
72168-2356/17 © 2017 IEEECopublished by the IEEE CEDA, IEEE CASS, IEEE SSCS, and TTTCSeptember/October 2017

Challenges and Trends
in Modern SoC Design
Verification
Wen Chen, Sandip Ray,
and Jayanta Bhadra
NXP Semiconductors

Digital Object Identifier 10.1109/MDAT.2017.2735383

Date of publication: 3 August 2017; date of current version:

13 September 2017.

 Hardware verification today is a relatively
mature topic, both in research and in industrial
practice. Verification research dates back to at least
three decades, with a rich body of literature [14],
[21]. In industrial practice, verification is now firmly
established as an integral component of the system
development flow. Unfortunately, in spite of these
advancements, there remains a significant gap
between the state of the art in the technology today
and the verification needs for modern industrial
designs. The situation is exacerbated by the rapidly
changing design ecosystem as we move rapidly and
inevitably to the era of automated vehicles, smart
cities, and Internet of Things (IoT). In particular, this
new era has ushered in an environment where an
electronic device first collects, analyzes, and stores
some of our most intimate personal information,
such as location, health, fitness, and sleep patterns;
then communicates such information through a
network of billions of other computing devices; and

finally operates with-
out pause or halt even
when that environment
may include millions of
potentially malicious or
otherwise compromised
devices. As system
design and architecture

get transformed to adapt themselves to this new eco-
system, verification must adjust as well [31].

A critical impact (but not the only one) on ver-
ification in the new era is the resources available.
With the demand to churn out billions of diverse
computing devices, time-to-market requirements
for design and system development have become
more aggressive than ever before. For example,
a typical microprocessor life cycle from explora-
tion to start of production used to range between
three and four years; for some IoT devices, this
has shrunk to less than a year. Such aggressive
shrinkage obviously implies inadequate time for
thorough design review, potential misunderstand-
ing of specification and requirements from vari-
ous developers and stake-holders on functional
decomposition of the design, and a consequent
increase in errors. On the other hand, the shrink-
ing life cycle also means less time for verifica-
tion. Consequently, the demand from verification
has been to handle potentially more error-prone
designs than before, with even less time and fewer
resources. One consequence of this aggressive
scheduling has been more in-field escapes and

Editor’s note:
This paper provides a tutorial overview of the state-of-the-art in verification
of complex and heterogeneous Systems-on-Chip. The authors discuss
current industrial trends and key research challenges.

—Haralampos Stratigopoulos, Sorbonne Universités, UPMC, CNRS, LIP6

Li-C Wang
University of California at Santa Barbara

Magdy Abadir
Helic Inc.

8 IEEE Design&Test

Verification

requirements for in-field patching of devices and
systems, potentially through software and firmware
updates. Another, perhaps positive, consequence
has been a trend toward focused development
of verification methodologies for achievable and
high-value targets, e.g., security, networking, and
cyber-physical components.

In this paper, we discuss several challenges in
SoC design verification in this new era. Some of the
challenges are classical problems in verification,
e.g., tool scalability, reuse of verification collateral
across systems and designs, and so on. In addition,
we discuss some of the newer challenges ushered
in specifically by the connected ecosystem of IoT.
Finally, we discuss emerging trends in industrial veri-
fication tools and methodologies to address some of
these challenges.

Verification life cycle
Most electronic devices today are architected

through an SoC design paradigm: the idea is to
develop a system through integration of prede-
signed hardware and software blocks, often collec-
tively referred to as design intellectual properties
(IPs). In current industrial setting, IPs are typically
developed independently, either in-house or by
third-party vendors. An SoC integration team col-
lects and assimilates these IPs based on the sys-
tem requirement for the target device. To enable
smooth integration of the IPs into the target system,
they are designed to communicate with each other
through well-defined interfaces, e.g., ARM provides
the AMBA bus interface that includes on-chip inter-
connect specification for the connection and man-
agement of various functional blocks. In the context
of SoC designs, verification involves two somewhat
independent verification flows, one for ensuring
correct operation of the IPs (and their adherence
with the interface protocols) and another for the
assembled system.

Given the complexity of modern computing
devices, both IP and SoC verification flows today
are significantly complex, requiring careful upfront
planning, and span almost the entirety of the design
life cycle. In this section, we give an overview of
the various components of verification in current
industrial practice, as shown in Figure 1. Obviously,
the notion of “industrial practice” is somewhat of a
misnomer, since it varies from company to com-
pany based on business targets, product needs,

and even legacy practices. Nevertheless, the fol-
lowing description captures the basic essence of
the SoC design verification flow and is relatively
general.

Verification planning
This activity starts about the same time as the

product planning, and continues through the
system development phase. Product planning
requires definition of the various IPs necessary,
their decomposition into hardware and software
components, the connection and communication
interfaces, and various power, performance, secu-
rity, and energy targets. Correspondingly, verifica-
tion planning includes creation of appropriate test
plans, test cards, definition of specialized design
blocks called verification IPs (VIPs) instrumenta-
tion in the design for post-silicon debug, defini-
tion of various monitors, checker, exercisers, and
so on.

Architecture verification and prototype definitions
One of the first stages in the definition of an SoC

design is the system architecture, which defines
various functional parameters of the design, com-
munication protocols among IPs, power and per-
formance management schemes, and so on. The
parameters and design features explored at this
stage include cache size, pipeline depth, protocol
definitions for power management and security,
and so on. The exploration is performed through
a variety of “architectural models,” which simu-
late typical workloads and target use cases of the
device, and identify parameter values that satisfy
the device targets (e.g., power, performance, and
security) identified in the planning stage. There
are two important verification activities during this
architectural exploration stage. The first is the func-
tional verification of the various communication
protocols. This activity allows detection of high-
level protocol errors at an early stage when the
design models are abstract and consequently sim-
ple, and the design is relatively less mature; such
errors, if they escape into the product implemen-
tation, can become extremely expensive, since a
fix at that stage might require major redesign of
multiple IPs. Given the high abstraction of design
models at this stage, it is feasible to perform formal
analysis to achieve this [35]; in current practice,
formal methods are augmented with high-level

9September/October 2017

SoC team would integrate the IPs into an (evolv-
ing) SoC model and perform system-level verifica-
tion; the target of the system-level verification is to
ensure that the IPs function correctly together as
an integrated system. An IP is delivered to the SoC
integration team either as a hard IP, i.e., format-
ted as a physical design layout, or as a soft IP, in
the form of an RTL or design netlist. The amount
of verification performed by the IP team depends
on the form in which the IP is delivered (e.g., a
hard IP includes significantly higher verification
requirement than a soft IP). Traditionally, IP ver-
ification has entailed exercising (and ensuring
correctness of) the IP design in a standalone envi-
ronment. This permits a company to have a robust
portfolio of generic IP designs that can be quickly
integrated into various SoC design products. With
this view, an IP verification team develops such a
standalone verification infrastructure for the target
IP. For simulation, this infrastructure includes test-
bench and environment definitions that capture
the target use cases of the IP design; for formal ver-
ification, it may include environmental assump-
tions, target assertions, etc. More recently, there
has been a strong push to avoid “over-validation”,
i.e., to validate an SoC design for only its target
use cases (see below). This has an impact on IP
validation, e.g., one has to define the use cases for
the IP corresponding to the SoC use cases. When
such (verified) IPs are delivered to the SoC inte-
gration verification team, they can then target
system-level scenarios. Note that each use case
requires communication among multiple IPs; this
is why it is so important in planning to carefully
define IP drops to enable cohesive system-level
SoC verification. Most SoC integration verification
includes system-level simulation and definition
of various use cases. However, note that many
use cases require co-execution of hardware and
software modules. These are obviously difficult
to exercise in simulation, since running software
on RTL modules is slow and often infeasible; such
use cases are generally deferred until the design
is mature for emulation and FPGA prototyping
(see below).

simulation to provide the desired cov-
erage. The second crucial role for ver-
ification is to initiate the development
of hardware prototyping models for
subsequent needs in software and firm-
ware verification. To understand this need, note
that low-level software and firmware programs
need to be validated for correctness when operat-
ing on the target (and evolving) hardware design
developed during the implementation phase (see
below). Clearly, one cannot wait for the hardware
implementation to be stabilized before initiating
software/firmware verification. Consequently,
high-level software models of the hardware, also
referred to as virtual prototype models, are devel-
oped to enable accelerated software/firmware ver-
ification. These models are typically at the same
abstraction level as the architecture models (and
sometimes derived from the latter), but they are
different and serve a different purpose. Unlike
architectural models, prototype models are writ-
ten to provide a hardware abstraction that never-
theless exercises various software corner cases.
One key requirement from the above is that the
prototype model must include definition (and
abstract functionality) of all the software-visible
interface registers of the various IPs. Development
of prototype models is initiated concurrently with
architectural models, and it continues into the
RTL development time-frame. The models are usu-
ally coordinated with various “drops” or releases,
each containing functionality at various degrees
of maturity; these drops are coordinated and syn-
chronized carefully within the time-frame of soft-
ware validation targets.

Pre-silicon verification
This is the major resource-intense verification

activity that takes place during (and after) hard-
ware development and implementation. Note that
this is a continuous process, with increasing level
of maturity and complexity as the design matures.
Most industrial SoC designs include a combina-
tion of legacy and new IPs, some created in-house
and some collected from third-party IP providers.
An IP verification team (whether in-house or third-
party) performs the verification of the IP being
delivered. This is done in a standalone environ-
ment, i.e., the objective is to ensure that the IP on
its own functions as expected. Subsequently, the

Figure 1. Verification life cycle.

Verifica�on
Planning

Architecture
Verifica�on

Pre-Silicon
Verifica�on

Emula�on
FPGA Prototyping

Post-Silicon
Verifica�on

10 IEEE Design&Test

Verification

Emulation and FPGA prototyping
Technically, verification using emulation and

FPGA prototyping is simply a part of pre-silicon
verification, since they are performed before the
system goes into fabrication. However, in practice,
they form an important bridge between pre-silicon
and post-silicon verification. Here one maps the
RTL model of the hardware into a reconfigurable
architecture such as FPGA, or specialized acceler-
ators and emulators [5], [8], [10]; these platforms
run about hundreds to thousands times faster than
an RTL simulator; consequently, one can execute
hardware/software use case scenarios such as an
operating system boot in a few hours. This speed is
obtained at the cost of controllability and observa-
bility. In a simulator, one can observe any internal
signal of the design at any time. In contrast, in FPGA
prototyping (which is the fastest of the pre-silicon
platforms) the observability is restricted to a few
thousands of internal signals. Furthermore, one must
decide on the signals to be observed before generat-
ing the FPGA bit-stream. Reconfiguring the observa-
bility would require recompilation of the bit-stream
which might take several hours. Consequently, they
are used only when the design is quite mature, e.g.,
when the functionality is relatively stable and debug
observability fixed enough to warrant few recompi-
lations. Recent innovations within FPGA technology
[2], [3] address some of the observability limitations
in FPGA solutions. Nevertheless, observability and
recompilation cost remain a challenge.

Post-silicon verification
Post-silicon validation is the activity where one

uses an actual silicon artifact instead of an RTL
model. To enable post-silicon validation, early sil-
icon is typically brought into a debug lab, where
various tests are run to validate functionality, timing,
power, performance, electrical characteristics, phys-
ical stress effects, and so on. It is the last validation
gate, which must be passed before mass production
can be initiated. Post-silicon validation is a highly
complex activity, with its own significant planning,
exploration, and execution methodologies. A fuller
discussion of post-silicon validation, as well as the
specific challenges therein, is out of scope for this
paper, and the reader can refer to a previous paper
[29] for a complete discussion. From a functional
perspective, the fact that a test can run at a target
clock speed enables execution of long use cases

(e.g., booting an operating system within seconds,
exercising various power management and security
features). On the other hand, it is considerably more
complex to control or observe the execution of sili-
con than that of an RTL simulation model (or even
FPGA or emulation models). Furthermore, changing
observability in silicon is obviously infeasible.

Verification challenges: Traditional and
emerging

In spite of maturity, verification tools today do
not scale up to the needs of modern SoC verification
problems. In this section, we discuss some of the key
challenges. While some of the challenges are driven
by complexity (e.g., tool scalability, particularly for
formal), some are driven by the needs of the rapidly
changing technology trends.

Shrinking verification time
The exponential growth in devices engendered

by the IoT regime has resulted in a shrinkage in
the system development life cycle, leaving little
time for customized verification efforts. However,
each device has a different use case require-
ment, with associated functionality, performance,
energy, and security constraints. We are conse-
quently faced with the conundrum of requiring
to create standardized, reusable verification flows
and methodologies that can be easily adapted
to a diversity of electronic devices each with its
unique tailor-made constraints. Two orthogonal
approaches have so far been taken to address
this problem. The first is to improve tool scala-
bility with the goal of eventually turning verifica-
tion into a turn-key solution; achieving this goal,
however, remains elusive (see below). The other
approach entails making the systems themselves
highly configurable, so that the same design may
be “patched” to perform various use cases either
through software or firmware update or through
hardware reconfiguration. Unfortunately, develop-
ing such configurable designs also has a downside.
Aside of the fact that it is impossible to determine
all the different use cases of a hardware system
in advance (and hence identify whether enough
configurability has been built in), this approach
also significantly blows up the number of states of
the system and consequently makes their verifica-
tion more challenging.

11September/October 2017

Limited tool scalability
Scalability remains a crucial problem in effec-

tive application of verification technology. The
problem is felt particularly acutely in formal veri-
fication; in spite of significant recent advances in
automated formal technologies such as satisfia-
bility (SAT) checking and SAT modulo theories
(SMT) [12], the chasm between the scale and com-
plexity of modern SoC designs and those which
can be handled by formal technology has con-
tinued to grow. The increasing requirements for
configurability and consequent increase in design
complexity have only served to exacerbate the sit-
uation. To address this problem, there has been a
growing trend in formal methods to target specific
applications (e.g., security, deadlock, etc.) rather
than a complete proof of functional correctness.
We will discuss some of these applications in the
following section.

The cost of simulation-based verification is also
getting increasingly prohibitive as the design size
continues to increase. For instance, random simula-
tion at the SoC level can cover only a tiny portion of
the design space. On the other hand, directed tests
designed for specific coverage goals can be prohibi-
tive in terms of human effort required.

Specification capture
A key challenge in the applicability of verifica-

tion today is the lack of specifications. Traditionally,
specifications have largely relied on requirements
documents, which under-specified or omitted
design behavior for some scenarios or left some
cases vague and ambiguous. Such omissions and
ambiguity, while sometimes intentional, were often
due to the ambiguity inherent in natural languages.
Unfortunately, the problem becomes significantly
more contentious in the context of modern SoC
designs than for traditional microprocessors. Recall
that at least in the realm of microprocessors, there
is a natural abstraction of the hardware defined
by the instruction-set architecture (ISA). Although
the semantics of ISA are complex (and typically
described in ambiguous English manuals spanning
thousands of pages), the very fact of their standardiza-
tion and stability across product generations enables
concretization and general understanding of their
intended behavior. For example, most microproces-
sor development companies have a detailed simula-
tor for the microprocessor ISA, which can serve as an

executable golden reference. On the other hand, it is
much harder to characterize the intended behavior
of an SoC design. Indeed, SoC design requirements
span across multiple documents (often contradic-
tory) that consider the intended behavior from a
variety of directions, e.g., there are system-level
requirements documents, integration documents,
high-level-architecture documents, microarchitec-
ture documents, as well as cross-cutting documents
for system-level power management, security, and
post-silicon validation [30]. Merely reconciling the
descriptions from the different documents is a highly
complex activity, let alone defining properties and
assertions as necessary for verification.

Use case identification
Given the aggressive time-to-market require-

ments, there has been a general move in verification
today away from comprehensive coverage of the
whole system (or a system component) and toward
more narrowly defined coverage of intended usage
scenarios. For example, for a device intended pri-
marily for low-power and low-performance applica-
tions (e.g., a small wearable device), the intended
usage would include scenarios where different
components transition frequently into various sleep
modes but would not include sustained execution
at high clock speeds; conversely, a high-perfor-
mance device such as a gaming system would pri-
oritize execution at high clock speeds. In general,
the exploration and planning phases of the device
life-cycle define a set of use cases which consti-
tute the target usages of the device and must be
exercised during verification. Unfortunately, this
approach, while attempting to reduce verification
effort by eliminating “over-validation” might induce
significant complexity in the process. In particular,
the usage scenarios are typically defined at a level of
the device and involve complex interaction of hard-
ware, firmware, and software; it is nontrivial to deter-
mine from such high-level verification targets how to
define verification goals for individual IPs, or even
hardware blocks for the entire SoC. Furthermore, the
SoC design itself and individual IPs have orthogonal
verification needs, together with their own method-
ologies, flows, and timelines. For example, an USB
controller IP is targeted to be developed (and veri-
fied) to be usable across the slew of USB devices; a
smartphone making use of this IP, on the other hand,
must be verified for the usage scenarios which are

12 IEEE Design&Test

Verification

relevant for the smartphone. Finally, exercising the
device-level use cases requires hardware, firmware,
and software at a reasonable maturity, which is avail-
able only late in the system life cycle (e.g., either at
post-silicon or at least during emulation of FPGA pro-
totyping). Bugs found this late may be expensive to
fix and may involve considerable design churn.

Power management challenges
Low power requirements for integrated circuits

and power efficiency have been a main focus for
today’s complex SoC designs. Power gating and
clock gating have been the most effective and widely
used approaches for power reduction. Power gating
relies on shutting off the blocks or transistors that are
not used. Clock gating shuts off blocks or registers
that are not required to be active. Industrial stand-
ards have been developed to describe the power
intent of low power designs to support the simula-
tion of power aspects at RTL simulation. However,
these features significantly complicate verification
activities. One reason is the obvious multiplication
of complexity. It is not uncommon that a low power
design can feature tens of power domains and
thus hundreds of power modes. It is prohibitive to
verify (whether through simulation or through for-
mal methods) that the design is functional under
all possible power modes. In practice, verification
focuses on SoC use case scenarios, which are driven
by hypervisor/OS control and application-level
power management. This requires hardware/soft-
ware co-verification of the power management fea-
tures. A second—perhaps more subtle—challenge
involves its interaction with post-silicon verifica-
tion. The behavior within a power-gated IP cannot
be observed during silicon execution; this implies
that it is very difficult to validate design behaviors
as various IPs get in and out of different sleep states.
Unfortunately, these are exact states that account
for subtle corner-case bugs, making validation chal-
lenging. To make matters worse, power-gated IPs
may make it difficult to observe behavior of other
IPs that are not in sleep states. Consider an IP A with
an observable signal s . In order for s to be observa-
ble, its value must be routed to an observation point
such as an output pin or system memory. If this route
includes another IP B then we may not be able to
observe the value of s whenever B is power-gated
even if A is active at that time.

Security and functional safety
Security and privacy have become critical

requirements for electronic devices in the modern
era. Unfortunately, these are often poorly speci-
fied, and even poorly understood. One reason is
that with the new IoT era, devices are getting con-
nected which were never originally intended to be
connected, e.g., refrigerators, light bulbs, or even
automobiles. Consequently, security threats and
mitigation remain unclear and one typically resorts
to experts performing “hackathons,” i.e., directed
targeted hacking of the device, to identify security
threats. In addition to security, functional safety,
i.e., the assurance that the device does not harm
anything in the environment due to system failure
is a critical requirement for electronic devices used
in applications such as aerospace and automotive.
Safety mechanisms must be implemented for such
devices to ensure that the device can be functional
under the circumstances of unexpected errors. For
example, lockstep systems are fault-tolerant systems
commonly used in automotive devices that run
safety critical operations in parallel. It allows error
detection and error correction: the output from lock-
step operations can be compared to determine if
there has been a fault if there are at least two sys-
tems (dual modular redundancy), and the error can
be automatically corrected if there are at least three
systems (triple modular redundancy), via majority
vote. Safety critical devices must be compliant with
IEC 61508 [13], and ISO 26262 [23] is particularly
designed for automotive electronics.

Hardware/software co-verification
In the days of microprocessors and application

software, it was easy to separate concerns between
hardware and software verification activities.
However, today, with an increasing trend of defining
critical functionality in software, it is difficult to make
the distinction. Indeed, it may not be possible in many
cases to define a coherent specification (or intended
behavior) of the hardware without the associated
firmware or software running. This has several conse-
quences for verification. In particular, hardware and
software are traditionally developed independently;
the tight coupling of the two makes it incumbent
that we define software milestones to closely corre-
spond to (and be consistent with) various RTL drops.
Furthermore, validating software requires an underly-
ing hardware model that is stable, mature, and fast.

13September/October 2017

An RTL model and simulation environment does not
have any of these characteristics. On the other hand,
waiting for the maturity of emulation or silicon may
be too late for identifying critical errors.

Analog and mixed signal components
Most IoT devices include various sensors and

actuators in addition to their digital processing core,
as the environment in which these devices operate
is inherently analog. As a result, an increasingly
large portion of the die area is occupied by analog/
mixed-signal (AMS) circuits [27]. Due to the com-
plex nature of analog behavior, design and verifica-
tion methodologies of analog circuits are far more
primitive compared with that of digital circuits.
Verification of AMS ICs remains complex, expensive,
and often a “one-off” task. Complicating the problem
is the requirement of combining both methodolo-
gies to ensure thorough verification of comprehen-
sive aspects of the mixed-signal SoCs.

Verification trends
Over the last few years, Foster led several indus-

try studies to identify broad trends in verification
[20]. One can make the following critical observa-
tions from these studies:

• Verification represents bulk of the effort in the
system design, incurring on average a cost of
about 57% of the total project time. There has
been a discernible increase in the number of pro-
jects where verification incurred the cost of over
80% of the project time.

• Most designs show an increase in the use of emu-
lation and FPGA models, with more usage of
these technologies the more complex the design.
This is consistent with the need for a fast proto-
typing environment, particularly for complex
SoCs, and also perhaps emphasizes the role of
software in modern systems (which require emu-
lation/FPGA prototyping for validation).

• Most successful designs are productized after
an average of two silicon spins. Note that for a
hardware/software system this translates to one
spin for catching all hardware problems and
another for all the software interaction issues.
This underlines the critical role of pre-silicon
verification to ensure that there are no critical
gating issues during post-silicon validation.There
has been a significant increase in the use of both

simulation-based verification and targeted for-
mal verification activities.

The last point above deserves qualification. In
particular, recall that both simulation and formal
verification techniques are falling short of the scal-
ability requirements of modern computing devices.
How then are they being increasingly adopted?

The answer lies in transformative changes that
have been occurring in these technologies in the
recent years. Rather than focusing on full functional
coverage, they are being targeted toward critical
design features. Current research trends include ver-
ification of specific emerging application domains,
such as automotive and security, and using data
analytics to improve verification efficiency. In the
remainder of this section, we dive a little deeper
into how these technologies have been changing to
adapt themselves to the increasing demand as well
as to address the scalability gap.

Simulation technologies
Simulation is the mainstay for verifying com-

plex SoCs thanks to its scalability to large industrial
designs. State-of-the-art simulation-based verification
methodologies include a highly automated process
that includes test generation, checking, and cover-
age collection, combined with islands of manual
labor [41]. In the beginning, a verification plan is
defined to capture all the features required to be ver-
ified. Then stimuli (tests) are either manually crafted
by verification engineers or automatically generated
by a test generator. The stimuli are applied to the sim-
ulation environment and the behavior of the design
is monitored and checked against expectation. To
measure the completeness of verification, coverage
metrics are defined in terms of which area of the
design and which design functionality are exercised
in simulation. Metric (coverage) driven verification
has been adopted as an industrial paradigm where
coverage is used to monitor and control the verifica-
tion process. A sufficient coverage level is required
for verification sign-off.

Simulation and test generation are the two
core technologies in simulation-based verification
that have been continuously pushed forward over
the years. We highlight the recent technological
trends and advances of simulation technologies in
this subsection and that of test generation in the
following one.

14 IEEE Design&Test

Verification

Simulator is the backbone of simulation-based
verification environment and all major EDA vendors
have their offerings.

The technology of digital simulators is a highly
mature area where the speedup of simulation on a
single machine is incremental and heavily relies on
the performance boost of the underlying machine
brought by technology scaling. As it gets more chal-
lenging to improve performance by technology scal-
ing, there have been endeavors to leverage parallel
computation to accelerate simulation. However,
there have been challenges to parallelize simulation
due to the event-driven nature of simulators and
the complex dependencies between the RTL code
blocks and expressions. Common simulators pro-
cess RTL code in a single thread, managing a single
active queue of events and handling them one at a
time. This serialized processing fashion is inherently
difficult to parallelize and accelerate by adding
more computation power. In order to parallelize
the simulation, a desired solution needs to break
the dependencies between the RTL code blocks
and partition them into semi-independent elements,
each of which can be run in a thread with minimal
synchronization between threads.

In recent years, more advances in the simulator
technology have emerged in the capabilities to sup-
port simulation of aspects that were not considered
ones of conventional digital simulation. The past few
years have witnessed the impact on the SoC designs
from emerging application areas such as IoT and
automotive. Accordingly, various design features
have been adopted in SoC designs to accommodate
the requirements of these applications. Following
are some illustrative examples of verification needs
arising from such features.

Analog and mixed signal verification
Depending on the portion of AMS circuits on

chip, the testbench architecture for AMS simulation
can be divided into two categories: “analog on top”
(top-level models are analog with digital modules
inside) or “digital on top” (top- level models are dig-
ital with analog modules inside). The latter is more
commonly used and the proper modeling of analog
behavior is critical to “digital on top” mixed signal
chip verification. Analog models of different abstrac-
tion levels are used through the project life cycle,
with consideration of the tradeoff between simula-
tion speed and accuracy. For example, Verilog-AMS

provides four abstraction levels to model analog
behaviors [9]. To support AMS verification, the sim-
ulator must have the performance and capacity to
simulate a mixture of models at different abstrac-
tion levels for today’s increasingly large designs in
a reasonable amount of time, while maintaining an
acceptable level of accuracy. It is not uncommon
that there are nested digital and analog blocks in
complex SoC designs, which should also be sup-
ported by the simulator. In addition, the co-existence
of models at various abstraction levels creates com-
plexity in verification planning as the models can be
mixed and matched for achieving different verifica-
tion goals.

Short of the capability of automatic abstract
modeling of the behavior of low-level models,
today’s AMS simulation strongly relies on the user
to provide the abstraction models. Proper modeling
of analog behavior requires in-depth knowledge
and know-how, and the modeling efforts can be
comparable to design efforts. Due to the continu-
ous nature of analog behavior, the checkers in AMS
simulation largely differ from their digital counter-
parts and are difficult to implement correctly. For
example, a voltage overshoot might be missed by
a checker if signal sampling is not setup appropri-
ately. In addition, not only time-domain properties
but also frequency-domain properties need to be
checked for analog circuits. It is highly desirable that
advances of AMS simulation technology can address
or at least mitigate these challenges.

Power-aware verification
While clock gating is usually implemented in RTL

code, power gating is implemented by capturing the
power intent in a standard format and instrumenting
the necessary circuitry during synthesis [1], [7]. The
power intent file is also used in simulation with RTL
code to find out design flaws of the low-power SoCs
at an early design stage. Power-aware simulators
generally support simulating the behavior resulted
from the power gating circuitry specified in power
intent files, such as power switches, isolation cells,
and retention registers.

Besides power gating, the requirements of sup-
porting power-aware simulation have been extended
to more advanced low-power design features, such
as multiple-voltage designs and dynamic voltage
scaling. Power-aware simulators need to understand
the voltage levels to be able to accurately simulate

15September/October 2017

the behavior. In addition, the expectation of pow-
er-aware simulation is not only to capture design
bugs but also to get an early estimation of the power
consumption.

Functional safety verification
Fault simulation is the main vehicle for evalu-

ating the robustness of a product’s safety mecha-
nism against unexpected errors. Faults are injected
into the design components to emulate the unex-
pected hardware errors. A safety module usually
has a functional unit and a checker unit. When a
fault is injected, the simulator outputs whether the
fault can propagate to the functional output and
the checker output. If a single fault can propagate
to the functional output and cannot be detected by
the checker, it means that the fault can propagate to
the system without recovery, which is a single point
of failure. Single point of failure is not tolerable for
safety critical SoCs. Currently, most fault simulators
support fault models including stuck-at faults, Single-
Event-Upset and Single-Event-Transient faults. These
fault models might be not sufficient to model real-
istic hardware errors without incorporating postlay-
out information. While post-layout information can
enable more accurate fault modeling and fault dis-
tribution, it increases the complexity drastically and
is not available until a late design stage. Even with
a comprehensive fault model, it is challenging to
inject faults at the right point in time and the right
spot in the design to discover safety blind-spots.
Currently, fault injection is usually performed ran-
domly at the unit level and directed at the system
level. Besides the fault injection in the digital part,
fault injection in the analog part is also important
and yet not well defined and supported. Echoing
with the trend of hardware/software co-verification,
yet another requirement for functional safety verifi-
cation is to simulate the effects of erroneous execu-
tion of firmware code, which is not well supported
by vendor tools.

Test generation and data analytics
Generation of high-quality tests is the driving

force of the simulation-based verification to expose
design errors. In microprocessor verification,
constrained-random test generation has been widely
adopted, where the verification engineers write test
templates that are fed into the test generators to pro-
duce tests. The test generator infrastructure can be

reused from one generation of processor design to
another since they follow almost the same ISA. Test
generation infrastructure in SoC verification used
to be less reusable, where constrained-random test
generation is often done during simulation and thus
is bound to a specific testbench. We are delighted
to see that there has been a paradigm shift in recent
years to separate the test generation from the simu-
lation testbench, which is the first step to increased
reusability. Due to the aggressive scheduling, it is
not possible to verify all aspects of an SoC. The test
development of SoC verification is mainly driven by
the intended use case scenarios of the SoC. Since
the development of a test scenario requires knowl-
edge and could be expensive, it is important that
such a test scenario can be reused. An increasingly
popular practice is to capture test scenarios in
a test generation model and then to map the sce-
narios to tests filled with details at different levels
of abstraction. There has also been an initiative
(Portable Stimulus Working Group) to standardize
the description language of the scenarios to maxi-
mize reusability [6].

Besides resuability, the most important and yet
challenging task in test generation is to improve the
efficiency of generating high-quality tests, where test
quality is usually measured by coverage metrics. We
call this task functional test content optimization.
In constrained-random test generation, this means
coming up with constraints to guide the direc-
tions of test generation. In a traditional verification
flow, the acquisition of knowledge to enable such
improvement is carried out mostly by manual learn-
ing, which requires a lot of nontrivial manual efforts.
Figure 2 illustrates this process. The test generator
Gen produces a set of tests T, while Gen can either
be a verification engineer or a constrained-random
test generator. The tests are applied to the simulator
Sim to obtain the result R. The result R is evaluated
through an evaluation step Eval and the important

Figure 2. Existing manual learning in functional test
content optimization [39].

T

Gen Sim Eval
R T’

Test
Suite

Learning
Manual

16 IEEE Design&Test

Verification

tests T’ are selected to be added into the test suite.
An important test could be the one that excites a
bug or provides coverage of some difficult-to-hit
coverage events. When the result is not satisfactory,
some aspects of the test generation process (e.g., the
test template) are refined to produce new tests. The
refinement is usually based on manual learning from
the simulation result R and the information collected
through step Eval.

In recent years, there have been a plethora of
research on leveraging data mining (or in a more
general term, data analytics) techniques to improve
the quality and efficiency of test generation for
coverage closure [16], [17], [24], [25], [28], [38].
Data mining is the process of extracting implicit,
nontrivial, previously unknown, and potentially use-
ful information from large data sets. In general, the
information extracted by data mining can be classi-
fied into three main categories:

• descriptive: quantitatively describing the main
characteristics of a data set;

• predictive: analyzing current and historical data
to make predictions about future trends;

• prescriptive: making predictions and then sug-
gesting decision options to take advantage of the
predictions [11].

In functional test content optimization, the results
from data analytics are usually used as prescriptive
information. We introduce how data mining can be
useful for functional test content optimization and
the basic principles and considerations of applying
data mining in functional verification.

Figure 3 shows two data mining components that
can be added into the existing function test content
optimization flow. First, a filter Filter can be added
between the generator and the simulator. The filter
plays the role of an oracle which can predict if a test
can be effective for achieving the coverage goal. The

objective is to filter out ineffective tests and thus only
apply effective tests TN for the simulation. An impor-
tant assumption for this approach to be effective is
that the cost of the simulation is much higher than
the cost of the test generation. This approach does
not directly improve the test generation but the effi-
ciency of applying the tests in simulation.

The second component intends to automate
the learning process for refining the aspects of test
generation Gen. The learning results should be
interpretable and actionable either by human or
machine. The improvements from this approach
can be two-fold:

• for a coverage event that has been covered
by only a few tests, the learning can be used
to obtain more tests to increase the coverage
frequency;

• for a coverage event that is not yet covered, the
learning can be used to increase the chance of
generating tests to cover the point.

To build practical data mining applications for
functional test content optimization, one needs to for-
mulate the target problem as one that can be solved by
data mining and machine learning algorithms. Figure 4
illustrates a typical data set seen by a machine learn-
ing algorithm. When y ⃗ is present, i.e., there is a label
for every sample, it is called supervised learning. In
supervised learning, if each y i is a categorized value,
it is a classification problem. If each y i is a continuous
value, it becomes a regression problem. When y ⃗ is not
present and only X is present, it is called unsupervised
learning. When some (usually much fewer) samples
are with labels and others have no label, the learning
is then called semisupervised [15]. Interested readers
can refer to [40] for a more detailed discussion.

To formulate a learning problem in functional
verification, the first set of important questions con-
cern the definition of a sample. For example, a sam-
ple could be an assembly test program. Alternatively,
a sample could also be several consecutive instruc-
tions and an assembly program can be broken into
several samples. Each sample is encoded with n fea-
tures f1,..., fn. Hence, the characteristics of each sam-
ple are described as a feature vector → x i. For a data
mining algorithm to succeed, it is foremost critical
to define the feature set with incorporated domain
knowledge. This process is called feature engineer-
ing and coming up with good features is difficult,

Figure 3. Two data mining components added in
functional test content optimization [39].

T

Gen Sim Eval
R TN’

Test
Suite

Learning

Filter
TN

Automate

17September/October 2017

time-consuming, and requires expert
knowledge and many iterations.

After defining the feature set, the
next set of questions concern the learn-
ing approaches. It depends on the data
availability and the application scenarios.
Suppose we would like to learn why certain
tests can hit certain coverage events. If we
have two categories of tests, one that cov-
ers the events and one that does not, then
binary classification can usually be applied.
However, if there are no tests covering the
events, outlier analysis would be a better
option, as the learned model can be used as
the Filter component in Figure 3. Even with a learning
approach decided, there can be many algorithms to
choose from. Different algorithms can produce learn-
ing models in different forms. The representation of
a learning model can be based on rules, trees, equa-
tions, or a collection of samples. It depends on how
the model is applied. For example, if the model is first
to be interpreted by a person, then a complex model
would not be helpful while a rule or a tree model
might be more suitable. Many algorithms might have
variations and parameters to decide on. In addition,
often preprocessing of the data set such as dimension
reduction and feature selection is needed to facilitate
the learning [39]. An empirical observation is that the
definition of the feature set plays a more important
role than the algorithms for a data mining application.

After applying the learning algorithms, it is critical
to validate the learned results (models) to make sure
that they do not overfit the training data. This is often
done by cross validation, where a relatively small
portion of data is preserved as the validation data
set to ensure that the model performs similarly on
both training data and validation data. In functional
test content optimization, further validation can be
carried out via application of the learning result. For
example, if a rule is learned for hitting a particular
event, evaluation of the model can mean modifying
the test templates according to the rule and observ-
ing the coverage of the events in simulation of the
resulting tests. If we observe increased coverage, it
means that the learning result is meaningful.

Targeted formal methods
Formal verification is the process of proving or

disproving the correctness of a system with respect
to a certain formal specification or property, using

formal methods of mathematics. Often, verification
is concerned with two common forms of properties:

• safety property, which ensures something bad
does not happen;

• liveness property, which ensures something good
eventually does happen.

The formal specification or property is
described using a formal language such as Property
Specification Language (PSL) and SystemVerilog
Assertion (SVA) and then a formal method/tool can
determine either the specification/property holds
true or find a counterexample showing the circum-
stances where the specification/property is violated.
Notwithstanding formal methods can offer thorough
verification with respect to the pertinent specifica-
tion, there have been two major obstacles to replace
simulation with formal methods for verifying com-
plex SoCs:

(1) Tool scalability: formal methods suffer from the
state explosion problem, namely, the size of the
problem that formal tools are dealing with grows
exponentially as the number of state variables
in the system increases [18]. The overwhelming
growth of complexity limits the applicability of
formal methods to large industrial designs.

(2) User friendliness: the application of formal methods
often requires a deep understanding in underlying
principles of the tool and familiarity with the design-
to-verify. This is partly caused by the tool scalability
issue since verification engineers often need to
manually apply techniques such as blackboxing,
abstraction and refinement, and assume-guaran-
tee reasoning to reduce the complexity. In-depth
understanding of the reset and clocking schemes
is often a prerequisite for setting up the formal

Figure 4. Typical dataset in a machine learning problem [40].

18 IEEE Design&Test

Verification

verification environment. In addition, commercial
formal tools are currently limited to supporting dig-
ital circuits and cannot be readily applied to AMS
circuits.

Commercial formal tools leverage a combina-
tion of different formal engines to solve a problem.
In recent years, advances in core technologies of for-
mal engines have been focused on efficient SAT and
SMT solvers to improve tool scalability. On the other
hand, what has made formal methods more applica-
ble in reality is the rapid growth of end-to-end appli-
cations of formal methods to solve target problems
with well-defined input, often called “Automatic
Formal Apps.” This shows a paradigm shift from the
traditional way of performing formal verification
where engineers setup environments and describe
formal properties in a low-level language. Targeted
formal methods essentially accept the specifications
in a higher-level representation such as spread-
sheets or XML, automatically generate properties,
invoke formal engines, and finally generate human
interpretable reports. This significantly reduces the
manual efforts and lowers the barriers for applying
formal methods to solve verification problems. We
review some of the targeted areas where Automated
Formal Apps have prospered.

Secure information flow analysis
Among the most common SoC security require-

ments are confidentiality and integrity of on-chip
assets. Proper access to the assets must be assured by
the enforcement of information flow policies, which
is one of the most important aspects of modern com-
puter security, and yet is also one of the hardest to
get correct in implementation [37]. Confidentiality
requires that an asset cannot be copied or stolen,
which is essential for assets such as passwords and
cryptographic keys. Integrity requires that an asset is
defended against modification, which is essential for
some of the on-chip root secrets on which the rest of
the system security is based, e.g., configuration firm-
ware, and for the security software once it is running.

Confidentiality and integrity can be expressed as
secure information flow properties, the research of
which originated from software verification [33] and
made its way to hardware verification [34]. Secure
information flow concerns whether the information
in a secure world has an impact on that in an inse-
cure one, and vice versa. Confidentiality of an asset

means that there is no information flow from where
the asset is contained to untrusted locations. Integrity
of an asset indicates that there is no information flow
from untrusted locations to where the asset resides.

Unlike safety and liveness properties, secure
information flow property belongs to the category
of hyperproperties [19], which cannot be described
by PSL or SVA. Therefore, for secure information
flow properties to be proved/disproved by com-
mercial formal tools, they are usually translated to
safety properties in a transformed system. An exam-
ple transformation is self-composition, where the
transformed system comprises two copies of the
original one [36]. A violation of secure information
flow properties thus can be represented as a pair of
traces in respective copies of the original system.
The difference between the traces essentially shows
the sensitization path of information leakage or
contamination.

Connectivity verification
SoCs are designed by connecting and integrat-

ing hundreds of IP blocks. An average SOC may
have connections in the order of tens of thousands.
While the process of connecting and integrating IPs
is usually accomplished by automated design tools
in a “correct by construction” manner, errors can
still creep in due to unclear or erroneous specifica-
tions, the addition of low-power structures, built-in
self-test and JTAG support, or downstream changes/
engineering change orders that were not fully prop-
agated [22]. There are two types of connectivity in
SoC designs:

• static connection, consisting of simple hookup of
the inputs and outputs of different IPs;

• dynamic, or functional integration, where,
besides the pure static connection, a temporal
and a functional dimension needs to be taken
into account due to the practice of hardware
resource sharing [32].

A typical example of dynamic connectivity is the
pin multiplexing scheme, which allows the inter-
nal IP blocks to dynamically share the routes to I/O
pads of a limited number of external pins. Because
of the tremendous complexity caused by the large
number of connections and complex multiplexing
policies, there is a need for thorough verification of

19September/October 2017

SoC connectivity and formal methods are deemed
as a nature fit.

In formal verification of SoC connectivity, the
specifications are usually captured in formats such
as spreadsheets and XML files. Then the tool will
read the specification and automatically generate
the properties to run formal proof. One challenge of
this practice is to come up with a standardized speci-
fication scheme that is expressive enough to capture
various connection schemes. Another challenge is
to manage the proof process of tens of thousands of
properties, which often requires parallel execution
of formal engines on the compute farm.

Besides formally verifying the connectivity of
the design with respect to the specification, another
application is to extract the high-level connectivity
specification from a design where the specifica-
tion is unavailable [4]. The extracted specification
can be used for design reviews. Moreover, it is not
uncommon that an SoC design will be changed for
feature enhancement or performance improvement
without intention to change the connectivity. Under
this circumstance, the extracted specification can
be used to formally verify that the connectivity is not
messed up by the design change.

Coverage unreachability analysis
SoC designs nowadays heavily reuse IP blocks in

order to maximize productivity. This trend results in
the fact that certain features of a reused IP are disa-
bled in a given SoC as they are not needed. Under
this circumstance, the portion of RTL code imple-
menting the features becomes dead code. The cov-
erage of the dead code needs to be waived during
coverage analysis as those code blocks will never
be exercised. In the process of coverage closure,
verification teams need to decide whether a cover-
age hole should be waived or should be given more
resources to close it. Given the large number of IP
blocks and often lack of accurate documentation,
waiver of dead code is a tedious and labor-intensive
task. However, it is a niche problem for applying for-
mal methods. After identification of RTL code blocks
that were not covered by extensive simulation, for-
mal properties concerning exercising those code
blocks can be generated. If the formal tool decides
that the code blocks cannot be exercised, they are
labeled as dead code. Like formal verification of

connectivity, the challenge here is to manage the
proof process of a large number of properties.

One might ask if the same analysis can be used
to generate tests that cover the coverage holes.
However, it is much more trickier than detecting dead
code. When the formal tool finds a trace where the
target code block is exercised, the trace might not be
a valid one as there could be missing constraints in
the proof process. To be able to use the same analysis
to generate tests, environmental constraints need to
be accumulated through the simulation-based verifi-
cation process. This requires a lot of manual efforts
and there are research opportunities to apply data
mining methods to learn those constraints.

Register verification
IP blocks in an SoC contain many memory-

mapped registers that can be accessed by system or
user programs to configure the IP and check status.
The implementation complexity of memory mapped
registers is relatively low compared to other design
elements. The challenge is that there are an exces-
sive number of memory mapped registers with var-
ious access policies such that manually verifying
them by directed or lightly randomized tests is a
tedious and error-prone job [26]. Complicating the
problem is the existence of advanced features such
as register aliasing and register remapping under
different operational modes. Formal verification of
register access is motivated by similar reasons with
formal verification of connectivity and shares similar
characteristics and challenges.

Another practical challenge in register verifica-
tion is the lack of a reliable specification. It is not
uncommon that the specification documents omit
details such as when a memory-mapped register can
be modified by internal operations [26]. Verification
engineers often rely on trial-and-error to determine
the undocumented behavior. Another application of
formal methods in register verification is to automate
this manual exploration process by formulating for-
mal properties regarding access policies and check-
ing the correctness. The challenge here is to have
comprehensive presumptions of access policies that
cover those advanced features.

We Have discussed the complexity and challenges
in modern hardware verification, and described
some recent trends in verification technology to
address these challenges. Many of the challenges

20 IEEE Design&Test

Verification

are reminiscent of the past, e.g., lack of specifica-
tion, tool scalability, and challenges in security vali-
dation. Nevertheless, as the ecosystem of computing
devices changes, the problems appear in different
forms and priorities.

As studies indicate, verification is getting to become
a bottleneck both in effort and in cost to the entire
design process. Addressing tool scalability, targeting
verification to specific needs, etc., are steps to alleviate
the process. However, such efforts cannot be expected
to go far enough. In order to significantly reduce the
cost, it is important for systems to be designed with
verification in mind rather than verification imposed
post facto on an already designed system. In fact, that
is already happening for some aspects of verification,
particularly security and post-silicon. However, to
address the challenge of scalability and robustness in
verification, it is incumbent that we take stronger and
more comprehensive steps in integrating functional
verification needs tightly into the design process.

 References
 [1] 1801–2015—IEEE Standard for Design and Verification

of Low-Power, Energy-Aware Electronic Systems.

Accessed May 30, 2017. [Online]. Available: https://

standards.ieee.org/findstds/standard/1801-2015.html.

 [2] CertusTM Silicon Debug. Accessed May 30, 2017.

[Online]. Available: https://www.mentor.com/products/

fv/certus- silicon-debug.

 [3] HAPS ProtoCompiler. Accessed May 30, 2017.

[Online]. Available: https://www.synopsys.com/

verification/prototyping/haps/haps-protocompiler.html.

 [4] JasperGold Connectivity Verification App. Accessed

May 30, 2017. [Online]. Available: https://www.

cadence.com/content/cadence-www/global/en_US/

home/tools/system-design-and-verification/formal-

and-static-verification/jasper-gold-verification-platform/

connectivity-verification-app.html.

 [5] Palladium Z1 Enterprise Emulation System. Accessed

May 30, 2017. [Online]. Available: www.cadence.com.

 [6] Portable Stimulus Specification Working Group.

Accessed May 30, 2017. [Online]. Available: http://www.

vhdl.org/activities/working-groups/portable-stimulus.

 [7] Si2 Common Power Format. Accessed May 30, 2017.

[Online]. Available: http://projects.si2.org/openeda.si2.

org/project/showfiles.php?group_id=51.

 [8] Veloce2 Emulator. Accessed May 30, 2017. [Online].

Available: https://www.mentor./-com-/products/fv/

emulation-systems/veloce.

 [9] Verilog-AMS Language Reference Manual.

Accessed May 30, 2017. [Online]. Available: http://

accellera.org/images/downloads/standards/v-ams/

VAMS-LRM-2-4.pdf.

 [10] Zebu. Accessed May 30, 2017. [Online]. Available:

http://www.synop/-sys.com/tools/verification/hardware-

verification/emulation/Pages/default.aspx.

 [11] M. Arar et al., “The verification cockpit—Creating

the dream playground for data analytics over

the verification process,” in Proc. 11th Int. Haifa

Verification Conf., HVC 2015, Haifa, Israel, pp. 51–66.

 [12] C. W. Barrett, R. Sebastiani, S. A. Seshia, and

C. Tinelli, “Satisfiability modulo theories,” in Handbook

of Satisfiability, A. Biere, M. Heule, H. van Maaren,

and T. Walsh, Eds. Amsterdam, The Netherlands: IOS,

vol. 185, pp. 825–885, 2009.

 [13] R. Bell, “Introduction to IEC 61508,” in Proc. 10th

Australian Workshop Safety Critical Syst. Software –

SCS ’05. Darlinghurst, Australia, vol. 55, 2006,

pp. 3–12.

 [14] J. Bhadra, M. S. Abadir, L. Wang, and S. Ray,

“A survey of hybrid technqiues for functional

verification,” IEEE Des. Test Comput., vol. 24,

no. 2, pp. 112–122, 2007.

 [15] O. Chapelle, B. Schlkopf, and A. Zien, Semi-

Supervised Learning, 1st ed. Cambridge, MA, USA:

MIT Press, 2010.

 [16] W. Chen, N. Sumikawa, L.-C. Wang, J. Bhadra,

X. Feng, and M. S. Abadir, “Novel test detection

to improve simulation efficiency: A commercial

experiment,” in Proc. Int. Conf. Comput. Aided Des.,

New York, NY, USA, 2012, pp. 101–108.

 [17] W. Chen, L.-C. Wang, J. Bhadra, and M. Abadir,

“Simulation knowledge extraction and reuse in

constrained random processor verification,” in Proc.

ACM/IEEE Des. Autom. Conf., 2013.

 [18] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith,

“Progress on the state explosion problem in model

checking,” in Informatics—10 Years Back. 10 Years

Ahead. R. Wilhelm, Ed. London, UK: Springer-Verlag,

2001, pp. 176–194.

 [19] M. R. Clarkson and F. B. Schneider, “Hyperproperties,”

J. Comput. Secur., vol. 18, no. 6, pp. 1157–1210,

Sept. 2010.

 [20] H. Foster, “Trends in functional verification: A 2014

industry study,” in Proc. Des. Autom. Conf. 2015,

2016, pp. 48:1–48:6.

 [21] A. Gupta, “Formal hardware verification methods: A

survey,” Form. Methods Syst. Des., vol. 2, no. 3,

pp. 151–238, Oct. 1992.

21September/October 2017

 [22] Z. Hanna, “Challenging problems in industrial formal

verification,” in Proc. 14th Conf. Form. Methods

Comput. Aided Des., Austin, TX, 2014, p. 1:1.

 [23] Road Vehicles–Functional Safety, ISO, 2011.

 [24] V. Kamath, W. Chen, N. Sumikawa, and L.-C. Wang,

“Functional test content optimization for peak-power

validation-an experimental study,” in Proc. IEEE Int.

Test Conf., Anaheim, CA, USA, Nov. 2012, pp. 1–10.

 [25] Y. Katz, M. Rimon, A. Ziv, and G. Shake, “Learning

microarchitectural behaviors to improve stimuli

generation quality,” in Proc. ACM/IEEE Des. Autom.

Conf., 2011, pp. 848–853.

 [26] N. Kim, J. Park, B. Min, and W. Park, “Register

verification: Do we have reliable specification?” in

Proc. Des. Verification Conf., 2013.

 [27] X. Li, C. Kashyap, and C. J. Myers, “Guest editors’

introduction challenges and opportunities in analog/

mixed-signal CAD,” IEEE Des. Test, vol. 33, no. 5,

pp. 5–6, Oct. 2016.

 [28] L. Liu, D. Sheridan, W. Tuohy, and S. Vasudevan,

“Towards coverage closure: Using GoldMine assertions

for generating design validation stimulus,” in Proc.

Des., Autom. Test Europe Conf. Exhi., 2011, pp. 1–6.

 [29] P. Mishra, R. Morad, A. Ziv, and S. Ray, “Post-silicon

validation in the SoC era: A tutorial introduction,” IEEE

Des. Test Comput., vol. 34, no. 3, pp. 68–92,

Jun. 2017.

 [30] S. Ray, I. Harris, G. Fey, and M. Soeken, “Multilevel

design understanding: From specification to logic,” in

Proc. ICCAD, 2016, p. 133.

 [31] S. Ray, Y. Jin, and A. Raychowdhury, “The changing

computing paradigm with internet of things: A tutorial

introduction,” IEEE Des. Test, vol. 33, no. 2,

pp. 76–96, 2016.

 [32] S. K. Roy, “Top level SOC interconnectivity verification

using formal techniques,” in Proc. 2007 8th Int.

Workshop Microprocessor Test Verification,

Dec. 2007, pp. 63–70.

 [33] G. Smith, “Principles of secure information flow

analysis,” Malware Detection, M. Christodorescu, S.

Jha, D. Maughan, D. Song, and C. Wang, Eds. Boston,

MA, USA: Springer, 2007, pp. 291–307.

 [34] P. Subramanyan and D. Arora, “Formal verification of

taint-propagation security properties in a commercial

SoC design,” in Proc. Des., Autom. Test Europe Conf.

Exhi., 2014, pp. 1–2.

 [35] M. Talupur, S. Ray, and J. Erickson, “Transaction flows

and executable models: Formalization and analysis of

message passing protocols,” in Proc. Form. Methods

Comput. Aided Des., 2015, pp. 168–175.

 [36] T. Terauchi and A. Aiken, “Secure information flow

as a safety problem,” in Proc. 12th Int. Conf. Static

Analysis. Berlin, Germany: Springer-Verlag 2005,

pp. 352–367.

 [37] M. Tiwari, H. M. Wassel, B. Mazloom, S. Mysore,

F. T. Chong, and T. Sherwood, “Complete information

flow tracking from the gates up,” in Proc. 14th

Int. Conf. Architectural Support for Programming

Languages and Operating Systems (ASPLOS XIV),

New York, NY, USA, 2009, pp. 109–120.

 [38] I. Wagner, V. Bertacco, and T. Austin, “Microprocessor

verification via feedback-adjusted Markov models,”

IEEE Trans. Comput. Aided Des. Integr. Circuits Syst.,

vol. 26, no. 6, pp. 1126–1138, Jun. 2007.

 [39] L. C. Wang, “Data mining in functional test content

optimization,” in Proc. 20th Asia South Pacific Des.

Autom. Conf., 2015, pp. 308–315.

 [40] L.-C. Wang and M. S. Abadir, “Data mining in EDA—

Basic principles, promises, and constraints,” in Proc.

51st Ann. Des. Autom. Conf. (ACM), New York, NY,

USA, 2014, pp. 159:1–159:6.

 [41] B. Wile, J. Goss, and W. Roesner, Comprehensive

Functional Verification: The Complete Industry

Cycle. San Francisco, CA, USA: Morgan Kaufmann,

2005.

Wen Chen is a Principal Engineer at NXP
Semiconductors. His research interests include
functional verification of microprocessor and
SoC, data mining, and security. He received an
MS in computer science and engineering from
the University of Michigan, Ann Arbor, and a PhD
in electrical and computer engineering from the
University of California, Santa Barbara. He is a
Member of the IEEE.

Sandip Ray is a Senior Principal Engineer at
NXP Semiconductors, where he leads R&D on
security validation for automotive and Internet-
of-Things applications. His research interests
include developing correct, dependable, secure,
and trustworthy computing through cooperation
of specification, synthesis, architecture, and
validation technologies. He received a PhD from
the University of Texas at Austin. He is a Senior
Member of the IEEE.

Jayanta Bhadra is the Director of World-wide
Systems and Verification Design Enablement team
at NXP Semiconductors. His research interests
include hardware verification, mathematical logic,
and security related research. He received a PhD

22 IEEE Design&Test

Verification

in electrical and computer engineering from the
University of Texas at Austin. He is a Senior Member
of the IEEE.

Magdy Abadir is currently on the board of
directors of Helic and also serves as Vice President
of Corporate Marketing. His research interests
include microprocessor test and verification, test
economics, and DFT. He received a BS with honors
in computer science from Alexandria University,
Egypt, an MS in computer science from the
University of Saskatchewan, and a PhD in electrical
engineering from the University of Southern
California. He is an IEEE Fellow for contributions he
made to microprocessor test and verification.

Li-C Wang is a Professor in the Department of
Electrical and Computer Engineering, University
of California, Santa Barbara. His research interests
include microprocessor test and verification,
statistical methods for timing analysis, speed test
and performance validation, and applications of data
mining and statistical learning in EDA. He received
an MS in computer science and a PhD in electrical
and computer engineering from the University of
Texas at Austin.

 Direct questions and comments about this article
can be sent to Wen Chen, NXP Semiconductors,
Austin, TX, USA; e-mail: wen.chen@nxp.com.

