalent if for each
path π ∈ Paths(S) and every path π′ ∈ Paths(T ) that is
compatible with π, π is equivalent to π′.

We define the correctness of a transformation by the
equivalence of the observable behavior of the source program
S and the target program T . Informally S and T are equivalent
if feeding the same inputs to both programs, they produce the
same output, and have the same effect on the environment
(modification to global variables) when terminating.

Definition 8 (Transformation Correctness): Let T be a
transformation which takes a source program S as input and
produces a target program T as the output. We say T is a
correct transformation on program S if S ∼ T .



B. Approach Overview

Suppose a transformation T takes a program S as input and
generates a program T as output. We validate the correctness
of transformation T when applied to S by checking that T is
equivalent to S. According to Definition 7, we need to prove
that S and T has the same observable state at their terminal
states for all compatible path pairs.

As a pedagogical simplification, assume that all the paths
in S and T are enumerable. Also assume that S and T have the
same function signature and global variables; this assumption
does not limit our approach because compiler transforma-
tions usually do not change function signature unless there
are parameters that are irrelevant or unused in the function
body, which can be easily detected. Finally, assume that for
each observable variable of S we can find the corresponding
variable for T and vice versa. We then proceed as follows. We
assign the same symbols to the input and non-constant global
variables of S and T , then symbolically execute them. After
enumerating all paths of S and T , for each compatible path
pair π in S and π′ in T , we check that π and π′ have the same
observable behavior; this check is done by an SMT solver by
checking the equality between the symbolic expressions of the
(symbolic) values of the observable variables.

Algorithm 1: CHECK-EQUIVALENCE(S, T )

1 sI ← SYMBOLIZE-INPUTS(S, T ) . Symbolize inputs
2 Π← SYM-EXE(S, sI , nil) . Symbolically Execute S
3 foreach π ∈ Π do
4 sO ← GET-OBSERVABLE-STATE(π)
5 Π′ ← SYM-EXE(T, sI , π[pc])
6 foreach π′ ∈ Π′ do
7 s′O ← GET-OBSERVABLE-STATE(π′)
8 if not CMP-STATE(sO, s

′
O, π

′[pc]) then
9 print 〈sO, s′O〉 . Report inequivalences

10 return false

11 return true

Algorithm 1 provides a high-level description of our ap-
proach. Function CHECK-EQUIVALENCE takes two programs
S and T as arguments. Subroutine SYMBOLIZE-INPUTS cre-
ates symbols for inputs of S and T . Subroutine SYM-EXE
symbolically executes S with symbolic inputs, and collects
all paths of S. For each path π with path condition π[pc]
of S, subroutine GET-OBSERVABLE-STATE collects the ob-
servable state sO corresponding to the terminal state in path
π. Subroutine SYM-EXE symbolically executes T with the
same symbolic inputs under condition π[pc], and collects all
paths of T . Since all paths found in T are under the condition
π[pc], therefore they are all compatible path with π. For each
path π′ of T found under the condition of π[pc], subroutine
CMP-STATE checks if π and π′ have the same observable
state at termination. If the observable states are not equal,
the algorithm reports the inequivalences, otherwise it proceeds
until all paths of S and T are checked.

Figures 1 and 2 show two programs foo and bar which
are defined in C and their independent symbolic execution
trees. Before execution, foo and bar have the same symbolic
input { 〈∗f, F〉 , 〈x, X〉 }, where F and X are symbolic values of

1 int foo(int *f, int x){
2 if(x>1) {
3 *f = *f + 1;
4 return 0;
5 } else {
6 *f = *f - 1;
7 return 1;
8 }
9 }

*f: F+1
 x: X
 r: 0

X>1 X≤1

*f: F-1
 x: X
 r: 1

*f: F
 x: X
 r: nil

(a) (b)

Fig. 1: A simple function foo in C with its symbolic execution
tree. (a) Function foo in C. (b) Symbolic execution tree of
foo, where F and X are symbolic values for *f and x, r
denotes the return value, and nil denotes that the value is
not yet available.

1 int bar(int *f, int x){
2 if(x>3) {
3 *f = *f + 1;
4 return 1;
5 } else {
6 *f = *f - 1;
7 return 1;
8 }
9 }

*f: F+1
 x: X
 r: 1

X>3 X≤3

*f: F-1
 x: X
 r: 1

*f: F
 x: X
 r: nil

(a) (b)

Fig. 2: A simple function bar in C with its symbolic execution
tree. (a) Function bar in C. (b) Symbolic execution tree of
bar, where F and X are symbolic values for *f and x, r
denotes the return value, and nil denotes that the value is
not yet available.

X>1 X≤1

X>3 1<X≤3 X≤1

foo
bar

s1

*f: F
 x: X
 r: nil

*f: F+1
 x: X
 r: 0

*f: F-1
 x: X
 r: 1

*f: F
 x: X
 r: nil

*f: F
 x: X
 r: nil

*f: F+1
 x: X
 r: 1

*f: F-1
 x: X
 r: 1

*f: F-1
 x: X
 r: 1

s0

s2

s4

s7

s3

s6s5

X>1 X≤1

Fig. 3: Symbolic execution tree of function foo and bar,
where bar is executed after foo, and based on the execution
condition of foo.

variables *f and x, respectively. Function foo has two paths,
the final observable states are { 〈∗f, F + 1〉 , 〈x, X〉 , 〈r, 0〉 }



and { 〈∗f, F− 1〉 , 〈x, X〉 , 〈r, 1〉 }, with conditions X > 1
and X ≤ 1, respectively. Similarly, the two final observable
states of function bar are { 〈∗f, F + 1〉 , 〈x, X〉 , 〈r, 1〉 } and
{ 〈∗f, F− 1〉 , 〈x, X〉 , 〈r, 1〉 }, with conditions X > 3 and
X ≤ 3, respectively.

Fig. 3 shows the symbolic execution tree when function
bar is executed under the path condition of function foo. In
Fig. 3, state s0 is the initial state of function foo, states s3
and s4 are the initial states of function bar, states s1 and
s2 are terminal states of foo, and states s5, s6 and s7 are
terminal states of bar. We need to conduct three equivalence
checks:

• s1 vs. s5, where the return values are not equivalent;

• s1 vs. s6, where the values of *f are not equivalent,
and return values are also not equivalent;

• s2 vs. s7, the states are equivalent.

Therefore, our checking algorithm returns that foo and bar
are not equivalent, and reports the inequivalences.

IV. EXPERIMENTAL RESULTS

As initial demonstration of the viability of the approach, we
have applied it for validation of transformations on a test suite
of 6 designs. All designs are implemented in C. We used the
open-source LegUp behavioral synthesis tool [5] to synthesize
the designs. Table I shows the complexity of these designs.

TABLE I: Summary of Experimental Results

App. Domain Cryptography Signal Processing Image Processing
Design TEA SHA-1 FIR FFT YUVToRGB DCT
Lines of C 11 33 37 188 20 48
Lines of RTL 1010 5016 1145 15284 841 1708
# Transformations 10 18 14 22 11 6
# Successful Checks 8 16 14 19 7 6
Success Rate (%) 80 88.89 100 86.36 64.64 100
Avg. Time (s) 1.3 4.6 1.1 10.9 1.2 1.7
Memory (MB) 9.87 18.26 9.59 11.54 9.90 9.93

We conducted our experiments on a laptop with Debian
6.0.6 running on a 2.66 GHz Intel dual-core i7 processor
with 8 GB of memory. Our experiments were run with a
cutoff time of 60 seconds; certifications that take longer than
this time are classified as failures. The reason is that most
successful transformation certifications were empirically found
to complete within 10 seconds, if at all; if symbolic execution
takes more than 60 seconds, it is unlikely to complete in any
reasonable time. Based on this observation, our projection is
that the impact of making the cutoff longer on the number of
successful transformations would be insignificant.

Table I shows the statistics of our experiments, viz., the
number of transformations that the behavioral synthesis tool
applied,1 the number of transformations we can successfully
check, the rate of successful checks, and the time and memory
usages. In all successful cases, the running time and memory
usage are moderate. We successfully validated 86 percent
(70 out of 81) of transformations in total. We can check all
transformations on FIR and DCT designs. We were not able
to check 11 out of 81 transformations. This is mainly because

1Some transformations are applied more than once by the synthesis tool.

every design in our test suite has loop structures, except DCT;
if the transformation changes some operations inside the loop,
the expression sent to the SMT solver may be very long since
it will correspond to the computation of the unrolled loop.
Therefore the solver fails to return the result within the time
limit (60 seconds in our experiments).

V. CONCLUSION AND FUTURE WORK

We have presented an equivalence checking framework
to validate the correctness of compiler transformations in
behavioral synthesis. We use symbolic execution technique to
explore (possibly all) paths of the source and target program of
each transformation. Although simple, our framework shows
promise, e.g., in our initial experiments we can automatically
certify more than 86% of transformations applied by a behav-
ioral synthesis tool on our test suite.

In future work, we plan to extend our SEC framework to
handle more aggressive transformations. Our planned future
extensions also include handling unbounded loop structures
and designs with a large number of function calls.
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