
Combining Theorem Proving
with Model Checking
through Predicate
Abstraction
Sandip Ray

University of Texas at Austin

Rob Sumners

Advanced Micro Devices

&DESPITE SIGNIFICANT ADVANCES in formal-verifica-

tion techniques during the past decade, a large gap in

complexity still exists between practical verification

problems and those that state-of-the-art verification

tools can handle. Consequently, there has been

increasing interest in combining different verification

techniques to synergistically leverage their strengths.

In this article, we present a procedure for proving

invariants of computing systems that uses a combina-

tion of theorem proving and model checking.

Invariants are formulas (or predicates) defined on

a system’s state variables that hold for all the reachable

states. Establishing invariants is a central activity in

many formal-verification projects: Verifying safety

properties is tantamount to proving an invariant, and

proofs of liveness properties typically require auxiliary

invariance conditions. On the other hand, invariant

proving is difficult for theorem-proving and model-

checking techniques individually. Theorem proving

involves manually strengthening the formula to an

inductive invariant—that is, an invariant preserved by

every system transition. This requires significant user

expertise.1,2 Model checking involves

symbolic or explicit exploration of the

reachable states; the state explosion

problem limits its scope in practice.

Our procedure automates invariant

proofs while imposing no restriction on

the expressiveness of the language used

to define systems and their properties.

The procedure includes lightweight

theorem proving to generate a predicate

abstraction,3 which we then explore through model

checking. Given system I and finite set P of predicates

on the states of I, predicate abstraction constructs

abstract system A, whose states correspond to valua-

tions of predicates in P and whose transitions match

the projected transitions of I. The reachable states of A

define an inductive invariant of I. Our key observation

is that we can mine set P from the definition of the

transition relation of I by term simplification. Given the

transition relation and a conjectured invariant formula

W, we use term rewriting on their composition to

determine the predicates relevant to the invariance of

W. The rewrite rules specify relationships between the

different functions used in the system definitions, and

our procedure uses them to control rewriting. We

collect such rules from the theorems proven by

a theorem prover. The focused use of rewriting

provides the primary connection between theorem

proving and model checking, and we have developed

methodologies and tools to exploit the connection.

In our approach, theorem-proving and model-

checking techniques complement one another. We

132

Editor’s note:

Using theorem-based approaches to prove the invariants of infinite-state

reactive systems often demands significant manual involvement. This article

presents a new approach in which model checking complements theorem

proving, reducing the manual effort involved by transferring user attention

from defining inductive invariants to proving rewrite rules. The authors use this

approach with ACL2 to verify cache coherence protocols.

—Magdy S. Abadir, Freescale Semiconductor

Advances in Functional Validation through Hybrid Techniques

0740-7475/07/$25.00 G 2007 IEEE Copublished by the IEEE CS and the IEEE CASS IEEE Design & Test of Computers

reduce the manual effort in theorem proving by

transferring user attention from defining inductive

invariants to proving rewrite rules. An inductive in-

variant is unique to a specific system. On the other

hand, rewrite rules are typically generic facts about

functions in the system definition that can be reused in

different systems (or different design iterations of the

same system). By using different rules, we can configure

the procedure for completely different systems. Further-

more, model checking can use the semantic informa-

tion of the predicates to efficiently explore the

abstraction. The result is a controllable procedure that

provides substantial automation in invariant proofs.

(The ‘‘Related work’’ sidebar summarizes some other

approaches to predicate abstraction.)

We have implemented our procedure as a tool that

interfaces with the ACL2 theorem prover.4 ACL2

consists of an applicative programming language

based on a subset of Common Lisp and a theorem

prover for first-order logic with induction. Researchers

and formal-verification engineers have used it to prove

the correctness of a wide variety of systems, ranging

from processor designs to Java programs. ACL2’s key

advantages for our work include the theorem prover’s

emphasis on rewriting and the availability of extensive

libraries of theorems about data structures such as bit

vectors, sets, records, and bags, which the tool can use

as rewrite rules. We have used our procedure to verify

several systems in ACL2.

Introductory example
Consider trivial system T with two state compo-

nents, c0 and c1. The initial value of each of the two

components is 0; and the following equations, in

which i9 is the external stimulus, give their updates at

each transition:

c00 ~ if i0 ƒ 42ð Þ then c1 else c0

c10 ~ if i0 ƒ 42ð Þ then c1 else 42

We use primes to denote the next value of a state

variable and for the input stimulus. In ACL2, we define

the system in terms of mutually recursive functions

(one for each state component), with argument n

specifying the value at time n.5 We formalize priming

with a unary function t+ (for next time), and we

formalize inputs as uninterpreted functions. Thus, in

ACL2’s Lisp notation, Equations 1 and 2 are written as

follows, where i is an uninterpreted function:

~ c0 t z nð Þð Þð

if < ~ðð i t z nð Þð Þ 42Þ c1 nð Þ c0 nð ÞÞÞ

~ c1 t z nð Þð Þð

if < ~ðð i t z nð Þð Þ 42Þ c1 nð Þ c0 nð Þ 42ÞÞ

In this article, to make our presentation accessible

to readers unfamiliar with Lisp and ACL2, we avoid

using Lisp notation. Also, for many commonly used

functions, we use self-explanatory, albeit informal

names—for example, ‘‘if x then y else z’’ instead of

‘‘(if x y z).’’

An invariant of system T is the formula T0 7 (c0 #

42); we can prove this by showing that the formula W

7 (c0 # 42) ‘ (c1 # 42) is an inductive invariant.

However, instead of manually constructing W, we

discover the relevant predicate (c1 # 42) by rewriting.

Assume the following proven theorem, which is

a trivial fact about if-then-else:

if x then y else zð Þƒ wð Þ~

if x then y ƒ wð Þ else z ƒ wð Þ

Let T90 be the term obtained by priming all system

variables in T0. Using Equations 1 and 3 as rewrite

rules oriented from left to right, we can rewrite T90

as

T
0

0� ¼ if i0 ƒ 42ð Þ then c1 ƒ 42ð Þ

else c0 ƒ 42ð Þ

where T90* describes how each transition updates

T0.

Analyzing the if-then-else structure of T90*, we find

two new predicates, I0 7 (i9 # 42) and T1 7 (c1 #

42). We classify I0 as an input predicate and T1 as

a new state predicate. Rewriting T90, with Equations 2

and 3 together with the computed fact (42 # 42),

yields the following, where T is the constant that

denotes Boolean truth:

T
0

1� ¼ if i0 ƒ 42ð Þ then c1 ƒ 42ð Þ else T

Our abstract system AT is now defined with two

Boolean state variables (for predicates T0 and T1),

a free Boolean input (corresponding to predicate I0),

and an initial abstract state defined by valuation of T0

and T1 at the initial state of T. Reachability analysis on

AT proves T0 is an invariant.

Procedure
The preceding example, though trivial, introduces

the high-level steps in our procedure:

133

7

7

(1)

(2)

(3)

(4)

March–April 2007

134

Related work

Predicate abstraction, a method introduced by Graf

and Saidi,1 has been successfully used in verification

tools such as Slam2 and Uclid.3 Constructing an exact

predicate abstraction for a given set of predicates

requires an exponential number of validity checks to

determine the abstract transition relation. Work in

predicate abstraction has thus focused on constructing

a sufficient conservative upper bound and investigating

ways to make validity checks efficient, using satisfia-

bility- and binary decision diagram (BDD)-based tech-

niques.2,4–7 Researchers have also attacked a related

problem—discovering the relevant set of predicates for

producing a sufficient yet tractable abstraction—

through refinement guided by counterexamples.8–10

This technique iteratively refines an abstraction by

adding new predicates to eliminate spurious counter-

examples generated by model checking. It is effective

when the relevant predicates are quantifier free. Recent

work has extended predicate discovery to handle

quantified predicates, which appear in proofs of

infinite-state systems. One method allows predicates to

contain quantified variables over a fixed index set.6,7,11

A predicate discovery technique proposed by

Namjoshi and Kurshan iteratively applies syntactic

transformation on the weakest liberal preconditions of

the transition relation.12 The Discover procedure in

our method is a focused implementation of this idea,

with rewriting for syntactic transformation. Our key

contributions involve determining how to achieve the

appropriate transformations with simplification proce-

dures available in theorem provers, how to scale

predicate discovery with domain insights and user

guidance, and how to use the semantic information in

predicates for abstract state exploration. Namjoshi and

Kurshan’s method is also the basis for indexed

predicate discovery in Uclid.11 However, whereas Uclid

uses syntactic transformation as a heuristic and relies

on automatic predicate abstraction based on quantifier

instantiation to compute an approximation of the

abstract state space, our method focuses on deductive

control to generate and explore the abstraction.

References
1. S. Graf and H. Saidi, ‘‘Construction of Abstract State Graphs

with PVS,’’ Proc. 9th Int’l Conf. Computer-Aided Verification

(CAV 97), LNCS 1254, Springer-Verlag, 1997, pp. 72–83.

2. T. Ball and S.K. Rajamani, ‘‘Automatically Validating Temporal

Safety Properties of Interfaces,’’ Proc. 8th Int’l SPIN Workshop

on Model Checking of Software, LNCS 2057, Springer-Verlag,

2001, pp. 103–122.

3. R.E. Bryant, S.K. Lahiri, and S.A. Seshia, ‘‘Modeling and

Verifying Systems Using a Logic of Counter Arithmetic with

Lambda Expressions and Uninterpreted Functions,’’ Proc.

14th Int’l Conf. Computer-Aided Verification (CAV 02), LNCS

2404, Springer-Verlag, 2002, pp. 78–92.

4. H. Saidi and N. Shankar, ‘‘Abstract and Model Check while

You Prove,’’ Proc. 11th Int’l Conf. Computer-Aided Verifica-

tion (CAV 99), LNCS 1633, Springer-Verlag, 1999, pp. 443–

453.

5. S.K. Lahiri and R.E. Bryant, ‘‘Constructing Quantified

Invariants via Predicate Abstraction,’’ Proc. 5th Int’l Conf.

Verification, Model Checking and Abstract Interpretation

(VMCAI 04), LNCS 2937, Springer-Verlag, 2004, pp. 267–

281.

6. S.K. Lahiri, R.E. Bryant, and B. Cook, ‘‘A Symbolic Approach

to Predicate Abstraction,’’ Proc. 15th Int’l Conf. Computer-

Aided Verification (CAV 03), LNCS 2275, Springer-Verlag,

2003, pp. 141–153.

7. C. Flanagan and S. Qadeer, ‘‘Predicate Abstraction for

Software Verification,’’ Proc. 29th ACM SIGPLAN SIGACT

Symp. Principles of Programming Languages (POPL 02),

ACM Press, 2002, pp. 191–202.

8. T. Ball et al., ‘‘Automatic Predicate Abstraction of C

Programs,’’ Proc. ACM SIGPLAN Conf. Programming

Language Design and Implementation (PLDI 01), ACM

Press, 2001, pp. 201–213.

9. S. Chaki et al., ‘‘Modular Verification of Software Compo-

nents in C,’’ IEEE Trans. Software Engineering, vol. 30, no. 6,

June 2004, pp. 388–402.

10. S. Das and D.L. Dill, ‘‘Counter-Example Based Predicate

Discovery in Predicate Abstraction,’’ Proc. 4th Int’l Conf.

Formal Methods in Computer-Aided Design (FMCAD 02),

LNCS 2517, Springer-Verlag, 2002, pp. 19–32.

11. S.K. Lahiri and R.E. Bryant, ‘‘Indexed Predicate Discovery for

Unbounded System Verification,’’ Proc. 16th Int’l Conf. Computer-

Aided Verification (CAV 04), LNCS 3117, Springer-Verlag, 2004,

pp. 135–147.

12. K.S. Namjoshi and R.P. Kurshan, ‘‘Syntactic Program

Transformations for Automatic Abstraction,’’ Proc. 12th Int’l

Conf. Computer-Aided Verification (CAV 00), LNCS 1855,

Springer-Verlag, 2000, pp. 435–449.

Advances in Functional Validation through Hybrid Techniques

IEEE Design & Test of Computers

1. Rewrite a primed formula.

2. Mine predicates from the rewritten term’s

if-then-else structure.

3. Replace predicates with Boolean variables to

define the abstraction.

4. Apply reachability analysis to this abstraction.

Predicate discovery
The main routines for predicate discovery are

Rewrt, which rewrites a term, and Chop, which casts

subterms from the rewritten formula into predicates.

Rewrt is an equality-based, conditional term rewriter.

It takes a term t and a sequence e of conditional

equations constituting the system definition and

theorems and applies these equations, reducing t to

a simpler (but provably equivalent) normal form t*.

Rewriting is inside-out (the routine rewrites the argu-

ments of t before rewriting t), and ordered (the routine

applies equations in reverse order of their position in e).

Most general-purpose theorem provers implement

a conditional rewriter such as Rewrt to simplify terms

using user-proven rewrite rules. However, our particular

implementation of Rewrt differs from a traditional

rewriter in that it has features to efficiently support

predicate discovery. In particular, Rewrt provides fine-

grained control mechanisms by giving special treat-

ment to certain functions discussed later.

Chop extracts predicates from rewritten term t*

produced by Rewrt. It recursively explores the top-

level if-then-else structure of t*, collecting the non-if

subterms. The subterms are classified as either state

predicates (which correspond to state variables in the

abstract system) or input predicates (which are

replaced with free input). A term is an input predicate

if it contains a primed system variable. In addition, the

user can instruct Chop to abstract certain terms to input

predicates through the Rewrt control mechanisms.

The top-level predicate discovery procedure is

called Discover. Given a formula W, conjectured

to be an invariant of a concrete system C, Discover

iteratively generates the set of state and input

predicates S and I as follows: Initially, S :5 {W} and

I : ~ 6 0. At any iteration, we

& pick a predicate a M S,

& prime the concrete state variables in a to obtain

a9,

& apply Rewrt to a9 to obtain reduced term a9*, and

& use chop on a9* to augment sets S and I.

We iterate until no new predicates are added to S. We

then define our abstract system AC over set Vs 7 {va :

a MS} of Boolean state variables and Vi 7 {vb : b M I} of

input variables. The next-state value for va (where a M
S) is defined by the term a9*, with each subterm c M S

< I in a9* replaced by the corresponding variable vc.

Because all non-if subterms of a are replaced by a

variable, a Boolean combination of variables of Vs < Vi

can represent the relation. System AC is a conservative

abstraction of C with respect to the predicates in S.

Despite its simplicity, Discover can automate

a large class of invariant proofs. The mechanism

derives its power from rewrite rules. In general, these

rules are conditional equalities that encode user

insight about how to simplify terms arising in the

domain. Encoding predicate discovery heuristics as

rewrite rules gives our approach flexibility and allows

sound user extensions.

Earlier, we stated that predicate discovery iterations

must converge on a fixed point before we construct the

abstract transition relation. However, the iterations

might not always converge; Discover attempts to

achieve convergence within a user-specified upper

bound. We could convert the predicates on which

Discover has not reached convergence to free inputs

without affecting soundness. However, because the

predicates are arbitrary (possibly quantified) first-order

formulas, a concretization function operating on the

individual abstract states is not possible.6 This rules out

automatic counterexample-guided predicate discovery,

and we depend on user control to determine the

generated predicates’ usefulness. Because of this, we

have found that indiscriminately abstracting terms often

leads to coarse abstractions and thus to spurious

counterexamples. Instead, we prefer to perform abstrac-

tions via the following user-guided control mechanisms.

Fine-grained control
Although Discover relies primarily on rewrite

rules, it is important to control predicate classification

to limit the abstract system’s size. For this, we use two

control mechanisms: user-guided abstraction and

a simple form of assume-guarantee reasoning. We

implemented both mechanisms through rewriting and

integrated them with Discover.

User-guided abstraction lets Discover abstract

predicates to free inputs, using a special function

called hide. The logic defines hide as the identity

function: hide(x) 5 x. However, Rewrt and Chop

give hide special treatment: Applications of hide are

135March–April 2007

not rewritten, and Chop classifies a term containing

hide as an input predicate. This allows Discover to

converge with a small set of state predicates. For

instance, consider system H with components h0, h1,

h2, and so on, where the update of h0 is given by

h00 ~ if h1 ƒ h2ð Þ then 42 else h0

Here, subterm (h1 # h2) is irrelevant to the invariance

of (h0 # 42). We convey this insight by the following

rule, which produces a trivial abstraction with one

predicate:

h1 ~ hide h1ð Þ

We use hiding not only to abstract irrelevant terms but

also to introduce relevant ones.

Our procedure also uses rewriting to emulate limited

assume-guarantee reasoning, implemented through

another special function, force. Like hide, force

is an identity function. During the invariance proof of W,

Rewrt ignores any term t containing force, and

Chop replaces force(t) with T, thereby assuming the

invariance of t. To complete the proof, we recursively

apply the procedure to show that each predicate t

containing force is an invariant; during the latter

proof, we assume the invariance of W and rewrite

instances of W to T. The apparent circularity resolves

itself through induction on the sequence of transitions,

as is common in assume-guarantee reasoning.

Edge pruning and reachability analysis
We use reachability analysis to explore system AC

generated by Discover. In principle, any model

checker can solve the reachability problem. However,

we leverage our theorem-proving environment to

efficiently explore the abstraction.

Recall that hide abstracts terms involving state

variables of C. Although this reduces the abstract

states, it increases the number of abstract edges. Most

of these abstract edges are false, meaning they

correspond to either an inconsistent combination of

state and input predicates or an irrelevant combina-

tion of input predicates (that is, another combination

creates the same transition). For instance, consider

state predicate S0 7 (C0 5 C1) and two input

predicates, I0 7 (C0 5 i9) and I1 7 (C1 5 i9). For any

state of AC in which S0 is mapped to nil, the edge E in

which both I0 and I1 are mapped to T is an inconsistent

predicate combination.

Pruning a false edge requires resolving the consis-

tency of Boolean combinations of all state and input

predicates produced by Discover. To this end, we

generate constraints to account for the predicates’

semantic information. To generate the constraints, we

apply Rewrt to each predicate in S < I conditionally

by assuming Boolean combinations of relevant

predicates. Rewriting :S0 under the hypothesis I0

and I1 exposes the falsity of the edge E. We use the

following heuristic to determine relevance: If rewriting

does not simplify t under hypotheses W and :W, then

W is not relevant to t. As in predicate discovery, the

user can extend constraint generation with rewrite

rules. This facility is critical to our procedure’s

scalability to large systems.

We briefly remark on reachability analysis: The

transition relation of AC is usually a complex Boolean

expression (with a large number of input variables

introduced by hide) and normally lacks any regularity

or structure, making it unsuitable for symbolic model-

checking techniques. Furthermore, the reduction by

Discoverof the abstract state space via rewriting factors

out the benefits of symmetry or partial-order reduction.

We therefore focus on explicit-state model checking of

AC. Our implementation is essentially an efficient, on-the-

fly, explicit-state, breadth-first search. In ACL2, we use the

Lisp interface to dynamically generate the reachability

code (and the edge-pruning constraints) at runtime from

the transition relation produced by Discover.

Applications
We have used our tool in the verification of cache

coherence protocols for unbounded processes. We

chose these protocols because they have been widely

used as benchmarks for automated abstraction tools.

To demonstrate our approach’s robustness, we con-

sider two different cache systems: a simple ESI

(exclusive, shared, invalidate) system and a model

of the German cache protocol.

ESI protocol
In the ESI system, an unbounded number of client

processes communicate with a single controller process

to access cache lines. A client acquires a cache line by

sending a fill request; the requests are tagged as exclusive

or shared. A client with shared access can read the

cache line’s contents; a client with exclusive access can

also update the cache line. The controller can request

a client to invalidate, or flush, a cache line; if the line

was exclusive, its contents are copied to memory.

136

Advances in Functional Validation through Hybrid Techniques

IEEE Design & Test of Computers

We call our model of the system esi.

Figure 1 shows the definition of the

transition relation of esi. The system has

four state components—valid, excl,

cache, and mem—which we model with

the following set and record operations:

For cache line c, valid(c) is a set of

processes with access to c, excl(c) is

the set of processes with exclusive access,

mem(c) is a record that maps the

addresses in c to the data in memory,

and cache(p, c) returns the contents of

cache line c in the cache of process p.

Our desired property is coherence,

meaning that reading by any process from

an arbitrary valid address in its cache

returns the last value written. This notion

involves universal quantification over

addresses and process indices. To formal-

ize this quantification in ACL2, we in-

troduce two state variables, data and

coherent, and two uninterpreted Sko-

lem constants, a and p. Figure 2 shows

our specification of coherence, which

can be read as follows: ‘‘Let a be an

arbitrary address and p be an arbitrary process. State

variable data stores the most recent value written to a,

and coherent checks that whenever p has a in its

cache and the current action is load, the value read is

the same as the content of data.’’ Thus, we reduce

coherence to the invariant that coherent always

returns T.

To use our tool on the esi system, we apply rules

about set and record operations from the current ACL2

library.7 Figure 3 shows three of these rules.

The tool requires the following additional rule to

successfully prove the invariant:

in e, exclð Þ~ if excl ~ 6 0ð Þ then NIL

else if singleton exclð Þ then

e ~ choose exclð Þð Þ

else hide in e, exclð Þð Þ

The rule encodes the key

domain insight about co-

herence—thatexcl is ei-

ther empty or singleton.

The rule causes member-

ship tests on excl to be

rewritten to a case split

for whether the set is

empty, singleton, or otherwise, and abstracts the

third uninteresting case to a free input. With this rule,

the tool proves coherence by generating an abstract

system as defined by predicates, and the search

traverses 11 nodes and 133 abstract arcs, completing

in seconds. The following are the nine coherence

proof predicates for the esi system:

1. coherent

2. valid(ā) = 6 0
3. in(p, valid(ā))

4. excl(ā) = 6 0
5. singleton(excl(ā))

6. choose(excl(ā)) 5 p

7. data 5 rget(a, mem(ā))

8. data 5 rget(a, cache(p,ā))

9. data 5 rget(a, cache(choose(excl

(ā)),ā))

137

Figure 1. Transition relation of the esi system. Constants flush (a), fills (b),

fille (c), andstore (d) represent actions. For address A, Ā represents the cache

line containing A. Function rset is the record update operator. The

environmental stimulus consists of current operation I9, address A9, and process

index P9; if the operation is store, the stimulus additionally includes data D9.

Figure 2. Coherence specification. Here, p and a are uninterpreted Skolem constants

representing an arbitrary process and address, rget is the record access operator, and

in tests set membership.

(ā)),ā))

March–April 2007

The rule just described is instrumental in introduc-

ing the relevant state predicate, predicate 9, which

checks that the value stored in address a of arbitrary

process q 7 choose(excl(ā)) is the same as data.

Discovering the relevance of process q is necessary to

relate the excl set with the desired coherence

property. Such requirements have made it difficult

for fully automatic abstraction procedures to abstract

process indices, demonstrating the importance of

using expressive logic and supporting user extensions.

German protocol
The esi system is illustrative but trivial. To

demonstrate our tool’s scalability, we report results

on its application to a more elaborate cache protocol,

devised by Steven German. In this protocol, clients

communicate with the controller (called home) using

three channels as follows:

& Clients send cache requests in channel 1.

& The controller (home) grants access and sends

invalidate requests in channel 2.

& Channel 3 carries the invalidate acknowledg-

ments.

The German protocol is a more elaborate imple-

mentation of ESI. In the German protocol’s original

version, each channel is single entry.8 Recent verifica-

tion projects have extended it with channels modeled

as unbounded FIFO buffers.9 Our model of the German

protocol (which we call german), is inspired by the

unbounded channel version. However, instead of

modeling unbounded FIFO buffers, we restrict the

channels to be bounded, and we prove, in addition to

coherence, an invariant stating that the channel

bound is never exceeded by the implementation.

We also model the data path and memory.

We prove the same coherence property for

german as for esi. Note that german is more

elaborate than esi (hence, an inductive invariant, if

manually constructed, would be very different).

However, our tool incurs little extra overhead. The

rules in Figure 3 are directly applicable, and the

system-specific rules for testing membership of single-

ton sets carry over to this

system. The tool proves

the coherence property

as an invariant of the

protocol in about 2 min-

utes on a 1.8-GHz Pen-

tium IV desktop machine running GNU/Linux. The

abstract system has 46 state predicates and 117 input

predicates, and reachability analysis explores 7,000

nodes and traverses about 300,000 arcs.

OUR METHOD PRESERVES the expressive power and

control afforded by deductive reasoning while benefit-

ing from the automation provided by model-checking

approaches. By reducing invariant proofs of (possibly

infinite-state) system designs to model checking on

a finite abstraction, we avoid the manual effort

involved in defining inductive invariants. Furthermore,

the use of rewrite rules enables the procedure to be

flexible for reasoning about different systems. Admit-

tedly, the benefits depend on the quality of the

manually supplied rewrite rules. However, most

general-purpose theorem provers contain effective

libraries to assist in the process, and we can reuse

domain-specific rules. This reusability makes the

method robust in iteratively refining a system design,

compared with defining inductive invariants, which

are extremely sensitive to design changes.

In addition to being flexible, our approach is very

efficient in practice when given an appropriate set of

rewrite rules. The reader might be surprised by the

ability of our tool to efficiently compute invariant

proofs with a large number of predicates. For instance,

whereas our proof of german completes in a couple

of minutes with 46 predicates, the Uclid proof of the

German protocol generates 29 predicates but requires

about 3 hours.9 Our method’s efficiency comes from

the carefully controlled use of rewrite rules for

discovering predicates and pruning edges.

We are applying the method to prove multi-

threaded Java Virtual Machine bytecode programs in

ACL2. We are also investigating ways to improve the

content and detail of feedback provided by our

implementation and the abstract counterexample it

generates. &

Acknowledgments
This material is based on work supported by

DARPA and the National Science Foundation under

grant CNS-0429591, and by the Semiconductor

138

Figure 3. Rewrite rules for set and record operations.

Advances in Functional Validation through Hybrid Techniques

IEEE Design & Test of Computers

Research Consortium under grant 02-TJ-1032. We

thank John Matthews, J Strother Moore, Vinod

Vishwanath, and Thomas Wahl for their many

comments, suggestions, and insights.

&References

1. R. Joshi et al., ‘‘Checking Cache-Coherence Protocols in

TLA+,’’ Formal Methods in Systems Design, Mar. 2003,

vol. 22, no. 2, pp. 125-131.

2. N. Shankar, ‘‘Machine-Assisted Verification Using

Theorem Proving and Model Checking,’’ Mathematical

Methods in Program Development, M. Broy, and B.

Schieder, eds., NATO ASI Series F: Computer and

Systems Science, Springer, 1997, vol. 158,

pp. 499-528.

3. S. Graf and H. Saidi, ‘‘Construction of Abstract State

Graphs with PVS,’’ Proc. 9th Int’l Conf. Computer-Aided

Verification (CAV 97), LNCS 1254, Springer-Verlag,

1997, pp. 72-83.

4. M. Kaufmann, P. Manolios, and J.S. Moore, Computer-

Aided Reasoning: An Approach, Kluwer Academic, 2000.

5. D.M. Russinoff, ‘‘A Mechanically Checked Proof of

IEEE Compliance of a Register-Transfer-Level

Specification of the AMD-K7 Floating-Point Multiplication,

Division, and Square Root Instructions,’’ LMS J.

Computation and Mathematics, Dec. 1998, vol. 1,

pp. 148-200.

6. S.K. Lahiri and R.E. Bryant, ‘‘Constructing Quantified

Invariants via Predicate Abstraction,’’ Proc. 5th Int’l Conf.

Verification, Model Checking and Abstract Interpretation

(VMCAI 04), LNCS 2937, Springer-Verlag, 2004, pp.

267-281.

7. M. Kaufmann and R. Sumners, ‘‘Efficient Rewriting of

Data Structures in ACL2,’’ Proc. 3rd Int’l Workshop ACL2

Theorem Prover and Its Applications (ACL2 02), D.

Borrione, M. Kaufmann, and J.S. Moore, eds., TIMA

Laboratory, 2002, pp. 141-150.

8. A. Pnueli, S. Ruah, and L. Zuck, ‘‘Automatic Deductive

Verification with Invisible Invariants,’’ Proc. 7th Int’l Conf.

Tools and Algorithms for Construction and Analysis of

Systems (TACAS 01), LNCS 2031, Springer-Verlag,

2001, pp. 82-97.

9. S.K. Lahiri and R.E. Bryant, ‘‘Indexed Predicate

Discovery for Unbounded System Verification,’’ Proc.

16th Int’l Conf. Computer-Aided Verification (CAV 04),

LNCS 3117, Springer-Verlag, 2004, pp. 135-147.

The biography of Sandip Ray is on p. 122 of this

issue.

Rob Sumners is a research engi-

neer at Advanced Micro Devices in

Austin, Texas. His research interests

include developing algorithms for

improving theorem prover efficiency,

using theorem proving as a basis of system analysis,

and employing formal methods to facilitate functional

verification. Sumners has a BS, an MS, and a PhD in

electrical and computer engineering from the Univer-

sity of Texas at Austin.

&Direct questions and comments about this article to

Sandip Ray, Dept. of Computer Sciences, University

of Texas at Austin, Austin, TX 78712; sandip@cs.

utexas.edu.

For further information on this or any other computing

topic, visit our Digital Library at http://www.computer.org/

publications/dlib.

139March–April 2007

