

Universal Neural Network Acceleration via

Real-Time Loop Blocking

Jiaqi Zhang, Xiangru Chen, Sandip Ray

Department of Electrical and Computer Engineering

University of Florida

{jiaqizhang, cxr1994816}@ufl.edu, sandip@ece.ufl.edu

Abstract—There is a recent trend that the DNN workloads

and accelerators are increasingly heterogeneous and dynamic.

Existing DNN acceleration solutions fail to address these chal-

lenges because they either rely on complicated ad hoc mapping

or clumpy exhaustive search. To this end, this paper first pro-

poses a formalization model that can comprehensively describe

the accelerator design space. Instead of enforcing certain cus-

tomized dataflows, the proposed model explicitly captures the

intrinsic hardware functions of a given accelerator. We connect

these functions with the data reuse opportunities of the DNN

computation and build a correspondence between DNN loop

blocking and accelerator constraints. Based on this, we imple-

ment an algorithm that efficiently and effectively performs uni-

versal loop blocking for various DNNs and accelerators without

manual specifications. The evaluation shows that our results

manifest 2.1x and 1.5x speedup and energy efficiency over data-

flow-defined algorithm as well as significant improvement in

blocking latency compared with search-based methods.

Keywords-neural network; loop blocking; accelerator

I. INTRODUCTION

The revival of machine learning has led to an explosion of
deep neural network (DNN) models. Compared with the gen-
eral-purpose processors, customized accelerators demon-
strated supreme energy efficiency in processing these both
computation- and memory-intensive workloads. Conse-
quently, the past few years also witnessed a burst of DNN ac-
celerators [1]–[3]. With the massive and ever-emerging DNN
models and accelerators deployed in our daily life, two chal-
lenges can be expected. First, both the DNNs and accelerators
appear in various architectures, including the layer type, size,
dimension, and accelerator shape, dataflow, etc. Second, since
more AI tasks are executed on the edge, there will be more
dynamic DNN acceleration requests. On one hand, different
models are called on the fly when a certain function is evoked.
On the other hand, the mobility of users makes it a common
case to migrate the service among the edge and fog nodes.

Considering the heterogeneity and dynamic in DNN ac-
celeration, there is a timely demand for a method that univer-
sally optimizes the acceleration of any DNN computation on
a given accelerator in real time. There are existing works [4]
that address the heterogeneity in DNN computation by uni-
formly parameterizing different layers. However, since there
lacks a standard to regularize the heterogeneous accelerators
and directly connect DNN computation with the accelerators,

existing works [5]–[7] still require ad hoc optimization or
time-consuming exploration of the large design space.

Driven by this motivation, this work proposes to address
the need for a systematic approach to solving the universal
DNN acceleration problem. Inspired by previous work [4] that
generalized DNN layers into standard general convolution
(GCONV) operations, we further propose to formalize the ac-
celerators. Compared with other models that manually specify
the dataflows, our formalization focuses on the intrinsic hard-
ware functions of the accelerators. This further allows us to
build a direct connection between DNN and the accelerator,
which is invariable despite the heterogeneity. Therefore, the
dataflow can be automatically and flexibly determined, and
the loop blocking is explicitly dictated by the hardware func-
tion and resource constraints. Based on the proposed model,
we implement a universal neural network acceleration algo-
rithm that automatically fills the DNN computation loops into
the accelerator with optimized data reuse on the fly.

In summary, this paper makes the following contributions:
(1) We propose a dataflow-independent but function-

based DNN accelerator formalization that can comprehen-
sively model the accelerator design space.

(2) We build a direct connection between DNN computa-
tion and the formalized accelerator model that explicitly de-
scribes the blocking constraints. Based on this, we implement
a universal algorithm for DNN acceleration.

(3) The experiments on four popular DNNs and three var-
ious accelerators show that the proposed method is both effec-
tive and efficient in DNN acceleration.

II. BACKGROUND AND RELATED WORKS

A. DNN Computation

This work is based on the GCONV model proposed in [4].
A 1-D GCONV operation is described as a nest of four loops,
i.e., g for groups of inputs, op for groups of kernels, ks for
kernel size and opc for output size as in Fig. 1. This 1-D
GCONV can be scaled up to multiple dimensions to represent
all the computation in DNNs, even for traditionally non-con-
volution layers. For example, a convolution and a local re-
sponse normalization layer are described by GCONV as in
Fig. 2.

GCONV model preserves all the data reuse opportunities
in DNNs. There are parallel and overlap reuses in each dimen-
sion. Specifically, the inputs and kernel parameters are reused

by computation in loops op and opc respectively and the out-
puts are reused through reduction in ks (parallel reuse). In ad-
dition, the computation of neighboring outputs share the in-
puts overlapped (when ks > s and opc > 1) in the convolution
windows (overlap reuse). Most efficient NN accelerators are
designed to maximize these reuses.

B. Loop Blocking in DNNs

It is demonstrated by previous works [6][5] that different
accelerator dataflows can be represented by the loop blocking,
i.e., how the nested loop is exchanged and blocked in different
spatial (PE) and temporal (memory) dimensions. For example,
the local response layer in Fig. 2 can be mapped to an accel-
erator with 2-level blocking as

𝑜𝑝𝑐𝑊_𝑜𝑝𝑐𝐻_𝑘𝑠𝐶_𝑜𝑝𝑐𝐶 | 𝑜𝑝𝑐𝑊_𝑜𝑝𝑐𝐻_𝑘𝑠𝐶_𝑜𝑝𝑐𝐶 =
14_14_3_4 | 2_2_2_16.

The representation is similar as in [6], where | separates the
different blocking dimensions and the inner loops are on the
left. Different loop blocking strategies lead to different perfor-
mance and energy efficiency. Since the accelerators exhibit
various constraints in the computation and memory resources
and on-chip communication patterns, choosing the optimal
loop blocking is a major challenge in DNN acceleration.

C. Related Works

Early accelerators are bound to fixed dataflows. To im-
prove the utilization, later works [3][2] introduce flexible da-
taflows to accommodate the various DNN computation but
they still require manually optimized dataflow for each layer.
This further motivates the automated mapping of the DNNs.
A common approach to automation is to enumerate all the
possible loop blocking strategies within the dataflow con-
straints and choose the optimum based on certain evaluation
model [5]–[7]. This is not fully automated because it requires
manual directives on the dataflow constraints for different lay-
ers and accelerators. For example, the row-stationary dataflow
of convolution layers in Eyeriss [3] is represented as S_C |
Q_K | R_C_P (𝑘𝑠𝐻_𝑘𝑠𝐶 | 𝑜𝑝𝑐𝐻_𝑜𝑝𝐶 | 𝑘𝑠𝑊_𝑘𝑠𝐶_𝑜𝑝𝑐𝑊 in
GCONV) in row | column | scratchpad in [5]. These works
also suffer from long running time since they can only use the
dataflow constraints to prune the search space but not directly

dictate the loop blocking. In [4], a uniform algorithm to auto-
matically map any layer is proposed, but there still lacks a for-
malization to make the algorithm universal even for various
accelerators.

III. DNN ACCELERATOR FORMALIZATION

Our accelerator formalization focuses on the PE array and
memory characteristics that constrain the loop blocking.

A. PE Array Model

To reduce memory access, the DNN accelerators usually
arrange a group of processing elements (PEs) into multiple di-
mensions and introduce exquisite interconnections among
them to exploit data reuse. With little to no difference in the
implementation of individual PEs, to model the PE array is
indeed to abstract the interconnections for data reuse. Instead
of binding the accelerator with a certain dataflow, we focus on
the intrinsic functions of the interconnections. In Table I, we
enumerate the possible hardware functions for data reuses dis-
cussed in Section II.A in a systematic manner.

First, the temporal reuse of all the data (both parallel and
convolution reuse) can be intrinsically realized by keeping the
data stationary in memory without any special hardware
function. For example, op can be unrolled temporally to keep
the input stationary in memory. The innermost temporal block
keeps the data stationary in PEs. For output parallel reuse that
requires reduction, it can also be performed in a stationary
manner, i.e., read-reduce-write, using the reduction function
within the PE. Therefore, the temporal data reuse functions are
not explicitly modeled. Another function not explicitly mod-
eled is the spatial parallel reuse of inputs and kernel parame-
ters. It is realized by broadcast (Fig. 3(a)) through the data
bus, which is commonly used in modern accelerators. We will
clarify the enforced broadcast by the memory model in Sec-
tion III.B. However, a reduction function (e.g., the adder tree
in Fig. 3(b)) over a certain dimension needs to be clearly de-
fined to dictate if the output parallel reuse can be exploited.

As for the convolution reuse, as shown in Fig. 4, the over-
lapping of convolutional windows provides reuse opportuni-
ties for the inputs, kernels, or outputs when the other two types

TABLE I. DATA REUSE FUNCTIONS. THE FUNCTIONS IN ITALIC ARE

EXPLICITLY MODELED IN OUR FORMALIZATION.

Type Data Loop Dimension Function

Parallel

Input

Kernel
op

opc

Spatial Broadcast

Temporal Stationary

Output ks
Spatial Reduction

Temporal Stationary

Convolution Input
ks

opc

Spatial Diagonal

Temporal Stationary

Spatial+Temporal Shift

for g.i in range(N[dim][g]):
 for op.i in range(N[dim][op]):
 for opc.i in range(N[dim][opc]):
 for ks.i in range(N[dim][ks]):
 O[g.i][op.i][opc.i] += I[g.i][opc.i+ks.i] × K[g.i][op.i][ks.i]

Fig. 1. 1-D GCONV model which can be scaled up to multiple di-

mensions. N[dim][param]: the value of the parameter in the dimen-
sion. O: output. I: input. K: kernel parameter. The stride and padding

are omitted.

(b) N[C][opc]=64, N[C][ks]=5,
N[H][opc]=28,
N[W][opc]=28

(a) N[C][ks]=64, N[C][op]=128,
N[H][opc]=28, N[H][ks]=3,
N[W][opc]=28, N[W][ks]=3

Fig. 2. (a) Convolution layer with 128 output channels and 3×3 kernels.

(b) LRN layer that normalizes on 5 adjacent channels. There are 64

input channels and 28×28 outputs in both. C: channel. H: height. W:

width. Parameters equal to 1 are omitted.

PE0

PE1

PE2

+
+

Tree
Adder

PE00

PE10

PE20

PE01

PE11

PE21

PE02

PE12

PE22

B
U

S

PE0

PE1

PE2

reg

reg

reg

cycle1

cycle2

PE0

PE1

PE2

B
U

S

(b) (c) (d)(a)

Fig. 3. Spatial reuse functions. (a) Broadcast. (b) Reduction. (c) Diago-

nal. (d) Shift.

of data are unrolled. Note that since not all the inputs are uti-
lized for the computation of all the outputs (e.g., I0, I1, I3, I4),
the unrolling of inputs (Fig. 4(b) and (c)) always results in in-
effectual computation. Therefore, we focus on the unrolling of
kernels and outputs with convolution reuse of inputs (Fig.
4(d)). To exploit the convolution reuse, both the kernels and
outputs can be either spatially or temporally unrolled. When
they are unrolled in different spatial dimensions, the inputs
can be reused by diagonal broadcasting (Fig. 3(c)). And when
one of them are unrolled temporally, the reuse of inputs should
be implemented by shift function between the PEs (Fig. 3(d)),
where the inputs are shared by different PEs in different cy-
cles. Only accelerators with diagonal or shift functions imple-
mented can exploit convolution reuse spatially.

With the data reuse functions defined, the PE array is de-
scribed by a vector

[PE size, reduction, diagonal, shift]

in each dimension in our model, which clarifies the PE array
size besides the three reuse functions. We explicitly indicate
if the reuse functions are not-available (N), allowed (A) or
mandatory (M). For example, although [2] provides an adder
tree that connects all the PEs, reduction can be optionally per-
formed, as long as the number of outputs does not exceed the
capacity. This model is demonstrated to describe any multi-
dimension rectangular PE array. Table II lists three of the most
representative accelerators.

B. Memory Model

There are three kinds of data, i.e., inputs, kernel parame-
ters and outputs (partial results) in the memory system. We
model each level of memory for each kind of data as
[capacity (B), bandwidth (B/cycle), associativity in PE dim1, asso-

ciativity in PE dim2, …]

as shown in Table II.
For simplicity, we assume all the accelerators implement

8-bit data and computation as in [1]. Minus values in the ca-
pacity and bandwidth represent sharing between different
kinds of data. The associativity bits indicate if all the PEs in a
certain dimension share the memory capacity and bandwidth.
Usually, the local storage is exclusive and global buffers are

shared by all. The association bit can also be utilized to model
the mandatory broadcasting by forcing the PEs to share only
one data. For example, the input is broadcast to the entire row
of PEs (the first dimension) in [1]. Note that the capacity and
bandwidth pertain to each associated memory.

Although Table II only lists the formalized model for local
storage and global buffer, this model flexibly applies to dif-
ferent memory hierarchies. We include the entire memory hi-
erarchy of each accelerator in the experiments.

IV. UNIVERSAL NEURAL NETWORK ACCELERATION

Based on the PE array and memory formalization models,
we propose in this section a real-time universal loop blocking
scheme.

A. Connection between the Formalized Accelerators and

DNN Computation

Traditionally, there is no direct connection between the
computation and the underlying hardware resources in the lit-
erature. Therefore, the accelerators are bound to a specific da-
taflow, i.e., fixed loop ordering and blocking, which are opti-
mized based on the previously adopted stereotypes. In this
work, we build a universal correspondence that systematically
matches various DNN computation with various accelerators.
With the GCONV model introduced in Section II.A and ac-
celerator formalization proposed in Section III, the DNN
workloads can be mapped to the accelerators with rotatability,
and the goal is to fill the accelerators with DNN loops to elim-
inate the idle resources.

Rotatability. Normally, the accelerator possesses two or
more spatial dimensions and a single hierarchical temporal di-
mension. The loops of any dimension of GCONV can be un-
rolled in any dimension of the accelerator. For instance, 𝑘𝑠𝐶 ,
𝑘𝑠𝐻 and 𝑘𝑠𝑊 in Fig. 2 can all be unrolled in any blocking di-
mension with reduction function.

Filling blocking dimensions. Due to the different features
of computation and memory resources, spatial and temporal
blocking is not exactly the same. Spatially, each dimension is
filled independently and the spare PEs will be left idle. There-
fore, to improve the performance, the maximal number of PEs
need to be occupied. Temporally, the dimension is unified
though hierarchical. One temporal blocking can span multiple
memory levels for different data types. For example, unrolling
op may keep the input stationary in local scratchpad but need
to fetch the kernel from the global buffer. For temporal block-
ing, it is not required to occupy all the available resources. In-
stead, it is preferred to reduce low-level memory access by
fully exploiting the high-level memory.

Resource limitations. The data reuse functions in the ac-
celerator PE array model determines whether a loop can be

TABLE II. FORMALIZATION OF REPRESENTATIVE ACCELERATORS.

Accelerator PE Model Memory Model

Eyeriss [3]
Dim1 (row): [12, A, A, N]

Dim2 (column): [14, N, A, N]
Local storage: K: [224, 1, False, False], I: [12, 1, False, False], O: [24, 1, False, False]

Global buffer: K: [4096, 4, True, True], I: [51200, 1, True, True], O: [-2, 4, True, True]
Eager Prun-

ing [2]

Dim1 (PE array): [512, A, N, A]

Dim2 (subsystem): [4, A, N, N]

Local storage: K: [1, 1, False, False], I: [64, 512, True, False], O: [32, 32, True, False]

Global buffer: K: [786432, 32, True, False], I: [786432, 32, True, False], O: [786432, 32, True, False]

TPU [1]
Dim1 (row): [256, N, N, N]

Dim2 (column): [256, M, N, N]

Local storage: K: [1, 1, False, False], I: [1, 1, True, False], O: [1, 1, False, False]

Global buffer: K: [2097152, 45, True, True], I: [12582912, 256, True, True], O: [-2, 256, True, True]

O0 O1 O2

K0

K1

K2

I0 I1 I2

I2 I3

I4

I1

I2 I3

(b) (c) (d)

I0 I1 I2

O0

O1

O2

K0 K1 K2

K0 K1

K0

I0 I1 I2

K0

K1

K2

O0 O1 O2

O0 O1

O0

O0

O1

O2

K0

K1

K2

I1

I0

I2

I3

I4 (a)
Fig. 4. Convolution reuse patterns for each type of data. (a) is an example
of convolution. Each box on the inputs is the convolution window of

each output. (b) to (d) indicate the convolution reuse (red line) of each

type of data (round) when unrolling the other two (square).

unrolled in a certain dimension according to Table I. If the
loop unrolling is allowed or mandatory, the key limitation for
the blocking is the resource requirement. As shown in the
“used” box in Fig. 5, when nothing is unrolled (unrolling fac-
tor is 1), only one PE and the storage for one data of each type
are required.

For each blocking, the resource requirements expand with
the unrolling factor differently based on the exact parameter.
The temporal unrolling is constrained by the memory capacity
and the spatial unrolling is constrained by both the PE size and
the maximal data in that dimension, which is dictated by the
available operator registers, i.e., the highest-level memory.
Exploiting the data reuse opportunity can reduce the capacity
requirement. The blank cells in Fig. 5 indicate the parallel re-
use and +I1/I2 entries indicate the convolution reuse which is
smaller than ×uf only when the unrolling factors of both opc
and ks are above 1. Note that the resource requirements are
multiplied on blockings of different parameters (e.g., ks, op,
opc, g) and DNN dimensions (e.g., C, H, W).

Despite bandwidth’s impact on the data loading time, it
does not constrain the mapping of the network. Therefore, in
the loop blocking, we only increase the data reuse in all the
spatial dimensions to reduce the bandwidth requirement.

B. Loop Blocking Algorithm

With the accelerator formalization and resource require-
ment model, it is straightforward to design a loop blocking al-
gorithm that universally applies to any DNN and any acceler-
ator in real time.

For brevity, Fig. 6 only shows the critical steps of the al-
gorithm. The key insight is to fill dimensions with the most
exclusive functions first in case they will be left idle. Step 1
first unrolls opc and ks of DNN dimensions with convolution
reuse in spatial blocking dimensions with diagonal and shift
functions. Step 2 further unrolls ks in spatial dimensions with
reduction functions. In these two steps, the mandatory func-
tions are filled first to avoid underutilization. The blocking
size is calculated directly by solving the maximal unrolling
factor from the resource requirement in Fig. 5 based on the
existing blockings and the constraints. Then in Step 3, if there
is still DNN dimension with convolution reuse not unrolled,
ks and opc of that dimension are both unrolled temporally for
stationary reuse. In Step 4 and Step 5, loops with reuse op-
portunities are further unrolled to fill the spare spatial dimen-
sions and within the memory hierarchy (high-level first). For
the unrolling in each step, there is no required order for the

dimensions or parameters. Our experiments show the order af-
fects the average latency and data movement by less than 5%.

V. EVALUATION

A. Methodology

The algorithm in Section IV.B is implemented in Python
to automatically perform loop blocking given a DNN work-
load and an accelerator defined using the formalization model.
We build a simulator consistent with that in [4][3] to evaluate
the running cycles and detailed data movement. The running
cycles count in both the computation and data loading cycles.
We generate the energy consumption using CACTI [8] for
RAMs and Synopsys Design Compiler for registers based on
the capacity and bandwidth.

We evaluate the loop blocking algorithm on the three ac-
celerators in Table II. Four DNNs, i.e., AlexNet (AN) [9],
ResNet-50 (R50) [10], YOLO [11], and Transformer (TFM)
[12], are employed as the workloads. Although ER (Eyeriss)
and EP (Eager Pruning) do not target DNNs with no convolu-
tion reuse opportunities, TFM is still evaluated on them for
comprehensiveness. Since TPU is proposed for batch pro-
cessing, we assume a mini-batch of 32 for the DNNs in TPU.

We adopt three baselines as listed in Table III. BL1 and
BL2 rely on manually specified dataflow for each accelerator.
BL1 searches the design space for the best loop blocking that
obeys the dataflow, BL2 determines the unrolling factors
based on the resource requirements as in our method. BL3 uti-
lizes the reuse functions to dictate the search, which is ex-
pected to have a larger search space than BL1 and thus can
result in the best result but the longest search time.

B. Experiment Results

Design space. Fig. 7 shows the performance and data
movement energy of AN layer LRN1 on EP in various loop
blockings. By comparing (a)/(c) with (b)/(d), it can be ob-
served that the manual dataflow in BL1 and BL2 limits the
design space. The function-defined constraint can generate

K I O
memory

L0

K I O
max data

PE

available
resources

used
× uf × uf × ufunroll g:

× uf × ufunroll op:

+ I1 × ufunroll opc:

× uf + I2unroll ks:

× uf × uf × uf
× uf × uf

+ I1 × uf
× uf + I2

× uf
× uf
× uf
× uf

Temporal Unrolling Spatial Unrolling

I1=(uf-1)×g×opc

I2=(uf-1)×g×ks

PE=g×op×opc×ks

K=g×op×ks

I=g×(ks+(opc-1))

O=g×op×opc

Resource
requirement

equations

L1

Fig. 5. Resource requirement in temporal and spatial unrolling. uf: un-

rolling factor. L0/L1: high/low memory levels.

Conv reuse: ks > s, opc > 1

ks, opc -> memory
Step 3

I parallel reuse: op > 1

op -> spatial

K parallel reuse: opc > 1

opc -> spatial
Step 4

I parallel reuse: op > 1

op -> memory

K parallel reuse: opc > 1

opc -> memory

O parallel reuse: ks > 1

ks -> memory
Step 5

O parallel reuse: ks > 1

ks -> reduction==M/A
Step 2

Conv reuse: ks > s, opc > 1

ks, opc -> diagonal==M/A
ks or opc -> shift==M/A

Step 1

Fig. 6. Our implemented loop blocking algorithm. g is unrolled only

when there is no other parameter.

TABLE III. BASELINES IN THE EVALUATION AND OUR METHOD. 𝑜𝑝𝑐𝐵

REPRESENTS THE LOOP FOR BATCH PROCESSING. THE DATAFLOW

CONSTRAINTS SPECIFY THE LOOP ORDERINGS IN SPATIAL DIMENSION 1 |

SPATIAL DIMENSION 2 | INNER TEMPORAL DIMENSION.

Method Dataflow Constraints Blocking

BL1 ER: 𝑘𝑠𝐻_𝑘𝑠𝐶 | 𝑜𝑝𝑐𝐻_𝑜𝑝𝐶 | 𝑘𝑠𝑊_𝑘𝑠𝐶_𝑜𝑝𝑐𝑊 …

EP: 𝑘𝑠𝑊_𝑘𝑠𝐻_𝑜𝑝𝐶 | 𝑘𝑠𝐶 | 𝑜𝑝𝑐𝑊_𝑜𝑝𝑐𝐻 …

TPU: 𝑜𝑝𝐶 | 𝑘𝑠𝐶_𝑘𝑠𝑊_𝑘𝑠𝐻 | 𝑜𝑝𝑐𝐵_𝑜𝑝𝑐𝑊_𝑜𝑝𝑐𝐻 …

Search

BL2 Calculate

BL3 Reuse functions Search

Our Reuse functions Calculate

loop blocking with better performance and energy efficiency.
By comparing the results of BL3 and our method in (b) and
(d), it shows that our method achieves near-optimal loop
blocking.

Loop blocking results. To evaluate the loop blocking re-
sults of different methods, we focus on the performance and
data movement energy. Fig. 8 shows the speedup results. Our
method gains 1.7x and 2.1x speedup on average over BL1 and
BL2 that rely on pre-defined dataflows. Compared with the
optimum-guaranteed BL3, our method achieves 78% to 99%
performance (an average of 88%). The results on the CNNs
are slightly worse because they manifest more complicated re-
use patterns. Fig. 9 shows the total data movement energy con-
sumption by the entire system. Our method results in a 32%
decrease and 14% increase in the data movement energy com-
pared with BL2 and BL3.

Overhead. To emphasize the ability of real-time loop
blocking, we list in Table IV the time spent on loop blocking
by BL3 until convergence and our method. For fairness, we
also include the time that BL3 takes to find a loop blocking
with the performance and data movement similar to our re-
sults. The experiments are run on an Intel Xeon E5 CPU. For
exact same layers, loop blocking is performed only once. As
listed, our function-defined accelerator model and calculation-
based loop blocking finishes all the DNNs within 0.2 seconds
while the traditional search algorithm takes more than 1000x
time to explore the design space and perform evaluation.

VI. CONCLUSION

In this era with increasing diversity and dynamic in both
DNN computation and accelerators, a method that can effi-
ciently and effectively map any DNN to a given accelerator is
in timely demand. Driven by this need, we first build a model
to formalize various DNN accelerators in a function-defined

way and then a direct connection to eliminate the semantic gap
between the DNN computation and accelerators. This allows
uniform and fully automated real-time loop blocking algo-
rithm for various workloads and accelerators.

REFERENCE

[1] N. P. Jouppi et al., “In-Datacenter Performance Analysis of a Tensor
Processing Unit,” in Proceedings of the International Symposium on
Computer Architecture (ISCA), 2017, pp. 1–12.

[2] J. Zhang, X. Chen, M. Song, and T. Li, “Eager Pruning: Algorithm and
Architecture Support for Fast Training of Deep Neural Networks,” in
Proceedings of the 46th International Symposium on Computer
Architecture (ISCA), 2019, pp. 292–303.

[3] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An Energy-
Efficient Reconfigurable Accelerator for Deep Convolutional Neural
Networks,” IEEE SOLID-STATE CIRCUITS, vol. 1, 2016.

[4] J. Zhang, X. Chen, and S. Ray, “Optimizing the Whole-life Cost in
End-to-end CNN Acceleration,” arXiv:2104.05541, 2021.

[5] A. Parashar et al., “Timeloop: A Systematic Approach to DNN
Accelerator Evaluation,” in Proceedings of the International
Symposium on Performance Analysis of Systems and Software
(ISPASS), 2019.

[6] X. Yang et al., “Interstellar: Using Halide’s Scheduling Language to
Analyze DNN Accelerators,” in Proceedings of the International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2020, pp. 369–383.

[7] H. Kwon, P. Chatarasi, M. Pellauer, A. Parashar, V. Sarkar, and T.
Krishna, “Understanding Reuse, Performance, and Hardware Cost of
DNN Dataflows: A Data-Centric Approach,” in Proceedings of the
International Symposium on Microarchitecture (MICRO), 2019, pp.
754–768.

[8] G. Reinman and N. P. Jouppi, “CACTI 2.0: An Integrated Cache
Timing and Power Model.”

[9] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet
Classification with Deep Convolutional Neural Networks,” Commun.
ACM, vol. 60, no. 6, pp. 84–90, Jun. 2017.

[10] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for
Image Recognition,” in Proceedings of the Conference on Computer
Vision and Pattern Recognition (CVPR), 2016, pp. 770–778.

[11] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only Look
Once: Unified, Real-Time Object Detection,” in Proceedings of the
Conference on Computer Vision and Pattern Recognition (CVPR),
2016.

[12] A. Vaswani et al., “Attention is All You Need,” Proceedings of the
Conference on Neural Information Processing Systems (NIPS). 2017.

TABLE IV. TIME SPENT ON LOOP BLOCKING. THE RESULTS ARE

AVERAGED ON THREE ACCELERATORS.

DNN Our BL3 BL3 Achieves Our

AN 0.05s 30m 4m

R50 0.14s 52m 18m

YOLO 0.09s 36m 14m

TFM 0.05s 19m 11m

Fig. 7. Performance and data movement energy of AN Conv1 on EP.

1000 points are sampled for BL1 and BL3. The results in (a)(b) are nor-

malized to the best in (a). The results in (c)(d) are normalized to the best

in (c).

0.0

0.2

0.4

0.6

0.8

1.0

1.2 BL1 BL2

(a)

P
e
rf

o
rm

a
n
c
e

0.0

0.2

0.4

0.6

0.8

1.0

1.2 BL3 Our

(b)

P
e
rf

o
rm

a
n
c
e

0.0

0.2

0.4

0.6

0.8

1.0

1.2 BL1 BL2

(c)

1
/E

n
e

rg
y

0.0

0.2

0.4

0.6

0.8

1.0

1.2 BL3 Our

(d)

1
/E

n
e

rg
y

Fig. 8. The speedups of the entire DNNs, normalized to BL2.

Fig. 9. Total data movement energy, normalized to BL2.

ER EP TPU
0

1

2

3

4

5

S
p
e
e
d
u
p

 BL1 BL2 BL3 Our AN R50 YOLO TFM

ER EP TPU
0

1

2

3

4

5

D
a

ta
 M

o
v
e

m
e

n
t

E
n

e
rg

y

 BL1 BL2 BL3 Our AN R50 YOLO TFM

