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 Hardware verification today is a relatively 
mature topic, both in research and in industrial 
practice. Verification research dates back to at least 
three decades, with a rich body of literature [14], 
[21]. In industrial practice, verification is now firmly 
established as an integral component of the system 
development flow. Unfortunately, in spite of these 
advancements, there remains a significant gap 
between the state of the art in the technology today 
and the verification needs for modern industrial 
designs. The situation is exacerbated by the rapidly 
changing design ecosystem as we move rapidly and 
inevitably to the era of automated vehicles, smart 
cities, and Internet of Things (IoT). In particular, this 
new era has ushered in an environment where an 
electronic device first collects, analyzes, and stores 
some of our most intimate personal information, 
such as location, health, fitness, and sleep patterns; 
then communicates such information through a 
network of billions of other computing devices; and 

finally operates with-
out pause or halt even 
when that environment 
may include millions of 
potentially malicious or 
otherwise compromised 
devices. As system 
design and architecture 

get transformed to adapt themselves to this new eco-
system, verification must adjust as well [31].

A critical impact (but not the only one) on ver-
ification in the new era is the resources available. 
With the demand to churn out billions of diverse 
computing devices, time-to-market requirements 
for design and system development have become 
more aggressive than ever before. For example, 
a typical microprocessor life cycle from explora-
tion to start of production used to range between 
three and four years; for some IoT devices, this 
has shrunk to less than a year. Such aggressive 
shrinkage obviously implies inadequate time for 
thorough design review, potential misunderstand-
ing of specification and requirements from vari-
ous developers and stake-holders on functional 
decomposition of the design, and a consequent 
increase in errors. On the other hand, the shrink-
ing life cycle also means less time for verifica-
tion. Consequently, the demand from verification 
has been to handle potentially more error-prone 
designs than before, with even less time and fewer 
resources. One consequence of this aggressive 
scheduling has been more in-field escapes and 
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requirements for in-field patching of devices and 
systems, potentially through software and firmware 
updates. Another, perhaps positive, consequence 
has been a trend toward focused development 
of verification methodologies for achievable and 
high-value targets, e.g., security, networking, and 
cyber-physical components.

In this paper, we discuss several challenges in 
SoC design verification in this new era. Some of the 
challenges are classical problems in verification, 
e.g., tool scalability, reuse of verification collateral 
across systems and designs, and so on. In addition, 
we discuss some of the newer challenges ushered 
in specifically by the connected ecosystem of IoT. 
Finally, we discuss emerging trends in industrial veri-
fication tools and methodologies to address some of 
these challenges.

Verification life cycle
Most electronic devices today are architected 

through an SoC design paradigm: the idea is to 
develop a system through integration of prede-
signed hardware and software blocks, often collec-
tively referred to as design intellectual properties 
(IPs). In current industrial setting, IPs are typically 
developed independently, either in-house or by 
third-party vendors. An SoC integration team col-
lects and assimilates these IPs based on the sys-
tem requirement for the target device. To enable 
smooth integration of the IPs into the target system, 
they are designed to communicate with each other 
through well-defined interfaces, e.g., ARM provides 
the AMBA bus interface that includes on-chip inter-
connect specification for the connection and man-
agement of various functional blocks. In the context 
of SoC designs, verification involves two somewhat 
independent verification flows, one for ensuring 
correct operation of the IPs (and their adherence 
with the interface protocols) and another for the 
assembled system.

Given the complexity of modern computing 
devices, both IP and SoC verification flows today 
are significantly complex, requiring careful upfront 
planning, and span almost the entirety of the design 
life cycle. In this section, we give an overview of 
the various components of verification in current 
industrial practice, as shown in Figure 1. Obviously, 
the notion of “industrial practice” is somewhat of a 
misnomer, since it varies from company to com-
pany based on business targets, product needs, 

and even legacy practices. Nevertheless, the fol-
lowing description captures the basic essence of 
the SoC design verification flow and is relatively 
general.

Verification planning
This activity starts about the same time as the 

product planning, and continues through the 
system development phase. Product planning 
requires definition of the various IPs necessary, 
their decomposition into hardware and software 
components, the connection and communication 
interfaces, and various power, performance, secu-
rity, and energy targets. Correspondingly, verifica-
tion planning includes creation of appropriate test 
plans, test cards, definition of specialized design 
blocks called verification IPs (VIPs) instrumenta-
tion in the design for post-silicon debug, defini-
tion of various monitors, checker, exercisers, and 
so on.

Architecture verification and prototype definitions 
One of the first stages in the definition of an SoC 

design is the system architecture, which defines 
various functional parameters of the design, com-
munication protocols among IPs, power and per-
formance management schemes, and so on. The 
parameters and design features explored at this 
stage include cache size, pipeline depth, protocol 
definitions for power management and security, 
and so on. The exploration is performed through 
a variety of “architectural models,” which simu-
late typical workloads and target use cases of the 
device, and identify parameter values that satisfy 
the device targets (e.g., power, performance, and 
security) identified in the planning stage. There 
are two important verification activities during this 
architectural exploration stage. The first is the func-
tional verification of the various communication 
protocols. This activity allows detection of high-
level protocol errors at an early stage when the 
design models are abstract and consequently sim-
ple, and the design is relatively less mature; such 
errors, if they escape into the product implemen-
tation, can become extremely expensive, since a 
fix at that stage might require major redesign of 
multiple IPs. Given the high abstraction of design 
models at this stage, it is feasible to perform formal 
analysis to achieve this [35]; in current practice, 
formal methods are augmented with high-level 
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SoC team would integrate the IPs into an (evolv-
ing) SoC model and perform system-level verifica-
tion; the target of the system-level verification is to 
ensure that the IPs function correctly together as 
an integrated system. An IP is delivered to the SoC 
integration team either as a hard IP, i.e., format-
ted as a physical design layout, or as a soft IP, in 
the form of an RTL or design netlist. The amount 
of verification performed by the IP team depends 
on the form in which the IP is delivered (e.g., a 
hard IP includes significantly higher verification 
requirement than a soft IP). Traditionally, IP ver-
ification has entailed exercising (and ensuring 
correctness of) the IP design in a standalone envi-
ronment. This permits a company to have a robust 
portfolio of generic IP designs that can be quickly 
integrated into various SoC design products. With 
this view, an IP verification team develops such a 
standalone verification infrastructure for the target 
IP. For simulation, this infrastructure includes test-
bench and environment definitions that capture 
the target use cases of the IP design; for formal ver-
ification, it may include environmental assump-
tions, target assertions, etc. More recently, there 
has been a strong push to avoid “over-validation”, 
i.e., to validate an SoC design for only its target 
use cases (see below). This has an impact on IP 
validation, e.g., one has to define the use cases for 
the IP corresponding to the SoC use cases. When 
such (verified) IPs are delivered to the SoC inte-
gration verification team, they can then target 
system-level scenarios. Note that each use case 
requires communication among multiple IPs; this 
is why it is so important in planning to carefully 
define IP drops to enable cohesive system-level 
SoC verification. Most SoC integration verification 
includes system-level simulation and definition 
of various use cases. However, note that many 
use cases require co-execution of hardware and 
software modules. These are obviously difficult 
to exercise in simulation, since running software 
on RTL modules is slow and often infeasible; such 
use cases are generally deferred until the design 
is mature for emulation and FPGA prototyping  
(see below).

simulation to provide the desired cov-
erage. The second crucial role for ver-
ification is to initiate the development 
of hardware prototyping models for 
subsequent needs in software and firm-
ware verification. To understand this need, note 
that low-level software and firmware programs 
need to be validated for correctness when operat-
ing on the target (and evolving) hardware design 
developed during the implementation phase (see 
below). Clearly, one cannot wait for the hardware 
implementation to be stabilized before initiating 
software/firmware verification. Consequently, 
high-level software models of the hardware, also 
referred to as virtual prototype models, are devel-
oped to enable accelerated software/firmware ver-
ification. These models are typically at the same 
abstraction level as the architecture models (and 
sometimes derived from the latter), but they are 
different and serve a different purpose. Unlike 
architectural models, prototype models are writ-
ten to provide a hardware abstraction that never-
theless exercises various software corner cases. 
One key requirement from the above is that the 
prototype model must include definition (and 
abstract functionality) of all the software-visible 
interface registers of the various IPs. Development 
of prototype models is initiated concurrently with 
architectural models, and it continues into the 
RTL development time-frame. The models are usu-
ally coordinated with various “drops” or releases, 
each containing functionality at various degrees 
of maturity; these drops are coordinated and syn-
chronized carefully within the time-frame of soft-
ware validation targets.

Pre-silicon verification
This is the major resource-intense verification 

activity that takes place during (and after) hard-
ware development and implementation. Note that 
this is a continuous process, with increasing level 
of maturity and complexity as the design matures. 
Most industrial SoC designs include a combina-
tion of legacy and new IPs, some created in-house 
and some collected from third-party IP providers. 
An IP verification team (whether in-house or third-
party) performs the verification of the IP being 
delivered. This is done in a standalone environ-
ment, i.e., the objective is to ensure that the IP on 
its own functions as expected. Subsequently, the 

Figure 1. Verification life cycle.
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Emulation and FPGA prototyping
Technically, verification using emulation and 

FPGA prototyping is simply a part of pre-silicon 
verification, since they are performed before the 
system goes into fabrication. However, in practice, 
they form an important bridge between pre-silicon 
and post-silicon verification. Here one maps the 
RTL model of the hardware into a reconfigurable 
architecture such as FPGA, or specialized acceler-
ators and emulators [5], [8], [10]; these platforms 
run about hundreds to thousands times faster than 
an RTL simulator; consequently, one can execute 
hardware/software use case scenarios such as an 
operating system boot in a few hours. This speed is 
obtained at the cost of controllability and observa-
bility. In a simulator, one can observe any internal 
signal of the design at any time. In contrast, in FPGA 
prototyping (which is the fastest of the pre-silicon 
platforms) the observability is restricted to a few 
thousands of internal signals. Furthermore, one must 
decide on the signals to be observed before generat-
ing the FPGA bit-stream. Reconfiguring the observa-
bility would require recompilation of the bit-stream 
which might take several hours. Consequently, they 
are used only when the design is quite mature, e.g., 
when the functionality is relatively stable and debug 
observability fixed enough to warrant few recompi-
lations. Recent innovations within FPGA technology 
[2], [3] address some of the observability limitations 
in FPGA solutions. Nevertheless, observability and 
recompilation cost remain a challenge.

Post-silicon verification
Post-silicon validation is the activity where one 

uses an actual silicon artifact instead of an RTL 
model. To enable post-silicon validation, early sil-
icon is typically brought into a debug lab, where 
various tests are run to validate functionality, timing, 
power, performance, electrical characteristics, phys-
ical stress effects, and so on. It is the last validation 
gate, which must be passed before mass production 
can be initiated. Post-silicon validation is a highly 
complex activity, with its own significant planning, 
exploration, and execution methodologies. A fuller 
discussion of post-silicon validation, as well as the 
specific challenges therein, is out of scope for this 
paper, and the reader can refer to a previous paper 
[29] for a complete discussion. From a functional 
perspective, the fact that a test can run at a target 
clock speed enables execution of long use cases 

(e.g., booting an operating system within seconds, 
exercising various power management and security 
features). On the other hand, it is considerably more 
complex to control or observe the execution of sili-
con than that of an RTL simulation model (or even 
FPGA or emulation models). Furthermore, changing 
observability in silicon is obviously infeasible.

Verification challenges: Traditional and 
emerging

In spite of maturity, verification tools today do 
not scale up to the needs of modern SoC verification 
problems. In this section, we discuss some of the key 
challenges. While some of the challenges are driven 
by complexity (e.g., tool scalability, particularly for 
formal), some are driven by the needs of the rapidly 
changing technology trends.

Shrinking verification time
The exponential growth in devices engendered 

by the IoT regime has resulted in a shrinkage in 
the system development life cycle, leaving little 
time for customized verification efforts. However, 
each device has a different use case require-
ment, with associated functionality, performance, 
energy, and security constraints. We are conse-
quently faced with the conundrum of requiring 
to create standardized, reusable verification flows 
and methodologies that can be easily adapted 
to a diversity of electronic devices each with its 
unique tailor-made constraints. Two orthogonal 
approaches have so far been taken to address 
this problem. The first is to improve tool scala-
bility with the goal of eventually turning verifica-
tion into a turn-key solution; achieving this goal, 
however, remains elusive (see below). The other 
approach entails making the systems themselves 
highly configurable, so that the same design may 
be “patched” to perform various use cases either 
through software or firmware update or through 
hardware reconfiguration. Unfortunately, develop-
ing such configurable designs also has a downside. 
Aside of the fact that it is impossible to determine 
all the different use cases of a hardware system 
in advance (and hence identify whether enough 
configurability has been built in), this approach 
also significantly blows up the number of states of 
the system and consequently makes their verifica-
tion more challenging.
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Limited tool scalability
Scalability remains a crucial problem in effec-

tive application of verification technology. The 
problem is felt particularly acutely in formal veri-
fication; in spite of significant recent advances in 
automated formal technologies such as satisfia-
bility (SAT) checking and SAT modulo theories 
(SMT) [12], the chasm between the scale and com-
plexity of modern SoC designs and those which 
can be handled by formal technology has con-
tinued to grow. The increasing requirements for 
configurability and consequent increase in design 
complexity have only served to exacerbate the sit-
uation. To address this problem, there has been a 
growing trend in formal methods to target specific 
applications (e.g., security, deadlock, etc.) rather 
than a complete proof of functional correctness. 
We will discuss some of these applications in the 
following section.

The cost of simulation-based verification is also 
getting increasingly prohibitive as the design size 
continues to increase. For instance, random simula-
tion at the SoC level can cover only a tiny portion of 
the design space. On the other hand, directed tests 
designed for specific coverage goals can be prohibi-
tive in terms of human effort required.

Specification capture
A key challenge in the applicability of verifica-

tion today is the lack of specifications. Traditionally, 
specifications have largely relied on requirements 
documents, which under-specified or omitted 
design behavior for some scenarios or left some 
cases vague and ambiguous. Such omissions and 
ambiguity, while sometimes intentional, were often 
due to the ambiguity inherent in natural languages. 
Unfortunately, the problem becomes significantly 
more contentious in the context of modern SoC 
designs than for traditional microprocessors. Recall 
that at least in the realm of microprocessors, there 
is a natural abstraction of the hardware defined 
by the instruction-set architecture (ISA). Although 
the semantics of ISA are complex (and typically 
described in ambiguous English manuals spanning 
thousands of pages), the very fact of their standardiza-
tion and stability across product generations enables 
concretization and general understanding of their 
intended behavior. For example, most microproces-
sor development companies have a detailed simula-
tor for the microprocessor ISA, which can serve as an 

executable golden reference. On the other hand, it is 
much harder to characterize the intended behavior 
of an SoC design. Indeed, SoC design requirements 
span across multiple documents (often contradic-
tory) that consider the intended behavior from a 
variety of directions, e.g., there are system-level 
requirements documents, integration documents, 
high-level-architecture documents, microarchitec-
ture documents, as well as cross-cutting documents 
for system-level power management, security, and 
post-silicon validation [30]. Merely reconciling the 
descriptions from the different documents is a highly 
complex activity, let alone defining properties and 
assertions as necessary for verification.

Use case identification
Given the aggressive time-to-market require-

ments, there has been a general move in verification 
today away from comprehensive coverage of the 
whole system (or a system component) and toward 
more narrowly defined coverage of intended usage 
scenarios. For example, for a device intended pri-
marily for low-power and low-performance applica-
tions (e.g., a small wearable device), the intended 
usage would include scenarios where different 
components transition frequently into various sleep 
modes but would not include sustained execution 
at high clock speeds; conversely, a high-perfor-
mance device such as a gaming system would pri-
oritize execution at high clock speeds. In general, 
the exploration and planning phases of the device 
life-cycle define a set of use cases which consti-
tute the target usages of the device and must be 
exercised during verification. Unfortunately, this 
approach, while attempting to reduce verification 
effort by eliminating “over-validation” might induce 
significant complexity in the process. In particular, 
the usage scenarios are typically defined at a level of 
the device and involve complex interaction of hard-
ware, firmware, and software; it is nontrivial to deter-
mine from such high-level verification targets how to 
define verification goals for individual IPs, or even 
hardware blocks for the entire SoC. Furthermore, the 
SoC design itself and individual IPs have orthogonal 
verification needs, together with their own method-
ologies, flows, and timelines. For example, an USB 
controller IP is targeted to be developed (and veri-
fied) to be usable across the slew of USB devices; a 
smartphone making use of this IP, on the other hand, 
must be verified for the usage scenarios which are 
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relevant for the smartphone. Finally, exercising the 
device-level use cases requires hardware, firmware, 
and software at a reasonable maturity, which is avail-
able only late in the system life cycle (e.g., either at 
post-silicon or at least during emulation of FPGA pro-
totyping). Bugs found this late may be expensive to 
fix and may involve considerable design churn.

Power management challenges
Low power requirements for integrated circuits 

and power efficiency have been a main focus for 
today’s complex SoC designs. Power gating and 
clock gating have been the most effective and widely 
used approaches for power reduction. Power gating 
relies on shutting off the blocks or transistors that are 
not used. Clock gating shuts off blocks or registers 
that are not required to be active. Industrial stand-
ards have been developed to describe the power 
intent of low power designs to support the simula-
tion of power aspects at RTL simulation. However, 
these features significantly complicate verification 
activities. One reason is the obvious multiplication 
of complexity. It is not uncommon that a low power 
design can feature tens of power domains and 
thus hundreds of power modes. It is prohibitive to 
verify (whether through simulation or through for-
mal methods) that the design is functional under 
all possible power modes. In practice, verification 
focuses on SoC use case scenarios, which are driven 
by hypervisor/OS control and application-level 
power management. This requires hardware/soft-
ware co-verification of the power management fea-
tures. A second—perhaps more subtle—challenge 
involves its interaction with post-silicon verifica-
tion. The behavior within a power-gated IP cannot 
be observed during silicon execution; this implies 
that it is very difficult to validate design behaviors 
as various IPs get in and out of different sleep states. 
Unfortunately, these are exact states that account 
for subtle corner-case bugs, making validation chal-
lenging. To make matters worse, power-gated IPs 
may make it difficult to observe behavior of other 
IPs that are not in sleep states. Consider an IP  A  with 
an observable signal  s . In order for  s  to be observa-
ble, its value must be routed to an observation point 
such as an output pin or system memory. If this route 
includes another IP  B  then we may not be able to 
observe the value of  s  whenever  B  is power-gated 
even if  A  is active at that time.

Security and functional safety
Security and privacy have become critical 

requirements for electronic devices in the modern 
era. Unfortunately, these are often poorly speci-
fied, and even poorly understood. One reason is 
that with the new IoT era, devices are getting con-
nected which were never originally intended to be 
connected, e.g., refrigerators, light bulbs, or even 
automobiles. Consequently, security threats and 
mitigation remain unclear and one typically resorts 
to experts performing “hackathons,” i.e., directed 
targeted hacking of the device, to identify security 
threats. In addition to security, functional safety, 
i.e., the assurance that the device does not harm 
anything in the environment due to system failure 
is a critical requirement for electronic devices used 
in applications such as aerospace and automotive. 
Safety mechanisms must be implemented for such 
devices to ensure that the device can be functional 
under the circumstances of unexpected errors. For 
example, lockstep systems are fault-tolerant systems 
commonly used in automotive devices that run 
safety critical operations in parallel. It allows error 
detection and error correction: the output from lock-
step operations can be compared to determine if 
there has been a fault if there are at least two sys-
tems (dual modular redundancy), and the error can 
be automatically corrected if there are at least three 
systems (triple modular redundancy), via majority 
vote. Safety critical devices must be compliant with 
IEC 61508 [13], and ISO 26262 [23] is particularly 
designed for automotive electronics. 

Hardware/software co-verification
In the days of microprocessors and application 

software, it was easy to separate concerns between 
hardware and software verification activities. 
However, today, with an increasing trend of defining 
critical functionality in software, it is difficult to make 
the distinction. Indeed, it may not be possible in many 
cases to define a coherent specification (or intended 
behavior) of the hardware without the associated 
firmware or software running. This has several conse-
quences for verification. In particular, hardware and 
software are traditionally developed independently; 
the tight coupling of the two makes it incumbent 
that we define software milestones to closely corre-
spond to (and be consistent with) various RTL drops. 
Furthermore, validating software requires an underly-
ing hardware model that is stable, mature, and fast. 
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An RTL model and simulation environment does not 
have any of these characteristics. On the other hand, 
waiting for the maturity of emulation or silicon may 
be too late for identifying critical errors.

Analog and mixed signal components
Most IoT devices include various sensors and 

actuators in addition to their digital processing core, 
as the environment in which these devices operate 
is inherently analog. As a result, an increasingly 
large portion of the die area is occupied by analog/
mixed-signal (AMS) circuits [27]. Due to the com-
plex nature of analog behavior, design and verifica-
tion methodologies of analog circuits are far more 
primitive compared with that of digital circuits. 
Verification of AMS ICs remains complex, expensive, 
and often a “one-off” task. Complicating the problem 
is the requirement of combining both methodolo-
gies to ensure thorough verification of comprehen-
sive aspects of the mixed-signal SoCs.

Verification trends
Over the last few years, Foster led several indus-

try studies to identify broad trends in verification 
[20]. One can make the following critical observa-
tions from these studies:

• Verification represents bulk of the effort in the 
system design, incurring on average a cost of 
about 57% of the total project time. There has 
been a discernible increase in the number of pro-
jects where verification incurred the cost of over 
80% of the project time.

• Most designs show an increase in the use of emu-
lation and FPGA models, with more usage of 
these technologies the more complex the design. 
This is consistent with the need for a fast proto-
typing environment, particularly for complex 
SoCs, and also perhaps emphasizes the role of 
software in modern systems (which require emu-
lation/FPGA prototyping for validation).

• Most successful designs are productized after 
an average of two silicon spins. Note that for a 
hardware/software system this translates to one 
spin for catching all hardware problems and 
another for all the software interaction issues. 
This underlines the critical role of pre-silicon 
verification to ensure that there are no critical 
gating issues during post-silicon validation.There 
has been a significant increase in the use of both 

simulation-based verification and targeted for-
mal verification activities.

The last point above deserves qualification. In 
particular, recall that both simulation and formal 
verification techniques are falling short of the scal-
ability requirements of modern computing devices. 
How then are they being increasingly adopted?

The answer lies in transformative changes that 
have been occurring in these technologies in the 
recent years. Rather than focusing on full functional 
coverage, they are being targeted toward critical 
design features. Current research trends include ver-
ification of specific emerging application domains, 
such as automotive and security, and using data 
analytics to improve verification efficiency. In the 
remainder of this section, we dive a little deeper 
into how these technologies have been changing to 
adapt themselves to the increasing demand as well 
as to address the scalability gap.

Simulation technologies
Simulation is the mainstay for verifying com-

plex SoCs thanks to its scalability to large industrial 
designs. State-of-the-art simulation-based verification 
methodologies include a highly automated process 
that includes test generation, checking, and cover-
age collection, combined with islands of manual 
labor [41]. In the beginning, a verification plan is 
defined to capture all the features required to be ver-
ified. Then stimuli (tests) are either manually crafted 
by verification engineers or automatically generated 
by a test generator. The stimuli are applied to the sim-
ulation environment and the behavior of the design 
is monitored and checked against expectation. To 
measure the completeness of verification, coverage 
metrics are defined in terms of which area of the 
design and which design functionality are exercised 
in simulation. Metric (coverage) driven verification 
has been adopted as an industrial paradigm where 
coverage is used to monitor and control the verifica-
tion process. A sufficient coverage level is required 
for verification sign-off.

Simulation and test generation are the two 
core technologies in simulation-based verification 
that have been continuously pushed forward over 
the years. We highlight the recent technological 
trends and advances of simulation technologies in 
this subsection and that of test generation in the 
following one.
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Simulator is the backbone of simulation-based 
verification environment and all major EDA vendors 
have their offerings.

The technology of digital simulators is a highly 
mature area where the speedup of simulation on a 
single machine is incremental and heavily relies on 
the performance boost of the underlying machine 
brought by technology scaling. As it gets more chal-
lenging to improve performance by technology scal-
ing, there have been endeavors to leverage parallel 
computation to accelerate simulation. However, 
there have been challenges to parallelize simulation 
due to the event-driven nature of simulators and 
the complex dependencies between the RTL code 
blocks and expressions. Common simulators pro-
cess RTL code in a single thread, managing a single 
active queue of events and handling them one at a 
time. This serialized processing fashion is inherently 
difficult to parallelize and accelerate by adding 
more computation power. In order to parallelize 
the simulation, a desired solution needs to break 
the dependencies between the RTL code blocks 
and partition them into semi-independent elements, 
each of which can be run in a thread with minimal 
synchronization between threads.

In recent years, more advances in the simulator 
technology have emerged in the capabilities to sup-
port simulation of aspects that were not considered 
ones of conventional digital simulation. The past few 
years have witnessed the impact on the SoC designs 
from emerging application areas such as IoT and 
automotive. Accordingly, various design features 
have been adopted in SoC designs to accommodate 
the requirements of these applications. Following 
are some illustrative examples of verification needs 
arising from such features.

Analog and mixed signal verification
Depending on the portion of AMS circuits on 

chip, the testbench architecture for AMS simulation 
can be divided into two categories: “analog on top” 
(top-level models are analog with digital modules 
inside) or “digital on top” (top- level models are dig-
ital with analog modules inside). The latter is more 
commonly used and the proper modeling of analog 
behavior is critical to “digital on top” mixed signal 
chip verification. Analog models of different abstrac-
tion levels are used through the project life cycle, 
with consideration of the tradeoff between simula-
tion speed and accuracy. For example, Verilog-AMS 

provides four abstraction levels to model analog 
behaviors [9]. To support AMS verification, the sim-
ulator must have the performance and capacity to 
simulate a mixture of models at different abstrac-
tion levels for today’s increasingly large designs in 
a reasonable amount of time, while maintaining an 
acceptable level of accuracy. It is not uncommon 
that there are nested digital and analog blocks in 
complex SoC designs, which should also be sup-
ported by the simulator. In addition, the co-existence 
of models at various abstraction levels creates com-
plexity in verification planning as the models can be 
mixed and matched for achieving different verifica-
tion goals.

Short of the capability of automatic abstract 
modeling of the behavior of low-level models, 
today’s AMS simulation strongly relies on the user 
to provide the abstraction models. Proper modeling 
of analog behavior requires in-depth knowledge 
and know-how, and the modeling efforts can be 
comparable to design efforts. Due to the continu-
ous nature of analog behavior, the checkers in AMS 
simulation largely differ from their digital counter-
parts and are difficult to implement correctly. For 
example, a voltage overshoot might be missed by 
a checker if signal sampling is not setup appropri-
ately. In addition, not only time-domain properties 
but also frequency-domain properties need to be 
checked for analog circuits. It is highly desirable that 
advances of AMS simulation technology can address 
or at least mitigate these challenges.

Power-aware verification
While clock gating is usually implemented in RTL 

code, power gating is implemented by capturing the 
power intent in a standard format and instrumenting 
the necessary circuitry during synthesis [1], [7]. The 
power intent file is also used in simulation with RTL 
code to find out design flaws of the low-power SoCs 
at an early design stage. Power-aware simulators 
generally support simulating the behavior resulted 
from the power gating circuitry specified in power 
intent files, such as power switches, isolation cells, 
and retention registers.

Besides power gating, the requirements of sup-
porting power-aware simulation have been extended 
to more advanced low-power design features, such 
as multiple-voltage designs and dynamic voltage 
scaling. Power-aware simulators need to understand 
the voltage levels to be able to accurately simulate 
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the behavior. In addition, the expectation of pow-
er-aware simulation is not only to capture design 
bugs but also to get an early estimation of the power 
consumption.

Functional safety verification
Fault simulation is the main vehicle for evalu-

ating the robustness of a product’s safety mecha-
nism against unexpected errors. Faults are injected 
into the design components to emulate the unex-
pected hardware errors. A safety module usually 
has a functional unit and a checker unit. When a 
fault is injected, the simulator outputs whether the 
fault can propagate to the functional output and 
the checker output. If a single fault can propagate 
to the functional output and cannot be detected by 
the checker, it means that the fault can propagate to 
the system without recovery, which is a single point 
of failure. Single point of failure is not tolerable for 
safety critical SoCs. Currently, most fault simulators 
support fault models including stuck-at faults, Single-
Event-Upset and Single-Event-Transient faults. These 
fault models might be not sufficient to model real-
istic hardware errors without incorporating postlay-
out information. While post-layout information can 
enable more accurate fault modeling and fault dis-
tribution, it increases the complexity drastically and 
is not available until a late design stage. Even with 
a comprehensive fault model, it is challenging to 
inject faults at the right point in time and the right 
spot in the design to discover safety blind-spots. 
Currently, fault injection is usually performed ran-
domly at the unit level and directed at the system 
level. Besides the fault injection in the digital part, 
fault injection in the analog part is also important 
and yet not well defined and supported. Echoing 
with the trend of hardware/software co-verification, 
yet another requirement for functional safety verifi-
cation is to simulate the effects of erroneous execu-
tion of firmware code, which is not well supported 
by vendor tools.

Test generation and data analytics
Generation of high-quality tests is the driving 

force of the simulation-based verification to expose 
design errors. In microprocessor verification, 
constrained-random test generation has been widely 
adopted, where the verification engineers write test 
templates that are fed into the test generators to pro-
duce tests. The test generator infrastructure can be 

reused from one generation of processor design to 
another since they follow almost the same ISA. Test 
generation infrastructure in SoC verification used 
to be less reusable, where constrained-random test 
generation is often done during simulation and thus 
is bound to a specific testbench. We are delighted 
to see that there has been a paradigm shift in recent 
years to separate the test generation from the simu-
lation testbench, which is the first step to increased 
reusability. Due to the aggressive scheduling, it is 
not possible to verify all aspects of an SoC. The test 
development of SoC verification is mainly driven by 
the intended use case scenarios of the SoC. Since 
the development of a test scenario requires knowl-
edge and could be expensive, it is important that 
such a test scenario can be reused. An increasingly 
popular practice is to capture test scenarios in 
a test generation model and then to map the sce-
narios to tests filled with details at different levels 
of abstraction. There has also been an initiative 
(Portable Stimulus Working Group) to standardize 
the description language of the scenarios to maxi-
mize reusability [6].

Besides resuability, the most important and yet 
challenging task in test generation is to improve the 
efficiency of generating high-quality tests, where test 
quality is usually measured by coverage metrics. We 
call this task functional test content optimization. 
In constrained-random test generation, this means 
coming up with constraints to guide the direc-
tions of test generation. In a traditional verification 
flow, the acquisition of knowledge to enable such 
improvement is carried out mostly by manual learn-
ing, which requires a lot of nontrivial manual efforts. 
Figure 2 illustrates this process. The test generator 
Gen produces a set of tests T, while Gen can either 
be a verification engineer or a constrained-random 
test generator. The tests are applied to the simulator 
Sim to obtain the result R. The result R is evaluated 
through an evaluation step Eval and the important 

Figure 2. Existing manual learning in functional test 
content optimization [39].
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tests T’ are selected to be added into the test suite. 
An important test could be the one that excites a 
bug or provides coverage of some difficult-to-hit 
coverage events. When the result is not satisfactory, 
some aspects of the test generation process (e.g., the 
test template) are refined to produce new tests. The 
refinement is usually based on manual learning from 
the simulation result R and the information collected 
through step Eval.

In recent years, there have been a plethora of 
research on leveraging data mining (or in a more 
general term, data analytics) techniques to improve 
the quality and efficiency of test generation for 
coverage closure [16], [17], [24], [25], [28], [38].  
Data mining is the process of extracting implicit, 
nontrivial, previously unknown, and potentially use-
ful information from large data sets. In general, the 
information extracted by data mining can be classi-
fied into three main categories: 

• descriptive: quantitatively describing the main 
characteristics of a data set; 

• predictive: analyzing current and historical data 
to make predictions about future trends; 

• prescriptive: making predictions and then sug-
gesting decision options to take advantage of the 
predictions [11]. 

In functional test content optimization, the results 
from data analytics are usually used as prescriptive 
information. We introduce how data mining can be 
useful for functional test content optimization and 
the basic principles and considerations of applying 
data mining in functional verification.

Figure 3 shows two data mining components that 
can be added into the existing function test content 
optimization flow. First, a filter Filter can be added 
between the generator and the simulator. The filter 
plays the role of an oracle which can predict if a test 
can be effective for achieving the coverage goal. The 

objective is to filter out ineffective tests and thus only 
apply effective tests TN for the simulation. An impor-
tant assumption for this approach to be effective is 
that the cost of the simulation is much higher than 
the cost of the test generation. This approach does 
not directly improve the test generation but the effi-
ciency of applying the tests in simulation.

The second component intends to automate 
the learning process for refining the aspects of test 
generation Gen. The learning results should be 
interpretable and actionable either by human or 
machine. The improvements from this approach 
can be two-fold: 

• for a coverage event that has been covered 
by only a few tests, the learning can be used 
to obtain more tests to increase the coverage 
frequency;

• for a coverage event that is not yet covered, the 
learning can be used to increase the chance of 
generating tests to cover the point.

To build practical data mining applications for 
functional test content optimization, one needs to for-
mulate the target problem as one that can be solved by 
data mining and machine learning algorithms. Figure 4  
illustrates a typical data set seen by a machine learn-
ing algorithm. When   y ⃗    is present, i.e., there is a label 
for every sample, it is called supervised learning. In 
supervised learning, if each   y  i    is a categorized value, 
it is a classification problem. If each   y  i    is a continuous 
value, it becomes a regression problem. When   y ⃗    is not 
present and only X is present, it is called unsupervised 
learning. When some (usually much fewer) samples 
are with labels and others have no label, the learning 
is then called semisupervised [15]. Interested readers 
can refer to [40] for a more detailed discussion.

To formulate a learning problem in functional 
verification, the first set of important questions con-
cern the definition of a sample. For example, a sam-
ple could be an assembly test program. Alternatively, 
a sample could also be several consecutive instruc-
tions and an assembly program can be broken into 
several samples. Each sample is encoded with n fea-
tures f1,..., fn. Hence, the characteristics of each sam-
ple are described as a feature vector    → x  i. For a data 
mining algorithm to succeed, it is foremost critical 
to define the feature set with incorporated domain 
knowledge. This process is called feature engineer-
ing and coming up with good features is difficult, 

Figure 3. Two data mining components added in  
functional test content optimization [39].
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time-consuming, and requires expert 
knowledge and many iterations.

After defining the feature set, the 
next set of questions concern the learn-
ing approaches. It depends on the data 
availability and the application scenarios. 
Suppose we would like to learn why certain 
tests can hit certain coverage events. If we 
have two categories of tests, one that cov-
ers the events and one that does not, then 
binary classification can usually be applied. 
However, if there are no tests covering the 
events, outlier analysis would be a better 
option, as the learned model can be used as 
the Filter component in Figure 3. Even with a learning 
approach decided, there can be many algorithms to 
choose from. Different algorithms can produce learn-
ing models in different forms. The representation of 
a learning model can be based on rules, trees, equa-
tions, or a collection of samples. It depends on how 
the model is applied. For example, if the model is first 
to be interpreted by a person, then a complex model 
would not be helpful while a rule or a tree model 
might be more suitable. Many algorithms might have 
variations and parameters to decide on. In addition, 
often preprocessing of the data set such as dimension 
reduction and feature selection is needed to facilitate 
the learning [39]. An empirical observation is that the 
definition of the feature set plays a more important 
role than the algorithms for a data mining application.

After applying the learning algorithms, it is critical 
to validate the learned results (models) to make sure 
that they do not overfit the training data. This is often 
done by cross validation, where a relatively small 
portion of data is preserved as the validation data 
set to ensure that the model performs similarly on 
both training data and validation data. In functional 
test content optimization, further validation can be 
carried out via application of the learning result. For 
example, if a rule is learned for hitting a particular 
event, evaluation of the model can mean modifying 
the test templates according to the rule and observ-
ing the coverage of the events in simulation of the 
resulting tests. If we observe increased coverage, it 
means that the learning result is meaningful.

Targeted formal methods
Formal verification is the process of proving or 

disproving the correctness of a system with respect 
to a certain formal specification or property, using 

formal methods of mathematics. Often, verification 
is concerned with two common forms of properties: 

• safety property, which ensures something bad 
does not happen; 

• liveness property, which ensures something good 
eventually does happen. 

The formal specification or property is 
described using a formal language such as Property 
Specification Language (PSL) and SystemVerilog 
Assertion (SVA) and then a formal method/tool can 
determine either the specification/property holds 
true or find a counterexample showing the circum-
stances where the specification/property is violated. 
Notwithstanding formal methods can offer thorough 
verification with respect to the pertinent specifica-
tion, there have been two major obstacles to replace 
simulation with formal methods for verifying com-
plex SoCs: 

(1) Tool scalability: formal methods suffer from the 
state explosion problem, namely, the size of the 
problem that formal tools are dealing with grows 
exponentially as the number of state variables 
in the system increases [18]. The overwhelming 
growth of complexity limits the applicability of 
formal methods to large industrial designs.

(2) User friendliness: the application of formal methods 
often requires a deep understanding in underlying 
principles of the tool and familiarity with the design-
to-verify. This is partly caused by the tool scalability 
issue since verification engineers often need to 
manually apply techniques such as blackboxing, 
abstraction and refinement, and assume-guaran-
tee reasoning to reduce the complexity. In-depth 
understanding of the reset and clocking schemes 
is often a prerequisite for setting up the formal 

Figure 4. Typical dataset in a machine learning problem [40].



18 IEEE Design&Test

Verification

verification environment. In addition, commercial 
formal tools are currently limited to supporting dig-
ital circuits and cannot be readily applied to AMS 
circuits.

Commercial formal tools leverage a combina-
tion of different formal engines to solve a problem. 
In recent years, advances in core technologies of for-
mal engines have been focused on efficient SAT and 
SMT solvers to improve tool scalability. On the other 
hand, what has made formal methods more applica-
ble in reality is the rapid growth of end-to-end appli-
cations of formal methods to solve target problems 
with well-defined input, often called “Automatic 
Formal Apps.” This shows a paradigm shift from the 
traditional way of performing formal verification 
where engineers setup environments and describe 
formal properties in a low-level language. Targeted 
formal methods essentially accept the specifications 
in a higher-level representation such as spread-
sheets or XML, automatically generate properties, 
invoke formal engines, and finally generate human 
interpretable reports. This significantly reduces the 
manual efforts and lowers the barriers for applying 
formal methods to solve verification problems. We 
review some of the targeted areas where Automated 
Formal Apps have prospered.

Secure information flow analysis
Among the most common SoC security require-

ments are confidentiality and integrity of on-chip 
assets. Proper access to the assets must be assured by 
the enforcement of information flow policies, which 
is one of the most important aspects of modern com-
puter security, and yet is also one of the hardest to 
get correct in implementation [37]. Confidentiality 
requires that an asset cannot be copied or stolen, 
which is essential for assets such as passwords and 
cryptographic keys. Integrity requires that an asset is 
defended against modification, which is essential for 
some of the on-chip root secrets on which the rest of 
the system security is based, e.g., configuration firm-
ware, and for the security software once it is running.

Confidentiality and integrity can be expressed as 
secure information flow properties, the research of 
which originated from software verification [33] and 
made its way to hardware verification [34]. Secure 
information flow concerns whether the information 
in a secure world has an impact on that in an inse-
cure one, and vice versa. Confidentiality of an asset 

means that there is no information flow from where 
the asset is contained to untrusted locations. Integrity 
of an asset indicates that there is no information flow 
from untrusted locations to where the asset resides.

Unlike safety and liveness properties, secure 
information flow property belongs to the category 
of hyperproperties [19], which cannot be described 
by PSL or SVA. Therefore, for secure information 
flow properties to be proved/disproved by com-
mercial formal tools, they are usually translated to 
safety properties in a transformed system. An exam-
ple transformation is self-composition, where the 
transformed system comprises two copies of the 
original one [36]. A violation of secure information 
flow properties thus can be represented as a pair of 
traces in respective copies of the original system. 
The difference between the traces essentially shows 
the sensitization path of information leakage or 
contamination.

Connectivity verification
SoCs are designed by connecting and integrat-

ing hundreds of IP blocks. An average SOC may 
have connections in the order of tens of thousands. 
While the process of connecting and integrating IPs 
is usually accomplished by automated design tools 
in a “correct by construction” manner, errors can 
still creep in due to unclear or erroneous specifica-
tions, the addition of low-power structures, built-in 
self-test and JTAG support, or downstream changes/
engineering change orders that were not fully prop-
agated [22]. There are two types of connectivity in 
SoC designs: 

• static connection, consisting of simple hookup of 
the inputs and outputs of different IPs;

• dynamic, or functional integration, where, 
besides the pure static connection, a temporal 
and a functional dimension needs to be taken 
into account due to the practice of hardware 
resource sharing [32]. 

A typical example of dynamic connectivity is the 
pin multiplexing scheme, which allows the inter-
nal IP blocks to dynamically share the routes to I/O 
pads of a limited number of external pins. Because 
of the tremendous complexity caused by the large 
number of connections and complex multiplexing 
policies, there is a need for thorough verification of 
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SoC connectivity and formal methods are deemed 
as a nature fit.

In formal verification of SoC connectivity, the 
specifications are usually captured in formats such 
as spreadsheets and XML files. Then the tool will 
read the specification and automatically generate 
the properties to run formal proof. One challenge of 
this practice is to come up with a standardized speci-
fication scheme that is expressive enough to capture 
various connection schemes. Another challenge is 
to manage the proof process of tens of thousands of 
properties, which often requires parallel execution 
of formal engines on the compute farm.

Besides formally verifying the connectivity of 
the design with respect to the specification, another 
application is to extract the high-level connectivity 
specification from a design where the specifica-
tion is unavailable [4]. The extracted specification 
can be used for design reviews. Moreover, it is not 
uncommon that an SoC design will be changed for 
feature enhancement or performance improvement 
without intention to change the connectivity. Under 
this circumstance, the extracted specification can 
be used to formally verify that the connectivity is not 
messed up by the design change.

Coverage unreachability analysis
SoC designs nowadays heavily reuse IP blocks in 

order to maximize productivity. This trend results in 
the fact that certain features of a reused IP are disa-
bled in a given SoC as they are not needed. Under 
this circumstance, the portion of RTL code imple-
menting the features becomes dead code. The cov-
erage of the dead code needs to be waived during 
coverage analysis as those code blocks will never 
be exercised. In the process of coverage closure, 
verification teams need to decide whether a cover-
age hole should be waived or should be given more 
resources to close it. Given the large number of IP 
blocks and often lack of accurate documentation, 
waiver of dead code is a tedious and labor-intensive 
task. However, it is a niche problem for applying for-
mal methods. After identification of RTL code blocks 
that were not covered by extensive simulation, for-
mal properties concerning exercising those code 
blocks can be generated. If the formal tool decides 
that the code blocks cannot be exercised, they are 
labeled as dead code. Like formal verification of 

connectivity, the challenge here is to manage the 
proof process of a large number of properties.

One might ask if the same analysis can be used 
to generate tests that cover the coverage holes. 
However, it is much more trickier than detecting dead 
code. When the formal tool finds a trace where the 
target code block is exercised, the trace might not be 
a valid one as there could be missing constraints in 
the proof process. To be able to use the same analysis 
to generate tests, environmental constraints need to 
be accumulated through the simulation-based verifi-
cation process. This requires a lot of manual efforts 
and there are research opportunities to apply data 
mining methods to learn those constraints.

Register verification
IP blocks in an SoC contain many memory- 

mapped registers that can be accessed by system or 
user programs to configure the IP and check status. 
The implementation complexity of memory mapped 
registers is relatively low compared to other design 
elements. The challenge is that there are an exces-
sive number of memory mapped registers with var-
ious access policies such that manually verifying 
them by directed or lightly randomized tests is a 
tedious and error-prone job [26]. Complicating the 
problem is the existence of advanced features such 
as register aliasing and register remapping under 
different operational modes. Formal verification of 
register access is motivated by similar reasons with 
formal verification of connectivity and shares similar 
characteristics and challenges.

Another practical challenge in register verifica-
tion is the lack of a reliable specification. It is not 
uncommon that the specification documents omit 
details such as when a memory-mapped register can 
be modified by internal operations [26]. Verification 
engineers often rely on trial-and-error to determine 
the undocumented behavior. Another application of 
formal methods in register verification is to automate 
this manual exploration process by formulating for-
mal properties regarding access policies and check-
ing the correctness. The challenge here is to have 
comprehensive presumptions of access policies that 
cover those advanced features.

We Have discussed the complexity and challenges 
in modern hardware verification, and described 
some recent trends in verification technology to 
address these challenges. Many of the challenges 
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are reminiscent of the past, e.g., lack of specifica-
tion, tool scalability, and challenges in security vali-
dation. Nevertheless, as the ecosystem of computing 
devices changes, the problems appear in different 
forms and priorities.

As studies indicate, verification is getting to become 
a bottleneck both in effort and in cost to the entire 
design process. Addressing tool scalability, targeting 
verification to specific needs, etc., are steps to alleviate 
the process. However, such efforts cannot be expected 
to go far enough. In order to significantly reduce the 
cost, it is important for systems to be designed with 
verification in mind rather than verification imposed 
post facto on an already designed system. In fact, that 
is already happening for some aspects of verification, 
particularly security and post-silicon. However, to 
address the challenge of scalability and robustness in 
verification, it is incumbent that we take stronger and 
more comprehensive steps in integrating functional 
verification needs tightly into the design process. 
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