Safety, Security, and Reliability: The Automotive
Robustness Problem and an Architectural Solution

Sandip Ray
Department of Electrical and Computer Engineering
University of Florida at Gainesville
Gainesville, FL 32611. USA
sandip@ece.ufl.edu

Abstract—As we move towards increasingly autonomous vehi-
cles, it is getting increasingly crucial to ensure that they behave
safely, securely, and reliably. Automotive robustness refers to the
study of synergies and trade-offs between these requirements.
In this paper we discuss challenges and practice in two critical
components of automotive robustness, functional safety and
security. We also discuss the potential application of a flexible
architecture for systematically implementing these requirements.

I. INTRODUCTION

Automotive systems are increasingly turning into complex,
distributed cyber-physical systems. A modern automotive has
over 100 computing elements (often referred to as “Electronic
Control Unit” or ECU), about 100MB of software, and several
in-vehicle networks, in addition to a diversity of sensors and
actuators. Electronics and software today account for more
than 50% of the design overhead of a vehicle and represent
the key factors to provide market distinction and difference in
price points [1], [2]. The trend is towards a sharper increase
in electronic and computing components as we move towards
vehicles with greater and greater autonomy. Indeed, a fast
proliferation of autonomous vehicles is often welcomed as
it comes with a promise of safer transportation. More than
90% of accidents on road today happen because of human
errors, resulting, in the United States alone, in over 50 million
serious injuries and a cost of over 3 trillion dollars every year
[3]. Reducing and removing the human factor from driving
consequently promises to provide a transformative change in
road safety.

On the other hand, autonomy can meet the promise of
safety only if the electronics and software used to replace
human actions are themselves safe, secure, and reliable. Un-
fortunately, this has not been the case traditionally. Software
and hardware have often been riddled with bugs, vulnera-
bilities, and malfunctions, which have been discovered or
exploited in-field sometimes resulting in catastrophic conse-
quences. The situation is exacerbated with the very trend of
autonomy, which results in a corresponding sharp increase in
complexity of electronic and computing components [4], [5].
For instance, an autonomous car will require several com-
ponents not required in today’s vehicles, including real-time
vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I)
communications with a variety of networks of different levels

of trustworthiness, a diversity of sensors to detect driving
conditions (e.g., potholes, moisture, pedestrians, etc.), and
distributed computing elements to perform in-vehicle analytics
and mitigation technology to react to evolving conditions on
the fly [6]. Consequently, it is becoming increasingly non-
trivial, in some cases infeasible, to explore, analyze, and
validate the diverse effects of electronic components, and an
“innocent” misconfiguration or error in one component can
result in a catastrophic and complete failure of the entire
system. The following “tongue-in-cheek” quote, attributed to
Paar, succinctly summarizes the situation [1]:

If vehicles were developed in the same manner
as telecommunications, then an average car would
reach top speeds of 10°km/h at 400M HP and the
car would be hacked four times a year.

The quotation is from a time when automotive systems
were still considered mechanical or at best electro-mechanical
rather than electronic systems. However, today, vehicles are
being developed as electronic systems! Consequently, one
must account for the corresponding different trajectory of
automation in a modern automobile, and additionally recon-
cile this growth and its accompanying system vulnerabilities)
with the expectations of trustworthiness and robustness that
customers have traditionally expected out of a car.

Automotive robustness is the subject that studies safety,
security, and reliability of automotive systems. It is one of
the critical research topics as we move towards connected cars,
and is one of the crucial stumbling blocks in our quest towards
the adoption of autonomous cars.

The goal of this paper is to provide a general introduction
to the area of automotive robustness. We discuss the scope
and spectrum of automotive robustness, introduce the various
robustness policies that must be enforced, and the current state
of the practice (and its limitations). We also discuss some
emergent research towards developing a robust architecture
for future automotive systems.

The remainder of the paper is organized as follows. Section
IT introduces the various robustness components, and Section
III introduces robustness policies. Section IV discusses the
state of the practice in enforcing automotive robustness. In
Section V, we discuss an emergent architecture that we are

developing for implement robustness requirements. We discuss
related work in Section VI and conclude in Section VII.

II. THE AUTOMOTIVE ROBUSTNESS PROBLEM

Robustness requirements for modern automotive systems
can be roughly divided into the following three categories,
which together form the robustness triad.

1) Safety. Roughly, safety requirements specify that a car
should not harm any other agent in its environment
due to hazards caused by malfunctioning of electri-
cal/electronic (E/E) components.

2) Security. Security refers to the requirement that the elec-
tronic components of the car must be resilient against
system hacks.

3) Reliability. This refers to robustness of electro-
mechanical and mechanical components, and their in-
terfaces with the E/E components of the system.

Obviously, each component of the triad entails several
complex requirements. For automotive systems, functional
safety requirements are embodied by the ISO 26262 standard
[7]. Tt defines five risk levels called Automotive Safety In-
tegrity Levels (ASIL) to identify and grade severity of various
hazardous events. Functional safety also requires the system to
operate correctly under certain systematic and transient hard-
ware faults. Security constraints identify various authentication
requirements for communications received by the automotive
from a variety of networks with different levels of trustwor-
thiness. These constraints must account for trade-offs between
security and privacy (e.g., a strong authentication requirement
may compromise the privacy of the sender), between security
and real-time requirements (e.g., high computational complex-
ity necessary for strong authentication may conflict with hard
real-time requirements), etc. Security constraints also account
for access control and propagation restrictions on various
system assets (e.g., cryptographic keys, proprietary firmware,
debug modes, etc.) at various points in the system life-cycle.
Finally, reliability requirements include early warning against
component wear-outs, mechanisms to ensure slow and gradual
degradation, etc. [6]

III. ROBUSTNESS POLICIES

Mapping the high-level robustness constraints to various
design and implementation requirements is obviously a non-
trivial exercise. In practice, this is achieved by defining a large
number of robustness policies. The following are represen-
tative policy examples for current and emergent automotive
systems.

o Example 1: If detected moisture in roadway exceeds

a threshold, then turn off ECO mode and enable safe
braking.

o Example 2: Messages received through V2V module
must be authenticated by the authentication module be-
fore any further processing.

« Example 3: A V2V communication from highway patrol
must be authenticated and responded to within a (speci-
fied) upper bound of time.

Example 1 is a functional safety constraint and Examples 2
and 3 are security constraints. Robustness policies are defined
as actionable items that can be processed by architects and
designers to create a final implementation. On the other hand,
robustness requirements can be complicated in subtle ways.
Example 3 is an interesting example of the interplay between
security, reliability, and real-time needs. In particular, the
upper bound on response time for a communication from
highway patrol implicitly imposes an upper bound on the
computation and communication of the authentication mod-
ule. Other robustness policies can involve protection against
component aging, handling security issues caused by complex
supply-chain management, etc.

IV. ROBUSTNESS POLICY ENFORCEMENT IN PRACTICE

Today’s industrial practice depends primarily on human
insight for policy definition, analysis, and implementation. To
facilitate that, robustness policies are typically embodied into
a document called Safety, Security, Reliability document (SSR
for short). In an SSR, the robustness constraints are specified
by a collection of graphs, charts, tables, and message flows,
coupled with English text [8]. The SSR is used by architects
and designers as a guide to architect, design, implement, and
validate robustness constraints in the same manner as a design
or architecture document is used to implement functionality.
Since the documents are not formal, these constraints cannot
be subjected to any mechanical analysis before implemen-
tation. On the other hand, it leaves open the possibility of
inconsistencies in the requirements themselves. For example,
the security vs. real-time trade-off discussed above may not be
consistently resolved in the presence of other constraints that
require strong (and hence computationally intensive) message
authentication. Such problems are typically discovered late
in the development and can be extremely expensive since
fixing them may require involvement of several players in the
complex automotive supply-chain. Even in the absence of such
inconsistencies, it is difficult to ensure that the implementation
of the policies indeed conforms to robustness requirements.
Note that each robustness policy may implicitly involve a num-
ber of ECUs, sensors, actuators, and communication between
them. For instance, the safety policy in Example 1 is a policy
that uses the sensory information from the wheel and enforces
an actuarial condition on the brake. ECUs connected to the
relevant sensors and actuators must coordinate to enforce this
policy. Consequently, validation of the policy will also require
comprehension of the operations of different ECUs, how
they process sensory and actuarial information, and how they
communicate with each other. Doing this for policies involving
multiple ECUs and sensors is difficult. Correspondingly, since
they are implemented in an ad hoc manner, upgrading a
robustness policy in field (potentially in response to changing
requirements during the long life-time of the system) is also
infeasible [9].

RPC

ECU (FPGA)

ECU

\
D i -—
- |§ L
z
- § . -
- .l - -
| -—
- s
- | COUNter | (byffer =
—— TAP R | [E-IPScomm.interface| Lo

To RPC

Fig. 1. A Centralized Policy Implementation Architecture. (Top) RPC is a
standalone unit connected to the in-vehicle network. (Bottom) The ECUs are
augmented with smart wrappers that augment the traditional test wrappers.

V. AN EMERGENT FRAMEWORK FOR AUTOMOTIVE
ROBUSTNESS

We are developing an architectural framework for system-
atic implementation of diverse robustness requirements. The
key idea of the framework is to develop plug-and-play hard-
ware modules that implement and controls all the robustness
requirements. In this section, we provide a brief overview
of this architecture. However, the reader should consider the
comments in this section with the caveat that the architecture
is under active development and any discussion on viability is
merely speculative.

Fig. 1 shows the basic approach for our proposed ar-
chitecture. The idea is to have a standalone, plug-and-play
reconfigurable hardware unit dedicated to implementing ro-
bustness policies. The hardware unit, called Robustness Policy
Controller (“RPC” for short) is connected directly to an in-
vehicle network, such as CAN, like other ECUs. However,
instead of having any sensors or actuators attached to it, is only
responsible for robustness policy enforcement. Recall from
Section III that a robustness policy may involve coordination
of several ECUs with diverse sensory and actuarial informa-
tion. To enable enforcement of such requirement, the RPC is
notified of events that pertain to the implemented policies, e.g.,
for Example 1 in Section III, RPC is notified when the ECU
controlling the wheel obtains sensory information indicating
high moisture level. This can be achieved by augmenting the
ECUs with a standardized wrapper implementation, extending
the already existing test wrappers. The goal of the wrapper is
to detect events pertaining to any of the implemented policies
and notify RPC of the occurrence of that event. The wrappers
are designed to be “smart”, i.e., they should only communicate
relevant events while ensuring that all policies are enforced.
Finally, they are configurable, i.e., if additional events are

necessary then it should be possible to capture them without
overhauling the entire implementation.

How can we implement smart wrappers with all the above
requirements? To facilitate use of the wrappers in different
execution modes, RPC will configure the wrappers at boot
time with relevant events. Furthermore, we can interface the
wrapper with the debug interface of the ECU to enable
observability and controllability of events not previously an-
ticipated, perhaps because of policy update after deployment.
All ECUs in practice include a post-silicon debug interface
to enable debug and repair of bugs found in field. These
interfaces therefore provide observability and controllability of
a significant number of internal events. In recent experiments,
we found that an interface to debug together with a broad
class of generic events makes it possible to extract most
relevant events for enforcing a spectrum of security policies.
We suspect that this insight carries over to arbitrary robustness
policies as well, in particular since these events are often
controlled through over-the-air updates.

The final piece of the puzzle is the RPC implementation
itself. It must be a plug-and-play hardware module that can
implement arbitrary policies. Furthermore, it must allow recon-
figurability to enable in-field updates. Our solution is to use
an embedded field-programmable gate array (FPGA). FPGAs
have recently found significant application in servers and data
centers on the one hand, and Internet-of-Things on the other,
because of their amenability to in-field reconfiguration. Note
that since policy control essentially entails a guarded state
machine, it can be easily implemented in FPGA. Furthermore,
for security and in-field update, bit-streams can be encrypted.
We are also investigating FPGA virtualization paradigms that
provide further protection for FPGA implementations while
enabling smooth update capability.

We end the discussion on the centralized architecture frame-
work with a brief note on verification. As we remarked before,
policy implementations are hard to verify since they involve
multiple ECUs. However, given the centralized approach, it
is sufficient only to verify the RPC module and its interfaces
with the security wrappers, making such verification feasible
for practical systems [10].

VI. RELATED WORK

There has been significant recent work on safety, secu-
rity, and reliability of various CPS applications [11], [12],
[13]. Most of these approaches consider specific robustness
requirements (e.g., safety, reliability, security), and provide
mitigation techniques for these requirements. In particular, we
have not seen any research on formalization, abstraction, or
mitigation techniques that target arbitrary robustness policies.
For automotive systems in particular, significant attention has
been paid recently to security properties. However, the focus
has been on identifying and demonstrating security vulnera-
bilities rather than on developing systematic architecture for
their mitigation. Recently, there has been attempts at devel-
oping comprehensive automotive architecture. However, these

architectures primarily focus systematic V2V communication
and hardware/software co-design [14], [15].

Our work on automotive robustness architecture has been
inspired by our previous work on developing architecture for
systematic implementation of System-on-Chip (SoC) security
policies [16], [17], [18], [10], [19]. This work showed how to
systematically implement SoC security policies using a plug-
and-play hardware module. However, the policies investigated
were purely digital with no CPS component. Furthermore, the
approach did not consider policies involving multiple control
units connected through a network.

VII. CONCLUSION AND FUTURE WORK

We have provided an overview of automotive robustness
problem, outlined the scope of the problem and challenges, and
discussed the current state of the practice and its limitations.
In spite of its critical importance, systematizing design and
implementation of robustness requirements has not received
significant attention from the research community. We hope
that the presentation of this paper will help spur discussions,
exploration, and research in this area.

We have presented an emergent direction for architecting
robustness policies, but our approach has only scratched the
surface. One critical direction for future work is developing a
distributed implementation of the controller architecture. Note
that while the centralized architecture is conceptually simple, it
may suffer from challenges with congestion since events need
to be communicated to RPC for policy enforcement. This is
particularly significant in the presence of real-time constraints
when the constraints may be violated by slow data movement
because of congestion in the in-vehicle networks. The goal of
the distributed implementation is to minimize communication
and provide a more efficient policy enforcement through col-
lective, local enforcement at individual ECUs. In addition, we
are also considering approaches to automated policy extraction
from SSRs, and an automated CAD flow for synthesizing
policies to an RPC design.

REFERENCES

[1] A. Weimerkirsch, “Automotive and Industrial Data Security,” in Cyber-
security and Cyber-physical Systems Workshop, 2012.

[2] S. Ray, W. Chen, J. Bhadra, and M. A. A. Faruque, “Extensibility in
Automotive Security: Current Practice and Challenges,” in DAC 2017,
2017.

[3] National Highway Traffice Safety Association, “National Motor Vehicle
Crash Causation Survey,” See URL: https://crashstats.nhtsa.dot.gov/Api/
Public/ViewPublication/811059.

[4] National Highway Traffic Safety Association, “Motor Vehicles Recall,”
See URL: https://www.recalls.gov/nhtsa.html.

[5] C. Miller and C. Valasek, “Remote Exploitation of an Unaltered Pas-
senger Vehicle,” in BlackHat USA, 2015.

[6] D. Pradhan, “Solving the Automotive Dilemma,” in Microprocessor Test
& Verification (MTV 2016), 2016.

[7] International Standardization Organization, “ISO 26262-1:2011 Road
Vehicles Functional Safety,” 2011.

[8] L. Regers, “The Road Ahead for Securely Connected Cars,” in /[EEE
International Solid State Circuits Conference, 2016.

[9] S. Ray, A. Basak, and S. Bhunia, “Patching the Internet of Things,”

IEEE Spectrum, vol. 54, no. 11, pp. 31-35, 2017.

A. P. D. Nath, S. Bhunia, and S. Ray, “ArtiFact: Architecture and CAD

Flow for Efficient Formal Verification of SoC Security Policies,” in

ISVLSI 2018, 2018.

[10]

(1]

[12]

[13]

[14]

[15]

[16]
[17]
(18]

[19]

M. Rungger and P. Tabuada, “A Symbolic Approach to the Design of
Robust Cyber-physical Systems,” in 52nd IEEE Conference on Decision
and Control, 2013.

Q. Zhu and T. Basar, “Robust and Resilient Control Design for Cyber-
Physical Systems with an Application to Power Systems,” in [EEE
Conference on Decision and Control and European Control Conference,
2011.

F. Hu, Y. Lu, A. Vasilakos, Q. Hao, R. Ma, Y. Patil, T. Zhang, J. Lu,
X. Li, , and N. Xiong, “Robust Cyber-physical Systems: Concepts,
Models, and Implementation,” Future Generation Computer Systems,
vol. 56, pp. 449475, 2016.

NXP Semiconductors, “The 4+1 Layer Security Architecture,”
http://www.nxp.com/assets/documents/data/en/white-papers/
MULTI-LAYER-VEHICLE-SECURITY-WP.pdf.

F. Sagstetter, M. Lukasiewycz, S. Steinhorst, M. Wolf, A. Bouard,
S. Jha, and S. Chakraborty, “Security Challenges in Automotive Hard-
ware/software Architecture Design,” in Design Automation and Test in
Europe, 2013.

A. Basak, S. Bhunia, and S. Ray, “A Flexible Architecture for Systematic
Implementation of SoC Security Policies,” in /ICCAD, 2015.

, “Exploiting design-for-debug for flexible SoC security architec-
ture,” in DAC, 2016.

S. Ray, J. Yang, A. Basak, and S. Bhunia, “Correctness and Security at
Odds: Post-silicon Validation of Modern SoC Designs,” in DAC, 2015.
A. P. D. Nath, S. Ray, A. Basak, and S. Bhunia, “An Architecture and
CAD Flow for Hardware Patch,” in ASPDAC, 2017.

