
0018-9340 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2021.3128159,
IEEE Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, MANUSCRIPT ID 1

GCONV Chain: Optimizing the Whole-life
Cost in End-to-end CNN Acceleration

Jiaqi Zhang, Student Member, IEEE, Xiangru Chen, Student Member, IEEE, and Sandip Ray,

Senior Member, IEEE

Abstract—The acceleration of CNNs has gained increasing attention since their success in computer vision. Since the

heterogeneous layers cannot be processed by accelerators proposed for convolution layers only, modern end-to-end CNN

acceleration solutions either transform diverse computation into matrix/vector arithmetic, which loses data reuse opportunities in

convolution, or introduce dedicated functional unit to each kind of layer, which results in underutilization and high update

expense. To enhance the whole-life cost efficiency, we need a solution that is efficient in processing CNN layers and has the

generality to apply to all kinds of existing and emerging layers. To this end, we propose GCONV Chain, a method to convert the

entire CNN computation into a chain of standard general convolutions (GCONV) that can be efficiently processed by existing

CNN accelerators with low-overhead hardware support. This paper comprehensively analyzes the GCONV Chain model and

proposes a full-stack implementation to support GCONV Chain. Our results on various CNNs demonstrate that GCONV Chain

improves the performance and energy efficiency of existing CNN accelerators by an average of 3.4x and 3.2x respectively.

Furthermore, we show that GCONV Chain provides low whole-life costs for CNN acceleration, including both developer efforts

and total cost of ownership.

Index Terms— Computer architecture, convolution neural network, hardware acceleration, neural network.

—————————— ◆ ——————————

1 INTRODUCTION

Since its resurgence, Convolutional Neural Network
(CNN) has demonstrated impressive success in promoting
the computer vision in a wide range of applications [1]–[3].
However, the high accuracy of CNN is achieved at the cost
of enormous computation and data movement, which is an
undesirable obstacle to widely implementing and deploy-
ing them. Consequently, CNN acceleration has received
increasing attentions.

Normally, CNN computation and parameters are dom-
inated by the convolution layers. Based on this fact, abun-
dant prior works [4]–[12] focus on the acceleration of these
layers by designing customized architectures and data-
flows to enhance the performance and data reuse in con-
volution operations (we classify these accelerators as CIP,
i.e., convolution intended processors). However, recent
CNNs incorporate more heterogeneous functional layers.
For example, Fig. 1(a) depicts a basic block of MobileNet
[13] with four various layers. Except for the first layer, each
of them performs unique computation that cannot fit into
the traditional definition of a convolution layer and thus
cannot be accelerated by CIPs as illustrated in Fig. 1(b).
Since these non-traditional layers play an important role in
promoting the accuracy [14] of CNNs and are even proved
to have better learning capability than the traditional lay-
ers [15], overlooking them can lead to degraded accuracy.
Therefore, CIPs that only accelerate the convolution layers
and are even incapable of parsing the other layers have to
offload them to somewhere else, failing to efficiently

perform the end-to-end CNN computation.
To deal with the “elephant in the room”, a common

practice is to transform the computation in diverse func-
tional layers into tensor (mostly matrix and vector) opera-
tions and perform them in the tensor instruction
processors (TIP) [16]–[19]. As illustrated in Fig. 1(c), TIPs
are able to process any CNN layer but they lose certain
data reuse opportunities compared with CIPs and thus re-
sult in low data movement efficiency. TIPs also suffer from
lower code density because they explicitly manage the data
loading and each matrix/vector operation. Another plausi-
ble solution is to add a dedicated on-chip processing unit
for each type of layer in addition to the convolution (these
accelerators are categorized as LIP, i.e., the layer instruc-
tion processors) [20]–[22], as illustrated in Fig. 1(d). Never-
theless, almost every new network features a new func-
tional layer. It is costly for the hardware developers to de-
sign a new component to process the newly introduced
layer for the full-fledged accelerators and for the users to
upgrade their deployment. What is more, the varying
CNN structures make it impossible to design a

xxxx-xxxx/0x/$xx.00 © 200x IEEE Published by the IEEE Computer Society

Conv
engine

Norm

Scale

...

(d) LIP

Conv

Batch
norm

ReLU

Scale

... ...

... ...

(a) A Block of
MobileNet

I0 I1 I2 I3 I4

K0 K1 K2

Conv engine

reuse
pre

served

(e) GCONV Chain

shift

I0 I1 I2
I1 I2 I3
I2 I3 I4

K0 K1 K2

(c) TIP

reuse
lost

I0 I1 I2 I3 I4

K0 K1 K2

shift

(b) CIP

Conv engine

offloaded

Fig. 1. Three Types of Modern CNN Accelerators and GCONV Chain

————————————————

• Jiaqi Zhang, Xiangru Chen, and Sandip Ray are with the Department of
Electrical and Computer Engineering, University of Florida, Gainesville,
FL 32611. E-mail: jiaqizhang, cxr1994816@ufl.edu, and san-
dip@ece.ufl.edu.

Authorized licensed use limited to: University of Florida. Downloaded on November 24,2021 at 23:26:11 UTC from IEEE Xplore. Restrictions apply.

mailto:cxr1994816@ufl.edu

0018-9340 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2021.3128159,
IEEE Transactions on Computers

2 IEEE TRANSACTIONS ON COMPUTERS, MANUSCRIPT ID

heterogeneous accelerator with high utilization for all the
workloads.

To understand the issues involved, it is helpful to use
analogy from instruction set architecture. In particular,
think of TIPs as analogous to RISC and CIPs and LIPs to
CISC. The challenges faced by the existing works drive us
to find a balance point between the generality of RISC-like and
efficiency of CISC-like CNN accelerators. We innovatively
propose to convert the end-to-end diverse CNN computa-
tion into a series of general convolution (GCONV Chain),
where the operations are as uniform as that in TIPs and the
reuse opportunities can be leveraged as in CIPs and LIPs,
as shown in Fig. 1(e). Specifically, though the diverse layers
perform different functions, we develop a parameterized
model that expresses all the CNN operations as a scale-up
of a simple 1-D GCONV. For example, the local response
normalization [23] and batch normalization [14] can be
viewed as general convolutions in the channel dimension
and batch dimension respectively. This enables the end-to-
end CNN to be efficiently accelerated by a uniform
computation fabric, where the complex acceleration
problem is simplified to a single mapping algorithm of the
1-D GCONV.

The benefits of our approach are threefold: (1) since
GCONV Chain is composed of general convolutions and
CNN accelerators are designed to perform convolution, it
can be applied to almost any CNN accelerator with no
worse if not better performance (Section 6.3); (2) when
GCONV Chain is applied to CIPs, it eliminates the costly
offloading overhead. And this GCONV armed CIP (GC-
CIP) does not suffer from the low data movement
efficiency in TIPs and resource underutilization in LIPs,
showing that GC-CIPs are promising accelerators for the
entire end-to-end diverse CNN computation (Section 6.5);
(3) the generality of GCONV Chain further makes GC-CIPs
the most whole-life cost efficient choice by lessening the
burden of both users and developers (Section 6.6).

The paper makes the following contributions:
(1) We recognize the gap between modern CNNs com-

posed of diverse functional layers and the existing CNN
accelerators which are proposed for either generality or ef-
ficiency for certain layers.

(2) We propose GCONV Chain, a method to convert the
end-to-end CNN computation into a chain of general con-
volutions (GCONVs) so that all the CNN layers can be ef-
ficiently and uniformly accelerated.

(3) We further propose a full-stack GCONV Chain im-
plementation on existing CNN accelerators, including
GCONV Chain generation, acceleration and hardware
support.

(4) Our experiments on seven CNNs from a wide range
and five representative accelerators of different types show
that GCONV Chain can significantly improve the perfor-
mance and energy efficiency of existing CNN accelerators
and optimize the cost of both development and ownership.

The rest of this paper is organized as follows. Section 2
provides the background on CNN acceleration and the
motivation for CNN generalization. Section 3 describes the
approach to transform CNN computation into a GCONV
Chain. Then Section 4 introduces the methodologies to

analyze the GCONV workload and the algorithm to accel-
erate GCONV Chain. Section 5 elaborates the system im-
plementation of GCONV Chain. Sections 6 evaluates our
proposed GCONV Chain. And Sections 7 and 8 discusses
the related work and concludes the paper respectively.

2 BACKGROUND AND MOTIVATION

2.1 A Traditional Convolution Layer

CNNs are neural networks featured by the dominating
convolution layers. Fig. 2(a) and (b) provide the illustration
and pseudo code of a traditional convolution layer to help
understand the computation pattern and reuse opportuni-
ties in the convolutional operation, where Np stands for the
argument of parameter p. The same set of Noc kernels are
applied to a batch of Nbs input samples. The size of each
kernel is Nky×Nkx×Nic and they slide on the height and
width of the input channels to generate Noc channels of
Noy×Nox outputs. In some CNNs [23][13], the input chan-
nels are divided into Ngp groups to perform convolution
individually.

There are two kinds of reuses in convolution, parallel-re-
use and overlap-reuse. Parallel-reuse results from parallel
computation in terms of a certain data. For example, each
kernel is reused to generate outputs within each channel
and the inputs are reused by different output channels.
Similarly, each output is reused within the kernel since the
partial results are reduced to generate one output. The slid-
ing of the kernel also brings overlap-reuse when the input
windows of consecutive outputs are overlapped. For in-
stance, in Fig. 2(a), the inputs with dots are shared by the
computation of different outputs, multiplied by different
weights. Exploiting these two kinds of parallelism in the
convolutional operation has been widely recognized as an
effective method to reduce the costly data movement in
CNN acceleration.

2.2 Non-Traditional Layers in CNNs

Aside from the convolution layers, there is a variety of
other necessary layers in the CNNs, each of which per-
forms a different operation on the input data. And the op-
eration of a same layer even varies in the training and in-
ference of the network. Besides the traditional layers such
as fully connection, max pooling, ReLU and softmax that
breed the success of the nascent CNN model, i.e., LeNet
[24], the growing power of the emerging CNNs is always
accompanied with new functional layers. Benchmarked on
seven popular CNNs in the timeline (i.e., four classification
CNNs: AlexNet (AN) [23], GoogLeNet (GLN) [25],

N
o

y=
2

N
b

s=
2

Nox=2

(a) A Convolutional Layer

N
ky

=2

Nkx=2

Ngp=1 for bs = [0:Nbs-1]:
 for gp = [0:Ngp-1]
 for oc = [0:Noc-1]:
 for ic = [0:Nic-1]:
 for oy =[0:Noy-1]:
 for ox =[0:Nox-1]:
 for ky =[0:Nky-1]:
 for kx =[0:Nkx-1]:
 O[bs][gp][oc][oy][ox] =
O[bs][gp][oc][oy][ox] + K[gp][oc][ic][ky][kx]

I[bs][gp][ic][ky+sy×oy][kx+sx×ox]

#batch size
#group
#output channel
#input channel
#output height
#output width
#kernel height
#kernel width

#sx, sy are stride

(b) Pseudo Code

.

.

.

.

Fig. 2. A Traditional Convolution Layer

Authorized licensed use limited to: University of Florida. Downloaded on November 24,2021 at 23:26:11 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2021.3128159,
IEEE Transactions on Computers

ZHANG ET AL.: GCONV CHAIN: OPTIMIZING THE WHOLE-LIFE COST IN END-TO-END CNN ACCELERATION 3

DenseNet (DN) [26], MobileNet (MN) [13], in addition to
an object detection network Faster R-CNN+ZFNet (ZFFR)
[27][28], a 3-D CNN for video processing (C3D) [29] and a
capsule neural network (CapNN) [30]), Table 1(a) lists the
newly introduced layers and the ratio of these non-tradi-
tional layers. As can be observed in Columns 5 to 7, the
non-traditional layers account for increasing computation,
data footprint and movement in the CNNs. And these lay-
ers are taking significant roles in determining the speedup
and energy efficiency of CNNs.

2.3 Modern CNN Acceleration Challenges

As CNNs are being employed more frequently and the het-
erogeneity in CNN layers keeps increasing, it is obviously
important to have a solution that efficiently accelerates all
the CNN computation. Unfortunately, we notice that al-
most all the existing works suffer from various inefficien-
cies when processing modern CNNs.

TIP: The tensor instruction processors (TIP) are able to
process any CNN layer by transforming them into tensor
(mostly matrix and vector) operations [16]–[19]. However,
they cannot exploit the abundant overlap-reuses in CNNs.
For instance, im2col [17] is commonly employed by TIPs to
transform convolution into matrix multiplication, where
the input windows are flattened to columns in a matrix and
then multiplied by a weight matrix, as shown in Fig. 1(c).
This results in the replication of the input data (marked in
red) and thus low energy efficiency. Column 1 in Table 1(b)
quantifies the total data replication of the CNNs in TIPs.
Since the power consumption is dominated by the data
movement [19], this overhead significantly increases the
operating expense for the users.

CIP: The main component of a convolution intended
processor (CIP) is a convolution engine, which implements
various exhaustively explored dataflows (e.g., weight sta-
tionary, output stationary, row stationary, etc.) to maxi-
mally exploit both the parallel and overlap-reuse opportu-
nities in convolution [4]–[12]. For example, the convolu-
tion engine in Fig. 1(b) adopts the weight stationary data-
flow, where the inputs are shifted along the stationary
weights to exploit the overlap-reuse, avoiding data repli-
cation. However, since the proposed dataflows only apply
to the computation model of traditional convolution lay-
ers, CIPs are inefficient or even incapable of parsing the
parameters when processing the other layers. Therefore,
offloading is required for non-traditional layers whose ac-
celeration is omitted in CIPs. Column 2 in Table 1(b)

characterizes the ratio of intermediate data that requires
offloading for a series of non-traditional processing. Note
that since the offloading energy consumption can be as
high as 146x of the on-chip data movement in our experi-
ment, this adds considerable burden to the system.

LIP: The layer instruction processors (LIP) [20]–[22] add
a dedicated on-chip processing unit for each type of layer
in addition to the convolution engine and process the cor-
responding layers of different inputs in a pipeline. Re-
sulted from the variation of the number and shape of each
kind of layers in a certain CNN, pipeline bubbles are una-
voidable. To implicate this, Column 3 in Table 1(b) lists the
utilization of different networks assuming the pipeline has
two stages for traditional and non-traditional layers respec-
tively. The resources are partitioned based on the ratio of the
traditional and non-traditional computation in all the net-
works. As observed, the uniform partitioning results in sig-
nificantly varying utilization. And the utilization is ex-
tremely low in networks with more non-traditional compu-
tation (e.g., C3D and CapsuleNN). Layers that pose a pipe-
line barrier also lower the utilization (e.g., batch normaliza-
tion in DenseNet and MobileNet). What’s more, LIPs de-
mand the developers to design an efficient acceleration so-
lution to any new layer and the users to update the devices
as frequently as the evolution of CNNs.

To enhance the whole-life cost efficiency of end-to-end
CNN computation, we need an acceleration solution that
is efficient in processing CNN layers and has the generality
to apply to all kinds of existing and emerging layers.

3 GENERAL CONVOLUTION (GCONV) CHAIN

Our goal is to convert the diverse CNN layers into a chain
of standard operations without losing the convolution pat-
tern. Instead of breaking them down into basic matrix/vec-
tor arithmetic as in TIPs, we view them as multi-dimension
convolutions under a more generalized definition. This
section proposes the GCONV model and the method to
transform the entire CNN computation into a GCONV
Chain.

3.1 GCONV Operation Definition

GCONV is the most basic operation in our system. It is a
concisely parameterized 1-D convolution which can be
scaled up to multiple dimensions to define various CNN
operations. Compared with the traditional definition of a
convolution layer, the simplicity, scalability and representa-
bility of GCONV as discussed below make it ideal to

TABLE 1
CNN and Accelerator Characterization

(a) Non-Traditional Layers in CNNs (b) Inefficiencies of Accelerators

CNN
type

Net-
work New layer types

Non-traditional ratio Data replication
(TIP)

Offloading
(CIP)

Utilization
(LIP) Layers Computation Data footprint Movement

classifi-
cation

AN LRN, dropout 24% <1% 5% <1% 35x 3% 98%

GLN ave pool, concat 13% <1% 17% 1% 6x 13% 80%

DN batch norm, scale 66% 5% 76% 22% 2x 53% 17%

MN depthwise conv 62% 8% 73% 16% 2x 77% 11%

other

ZFFR RoI, proposal 29% <1% 41% <1% 4x 57% 86%

C3D 3D conv, 3D pool 52% 99% 46% 99% 6x 87% 1%

CapNN prim, digicaps 18% 95% 6% 93% 3x 33% 1%

Authorized licensed use limited to: University of Florida. Downloaded on November 24,2021 at 23:26:11 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2021.3128159,
IEEE Transactions on Computers

4 IEEE TRANSACTIONS ON COMPUTERS, MANUSCRIPT ID

effortlessly, uniformly and efficiently accelerate all kinds
of CNNs.

Definition: Fig. 3 shows an example of 1-D GCONV. It
is characterized by four parameters that form the nested
loop of the computation as shown in Fig. 4: the inputs are
separated into Ng groups and no connection or reuse exists
inter-group; in each group, the inputs are convolved by
Nop kernels in parallel; each kernel has Nks weights; Nopc
outputs are generated by each kernel. There are also two
auxiliary parameters, i.e., ps for padding size and s for
stride, as in the traditional convolution. The input size
Nipc of 1-D GCONV is not required since it can be derived
as:

𝑁𝑖𝑝𝑐 = (𝑁𝑜𝑝𝑐 + 1) × 𝑠 + 𝑁𝑘𝑠 − 2𝑝𝑠 (1).

Note that dilation is not modeled in GCONV since we
adopt the technique proposed in [31] to turn the dilated
convolution into dense convolution by simply reordering
the computation.

Simplicity: Recall that the traditional convolution layer
in Fig. 2 has eight different parameters. The 1-D GCONV
is relatively simple with only four. These four parameters
are necessary to preserve the data reuse patterns. Specifi-
cally, the input, kernel and output can be parallel-reused
for Nop, Nopc, Nks times and the input can be overlap-re-
used when Nks > s. In our system, if not explicitly denoted,
the parameters take default values as [ps: 0, s: 1, Ng: 1, Nop:
1, Nks: 1, Nopc: 1].

Scalability: This simple 1-D GCONV can easily scale up
to multiple dimensions. The dimension of GCONV is de-
termined by the data in the network. For example, the con-
volution layer in Fig. 2 manifests four dimensions: the
mini-batch (B), channel (C), height (H) and width (W). Fig.
5 shows the view of Fig. 2(b) from each dimension, where
the traditional convolution parameters are replaced
(marked with strikethrough) by the GCONV parameters.
While the operations in dimensions H and W are naturally
1-D convolution, it might be counter-intuitive that the op-
erations in B and C can also be described as 1-D GCONVs.
Specifically, in C, each kernel covers all the input channels,
meaning the operation can be viewed as a convolution
with kernel size equal to the input size (𝑁𝑘𝑠 = 𝑁𝑖𝑝𝑐). There
are several such kernels generating output channels in par-
allel (𝑁𝑜𝑝). For dimension B, the same kernel is reused by
all samples in a mini-batch. This can be viewed as a kernel
with one weight moving along the inputs to generate dif-
ferent outputs (𝑁𝑜𝑝𝑐).

One benefit of replacing the 4-D integrated operation
with the scaled-up 1-D GCONV is the scalability. Fig. 4

lists the nested loop for multi-dimension GCONV. Note
that the exact same four loops are duplicated (marked as
red and blue) for each new dimension, so it is easily in-
ferred that the 4-D GCONV is a nest of 16 loops. Further-
more, we can remove the four loops in dimension B to
model real-time learning [32], duplicate four loops for time
dimension in 3-D CNNs [29] or for vector dimension in
Capsule Neural Networks [30], etc. Although the method
seems to increase the loops in principle, a certain parame-
ter can be pruned if it takes the default value. Therefore,
the GCONV model does not bring any overhead to the ef-
fectual number of parameters, as illustrated in Fig. 5. On
the contrary, since all the dimensions are perfectly sym-
metric in terms of the computation and data reuse oppor-
tunities, it indeed shrinks our analysis and acceleration de-
sign space to just 1-D GCONV with only four loops.

Representability: The proposed model can further
shrink the effort-taking study of all kinds of layers in both
training and inference into a 1-D GCONV. In a comprehen-
sive analysis, we find that all the layers in modern CNNs
can be decomposed into a series of GCONV operations (an
example will be given in Section 3.2). And it is future-proof
because GCONV can always model a tensor operation by
setting the kernel size equal to the input size.

Notice that although the computation pattern of all the
layers can be represented by the GCONV parameters, not
all of them perform multiply-and-add operations. There-
fore, GCONV operators are introduced aside from the pa-
rameters. The four operators of respectively define how the
inputs are preprocessed (pre); how they are processed by
the kernels (main); how the partial results within a kernel
are reduced (reduce); and how the outputs are postpro-
cessed (post). The pre or post operator applies the same pro-
cessing (e.g., multiply, and, square or LUT) to each input and
output when they are loaded into the convolution engine
or sent back to the global buffer. The convolution engine
convolves the inputs with the kernels and performs main
operation (e.g., square, multiply, and or add) between inputs
and kernel parameters (which are no longer simply
“weights” because the operation is not limited to multiply).
Some connections in the convolution engine allow reduc-
tion (e.g., add or compare) of partial results spatially or tem-
porally. The operators are the same across all the dimen-
sions in a GCONV operation.

Since GCONV does not modify the dataflow, almost all
the CNN accelerators can support GCONV computation.
The only modification required is that the traditional PEs
that only perform multiply and add should be equipped
with more comprehensive main and reduce functions. This
only brings little overhead compared to the expensive da-
taflow implementation, as will be evaluated in Section 6.4.

3.2 GCONV Chain Generation

With a stack of different functional layers, the end-to-end
CNN computation can be converted into a GCONV Chain

C: [Nks: 2, Nop: 2]

Nic=2 Noc=2

B: [Nopc: 2]

N
b

s=
2

H: [Nks: 2, Nopc: 2]

N
o

y=
2

N
ky

=2

W: [Nks: 2, Nopc: 2]

Nox=2Nkx=2

Fig. 5. Describing Convolution Layer in Fig. 2 by GCONV Ng = 2

g: group,
ks: kernel
size,
opc:
outputs
per conv,
op:
output
parallel,
ps:
padding
size,
s: stride

Nopc = 2

input

output

kernel

s = 2

Nop = 2

Nks = 3

0

0

0

0

ps = 1

Fig. 3. 1-D GCONV

for gH = [0:NgH-1]:
 for opH = [0:NopH-1]:
 for opcH = [0:NopcH-1]:
 for ksH = [0:NksH-1]:
 for gW = [0:NgW-1]:
 for opW = [0:NopW-1]:
 for opcW = [0:NopcW-1]:
 for ksW = [0:NksW-1]:
 O[gH][opH][opcH][gW][opW][opcW]
= O[gH][opH][opcH][gW][opW][opcW] {reduce}
K[gH][opH][ksH][gW][opW][ksW] {main}

I[gH][ksH+sH×opcH][gW][ksW+sW×opcW]

GCONV
computation
of one
dimension

Fig. 4. Pseudo Code of 2-D
GCONV in H and W Dimensions

Authorized licensed use limited to: University of Florida. Downloaded on November 24,2021 at 23:26:11 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2021.3128159,
IEEE Transactions on Computers

ZHANG ET AL.: GCONV CHAIN: OPTIMIZING THE WHOLE-LIFE COST IN END-TO-END CNN ACCELERATION 5

based on producer-consumer relations.
First, here is an example of how to transform the batch

normalization (BN) layer in both forward (FP) and back
(BP) propagation into a GCONV Chain. In FP, the outputs
(O) are the normalization of the inputs (I) over the entire
mini-batch:

𝑂𝑖
𝑏 =

𝐼𝑖
𝑏−𝜇𝑖

√𝜎2𝑖+𝜀
 (2),

where b denotes the index in B dimension, i iterates in the
C, H, W dimensions and 𝜀 is a small parameter. 𝜇𝑖 and 𝜎2𝑖
are the mean and variance of the mini-batch (the size is
Nbs):

𝜇𝑖 =
∑ 𝐼𝑖

𝑏𝑁𝑏𝑠−1
𝑏=0

𝑁𝑏𝑠
 (3),

𝜎2𝑖 =
∑ (𝐼𝑖

𝑏−𝜇𝑖)
2𝑁𝑏𝑠−1

𝑏=0

𝑁𝑏𝑠
 (4).

Table 2 and the GCONVs in bold in Fig. 6 show the
GCONV Chain of BN. The FP GCONVs are generated by
analyzing the dependencies of Equations (2) to (4). Since
both O and 𝜎2 depend on 𝜇, the calculation of 𝜇 is first ap-
pended to the chain (FP1), which is a reduction in the B
dimension. Then (𝐼 − 𝜇) is calculated next (FP2) as a
GCONV with no reduction but different kernel parameters
for each data in C, H, W dimensions. After that, the calcu-
lations of 𝜎2 and O are appended as FP3 and FP4 sequen-
tially.

The BP of BN performs the following operation:

𝒈𝐼𝑖
𝑏 = ∑

𝜕𝑂𝑖
𝑏𝑏

𝜕𝐼𝑖
𝑏

𝑏𝑠−1
𝑏𝑏=0 𝒈𝑂𝑖

𝑏𝑏

= (𝒈𝑂𝑖
𝑏 − ∑

𝒈𝑂𝑖
𝑏𝑏

𝑏𝑠
𝑏𝑠−1
𝑏𝑏=0⏟
𝑩𝑷𝟑⏟

𝑩𝑷𝟒

−𝑂𝑖
𝑛 ∑

𝑂𝑖
𝑏𝑏𝒈𝑂𝑖

𝑏𝑏

𝑏𝑠
𝑏𝑠−1
𝑏𝑏=0⏟

𝑩𝑷𝟏⏟
𝑩𝑷𝟐⏟

𝑩𝑷𝟓

)/√𝜎2𝑖 + 𝜀

⏟
𝑩𝑷𝟔

 (5),

which is similarly decomposed into six GCONVs. The
GCONVs of other layers can also be derived in this way.

Then based on the inter-layer dependencies, we can es-
tablish the chain for the entire CNN. Fig. 6 illustrates the
conversion of the block in Fig. 1(a) to a GCONV Chain.
Like CISC instructions, the original block contains a pile of
diverse layers, each requiring complicated customized
analysis and optimization. Specially, our proposed tech-
nique works as a “micro code” layer that translates them
into a chain composed of only GCONV operations. It
might be noticed that the code density increases in Fig. 6.

To this end, we will introduce an operation fusion tech-
nique in Section 4.3.

4 GCONV CHAIN ACCELERATION

As shown in Fig. 6, the generalization approach proposed
in Sections 3 allows diverse operations in CNNs to be con-
verted into a chain of standard GCONV operations. Con-
sequently, the acceleration is no longer layer-specific. In-
stead, the entire CNN acceleration can be uniformly and
systematically achieved by studying the acceleration of a
single GCONV operation (Section 4.1) and optimizing the
interaction between operations on the chain (Section 4.3).

4.1 Mapping a Single GCONV Operation

To accelerate the GCONV, we need to perform more com-
putation in parallel while increasing the data reuse, which
is realized by unrolling and exchanging the order of the
nested loop in Fig. 4. The loops can be unrolled both spa-
tially and temporally in an accelerator. Different accelera-
tors have different spatial dimensions to unroll the compu-
tation and different memory structures for temporary data
storage. Here we build an example on Eyeriss [4], one of
the most complicated and self-contained CNN accelera-
tors. The generality of the GCONV mapping will be dis-
cussed in Section 4.4.

Accelerator structure: Fig. 7 shows the on-chip structure
of Eyeriss. For neatness, we focus on the abstracted spatial
and temporal unrolling dimensions while omitting the
other implementation details that do not affect GCONV
mapping. It contains a 𝑝𝑦 × 𝑝𝑥 PE array and a global
buffer which broadcasts to the PEs. Each PE consists of a
main and reduce (multiply and add in the original work)
unit in addition to three local scratchpads for inputs (ILS),

Conv

Batch
norm

ReLU

Scale

...

...

...

R
e

L
U

_
F

P
1

R
e

L
U

_
B

P
1

S
c
a

le
_

F
P

1

S
c
a

le
_

F
P

2

S
c
a

le
_

B
P

3

S
c
a

le
_

B
P

2

S
c
a

le
_

B
P

1

B
N

_
B

P
6

B
N

_
B

P
5

B
N

_
B

P
4

B
N

_
B

P
3

B
N

_
B

P
2

B
N

_
B

P
1

B
N

_
F
P

1

B
N

_
F
P

2

B
N

_
F
P

3

B
N

_
F
P

4

C
o

n
v
_

F
P

1

C
o

n
v
_

F
P

2

C
o

n
v
_

B
P

3

C
o

n
v
_

B
P

2

C
o

n
v
_

B
P

1

..
.

...

...
BP

FP

Fig. 6. GCONV Chain of the MobileNet Block in Fig. 1(a)

TABLE 2
GCONVs for Batch Normalization Layer

GCO
NV

GCONV Parameters
Input Kernel

Param
Operators

Computation B C H W pre main reduce post
FP

FP1 [Nks: Nbs] [Nopc: Nic] [Nopc: Nix] [Nopc: Niy] L(l-1)_output + × 1/𝑁𝑏𝑠 𝜇 = ∑𝐼/𝑁𝑏𝑠

FP2 [Nopc: Nbs] [Ng: Nic] [Ng: Nix] [Ng: Niy] L(l-1)_output FP1_output − 𝑡1 = 𝐼 − 𝜇

FP3 [Nks: Nbs] [Nopc: Nic] [Nopc: Nix] [Nopc: Niy] FP2_output ^2 + LUT 𝑡2 = 1/√∑𝑡12/𝑁𝑏𝑠 + 𝜀

FP4 [Nopc: Nbs] [Ng: Nic] [Ng: Nix] [Ng: Niy] FP2_output FP3_output × 𝑂 = 𝑡1 × 𝑡2
BP

BP1 [Nks: Nbs] [Ng: Nic] [Ng: Nix] [Ng: Niy] L(l+1)_gradient FP4_output × + × 1/𝑁𝑏𝑠 𝑡3 = ∑𝑂 × 𝒈𝑂/𝑁𝑏𝑠

BP2 [Nopc: Nbs] [Ng: Nic] [Ng: Nix] [Ng: Niy] BP1_output FP4_output × 𝑡4 = 𝑂 × 𝑡3

BP3 [Nks: Nbs] [Nopc: Nic] [Nopc: Nix] [Nopc: Niy] L(l+1)_gradient + × 1/𝑁𝑏𝑠 𝑡5 = ∑𝒈𝑂/𝑁𝑏𝑠

BP4 [Nopc: Nbs] [Ng: Nic] [Ng: Nix] [Ng: Niy] L(l+1)_gradient BP3_output − 𝑡6 = 𝒈𝑂 − 𝑡5

BP5 [Ng: Nbs] [Nopc: Nic] [Nopc: Nix] [Nopc: Niy] BP4_output BP2_output − 𝑡7 = 𝑡6 − 𝑡4

BP6 [Nopc: Nbs] [Ng: Nic] [Ng: Nix] [Ng: Niy] BP5_output FP3_output × 𝒈𝐼 = 𝑡7 × 𝑡2

Nbs: mini-batch size, Nic: number of input channels, Noy/Nox: number of outputs in the H/W dimension per channel, I/O: input/output of the layer,

𝒈𝐼/𝒈𝑂: gradient of I/O, L(l-1)/(l+1): the last/next layer.

Authorized licensed use limited to: University of Florida. Downloaded on November 24,2021 at 23:26:11 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2021.3128159,
IEEE Transactions on Computers

6 IEEE TRANSACTIONS ON COMPUTERS, MANUSCRIPT ID

kernel parameters (KLS) and outputs (OLS) to reduce
global buffer access.

First, the loops can be spatially unrolled vertically (py)
or horizontally (px) in the PE array. The spatial unrolling
determines the parallelization of the computation and the
spatial data reuse. The input and kernel parameter paral-
lel-reuses are enabled both horizontally and vertically. The
partial results can only be reduced (i.e. output parallel-re-
use) vertically thanks to the forwarding links between the
rows. Second, the loops can be unrolled temporally so that
each PE can reuse the data or reduce the partial results lo-
cally in LS.

Like many accelerators proposed for convolution layers,
the original work of Eyeriss provides overlap-reuse primi-
tives for W and H dimensions (i.e., row-stationary). As
shown in Fig. 8(a), Loop[W][ks] is unrolled temporally fol-
lowed by Loop[W][opc]. This enables the local scratchpads
to load only s instead of ks new inputs each time. In addi-
tion, Loop[H][ks] and Loop[H][opc] are unrolled in py and
px respectively (Fig. 8(b)). This way, the inputs can be
shared diagonally in the PE array. In GCONV, these
specially-designed primitives will be allocated to any

dimension with overlap-reuse instead of being dedicated
to W or H.

Mapping algorithm: The algorithm for GCONV map-
ping in Eyeriss is listed in Algorithm 1. The main function
is a procedure to append unrolling entries to two unrolling
lists, i.e., spatial and temporal, until all the loops are un-
rolled. Each entry in the lists is [p, d, uf], indicating the un-
rolling factor of parameter p in dimension d (Loop[d][p]).
The unrolling function determines the unrolling factor of
an entry by considering the remaining iterations of the
loop and the related PE or LS resources (Lines 2 to 4). Here,
we explain Algorithm 1 with example mapping results of
three different types of layers in Fig. 9, i.e., (a) convolution,
(b) batch normalization, (c) local response normalization.
Since there are two spatial dimensions, a pointer (pyt) is
used to point to the tail of the unrolling entries in py. Sim-
ilarly in the temporal unrolling list, three pointers, ilst, olst
and klst, point to the last temporal unrolling entries that
enable data reuse in ILS, OLS and KLS respectively.

First, to avoid the waste of overlap-reuse primitives, we
search for dimensions with overlap-reuse opportunities
and unroll ks and opc in these dimensions in the overlap-
reuse primitives (Lines 7 to 13 in Algorithm 1). Note the
spatial list is filled before temporal list to maximize paral-
lelism (①②, ③④ in Fig. 9). When performing spatial un-
rolling, the resources in Lines 2 and 4 are simply the PEs.
For temporal unrolling, the entailed LS resources are de-
termined by the amount of data of the unrolled tile, which
will be discussed in Section 4.2.

After the overlap-reuse primitives, we further fill the
spatial unrolling dimensions (Lines 14 to 19) if there are
still spare PEs (⑤). It is important to allow the loops that
need a certain function to fill the unrolling dimension with
that function first. In Eyeriss, ks is first unrolled in py to
exploit the reduce function and opc and op are first unrolled
in px to exploit the output bandwidth.

Then the loops are unrolled temporally to fill the local
scratchpads to increase data reuses (Lines 20 to 22, un-
rolling entries ⑥). Here, op is first unrolled to reuse the
inputs. When a local scratchpad (e.g., kls) is full, the loops
that reuse this kind of data can still be appended (e.g., ⑦).

When all the resources are exploited, the remaining
loops are simply appended (Lines 23 to 25, unrolling en-
tries ⑧). Note that g is always unrolled the last because it
never manifests any special function or data reuse.

———————————————————————————
Algorithm 1: Algorithm for GCONV Mapping on Eyeriss

Input: GCONV loops of four parameters in four dimensions loops;
accelerator PE array size 𝑝𝑦 = 12 , 𝑝𝑥 = 14 ; L size 𝑖𝑙𝑠 = 12 ,
𝑘𝑙𝑠 = 224, 𝑜𝑙𝑠 = 24 [4].
Output: two unrolling lists spatial and temporal.

1: function unrolling (ud, p, d)

2: uf ← min (remaining resources, loops[d][p])

3: loops[d][p] ← ceil (loops[d][p]/uf)

4: remaining resources ← floor (remaining resources/uf)

5: return uf

6: function main ()

7: for d in ["W","H","C","B"] do

8: if overlap-reuse then

9: spatial.append (["ks", d, unrolling("py", "ks", d)])

10: spatial.append (["opc", d, unrolling("px", "opc", d)])

11: if second overlap-reuse then

12: temporal.append (["ks", d, unrolling("L ","ks", d)])

13: temporal.append ([“opc”, d, loops[d]["opc"])])

14: for p in ["ks","opc","op","g"] do

15: for d in ["W","H","C","B"] do

16: spatial.insert ([p, d, unrolling("py", p, d)])

17: for p in ["opc","op","ks","g"] do

18: for d in ["W","H","C","B"] do

19: spatial.append ([p, d, unrolling("px", p, d)])

20: for p in ["op","ks", “opc”, “g”] do

21: for d in ["W","H","C","B"] do

22: temporal.insert ([p, d, unrolling("L ", p, d)])

23: for p in ["opc","op", “ks”, “g”] do

24: for d in ["W","H","C","B"] do

25: temporal.append ([p, d, loops[d][p]])

ud: accelerator unrolling dimension, uf: unrolling factor, L : local
scratchpads.

If uf is 1, do not append or insert.
———————————————————————————

Fig. 9. Example Unrolling Lists (Mini-batch Size is 32)

[opc,W,3]

[opc,C,6]

[opc,H,56]

ilst,
olst

temporal

pyt
[ks,C,5]

spatial

[opc,W,2]

[opc,C,12]

[opc,W,12]

[opc,B,32]

(c) GoogLeNet Pool1/norm1 GCONV1

[op,C,20]

[ks,H,11]

[opc,W,4]

[op,C,5]

[opc,H,55]

[ks,C,3]

ilst,
olst

temporal

pyt[ks,W,11]

spatial

klst[opc,B,64]

[opc,W,14]

(a) AlexNet Conv1 GCONV1

[opc,C,19]

[opc,H,112]

ilst,
olst

temporal

pyt[ks,B,12]

spatial

[ks,B,3]

[opc,W,4]

[opc,W,12]

[opc,W,3]

(b) MobileNet Conv1/bn GCONV1

loops:
(a) {B: [opc: 64], C: [ks: 3, op: 96],
H: [ks: 11, opc: 55], W: [ks: 11, opc: 55]}

(b) {B: [ks: 32], C: [opc: 32],
H: [opc: 112], W: [opc: 112]}

(c) {B: [opc: 32], C: [ks: 5, opc: 64],
H: [opc: 56], W: [opc: 56]}

Fig. 9. Example Unrolling Lists (Mini-batch Size is 32)

...

...

...

ILSKLS

red
u

ce

OLS
IK O

py

px

Global
buffer

B
u

s PE PE

PE PE

main
reduce

PE PE

PE PE

cycles

K1 K2

I1 I2=

K1 K2

I2 I3=

1 2 3 4

unroll Loop[W][ks]

unroll Loop[W][opc]

overlap
reuse

K1

K2

I1

I2 I3

unroll Loop[H][opc]

u
n

ro
ll Lo

o
p

[H
][ks]

overlap
reuse

(a) Temporal Overlap-reuse (b) Spatial Overlap-reuse

O1 O2

O1 O2

Fig. 7. Eyeriss Structure Fig. 8. Eyeriss Overlap-reuse Primitives

Authorized licensed use limited to: University of Florida. Downloaded on November 24,2021 at 23:26:11 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2021.3128159,
IEEE Transactions on Computers

ZHANG ET AL.: GCONV CHAIN: OPTIMIZING THE WHOLE-LIFE COST IN END-TO-END CNN ACCELERATION 7

4.2 Modeling the Performance of GCONV Mapping

To enable selection and evaluation of the mapping strate-
gies, this section builds a concise model on how the
GCONV mapping results affect the performance and total
data movement.

Computation cycles: The total cycles to complete a
GCONV can be derived from the spatial unrolling as:

𝐶𝑦𝑐.= ∏ ∏ 𝑐𝑒𝑖𝑙(
𝑁𝑝𝑑

𝑆𝑃_𝑃𝑝𝑑
)𝑝∈{𝑘𝑠,𝑜𝑝𝑐,𝑜𝑝,𝑔}𝑑∈{𝐵,𝐶,𝐻,𝑊} (6),

where 𝑃𝑝𝑑 refers to the unrolling factor of parameter p in
dimension d and SP means the unrolling in spatial list.

Data movement: The total amount of data for a series of
unrollings is related to the data reuse opportunities dis-
cussed in Section 3.1. As listed in Table 3, the amounts of
inputs, kernel parameters and outputs are independent of
Pop, Popc and Pks respectively because of the parallel-re-
uses. The relation between the input data and Popc can be
derived using Equation (1), which takes the overlap-reuse
into consideration. The total required data is the product
of that in all the dimensions.

Therefore, the amount of kernel parameters required by
a series of temporal unrollings for each PE can be derived
as:
𝑇𝑃_𝐾 = ∏𝑑∈{𝐵,𝐶,𝐻,𝑊}(𝑇𝑃_𝑃𝑔𝑑 × 𝑇𝑃_𝑃𝑜𝑝𝑑 × 𝑇𝑃_𝑃𝑘𝑠𝑑) (7),

where TP means unrolling in the temporal list. When the
required amount of kernel parameters exceeds the capacity
of KLS (e.g., the last loop that klst points to in Fig. 9), a data
movement occurs to load new data to KLS. Therefore, the
number of KLS data movements can be derived as:
#𝐾𝑀 = ∏𝑑∈{𝐵,𝐶,𝐻,𝑊}∏ 𝑜𝑢𝑡_𝑘𝑙𝑠𝑡_𝑇𝑃_𝑃𝑝𝑑𝑝∈{𝑘𝑠,𝑜𝑝𝑐,𝑜𝑝,𝑔} (8),

where out_klst_TP refers to loops outside the klst. Similar
to Equation (7), the total kernel parameters required by all
the working PEs for each cycle is:
𝑆𝑃_𝐾 = ∏𝑑∈{𝐵,𝐶,𝐻,𝑊}(𝑆𝑃_𝑃𝑔𝑑 × 𝑆𝑃_𝑃𝑜𝑝𝑑 × 𝑆𝑃_𝑃𝑘𝑠𝑑) (9).

Based on Equations (7) to (9), the data movement of KLS
is:

𝑘𝑙𝑠_𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 = #𝐾𝑀 × 𝑆𝑃_𝐾 × 𝑖𝑛_𝑘𝑙𝑠𝑡_𝑇𝑃_𝐾 (10).

The data movement of inputs and outputs and the
lower-level memory (e.g., global buffer, off-chip DRAM)
can be derived similarly.

4.3 Extending to GCONV Chain Acceleration

Besides the algorithm to map a single GCONV operation
to a given accelerator, our system also includes two chain
optimizations to overcome the challenges to efficiently ac-
celerate the entire GCONV Chain.

Consistent mapping: The sharing of global buffer re-
quires the consumer to load the intermediate data in the
format stored by the producer. For example, in Eyeriss,
outputs unrolled in px (𝑂1 and 𝑂2 in Fig. 8(b)) are gener-
ated in parallel and can be collected at the same time while
the inputs unrolled temporally (𝐼1 and 𝐼2 in Fig. 8(a)) can
be loaded into the local scratchpads in parallel through the

data bus. Therefore, the inner opc/op/g loops in px unrolling
of the producer determine the storage format of intermedi-
ate data while the inner ks/opc/g loops of the consumer’s
temporal unrolling determine the optimal loading format.
An inconsistent mapping example is illustrated in Fig. 10.
Based on the mapping of the producer (e.g., DenseNet
ReLU1 GCONV1) in Fig. 10(a), the buffering format for the
intermediate data is shown in Fig. 10(c). However, the
mapping of the consumer (e.g., DenseNet Convolution2
GCONV1) in Fig. 10(b) requires loading the inputs in the
format in Fig. 10(d), which is not consistent to that in (c).

In GCONV Chain, the intermediate data format incon-
sistency can be simply solved by loop exchange. For in-
stance, in Fig. 10(b), if the unrollings [ks, C, 4] and [ks, W, 3]
are exchanged, the inputs of the consumer can then be
loaded in the format in Fig. 10(e). With the original un-
rolling, only one input is loaded into ILS per cycle. After
the exchange, at least three inputs (determined by the un-
rolling factor and the width of the buffer) can be loaded in
parallel. In practice, we also consider exchange of temporal
and spatial unrollings of the same parameter as well as un-
rollings with different parameters in the same unrolling di-
mension. Additionally, if there are no appropriate ones in
the consumer, we check exchange opportunities in the pro-
ducer. Note that the unrolling loop exchange does not af-
fect the performance or data movement based on Equa-
tions (6) and (10) but significantly reduces the loading time
for the consumer. In our experiments, this reduces the data
loading latency by up to 3.9x compared to the baseline.

Operation fusion: Operation fusion is commonly
adopted to reduce the movement of intermediate data and
to fully exploit the memory bandwidth [33]. In GCONV
Chain, we also notice an imbalance among the operations
in terms of the data/computation ratio. This results in low
performance of certain GCONVs with a bottleneck in data
loading. Therefore, we apply operation fusion by fusing
the GCONVs with no reduce operator into the pre, post or
main operators of their consumer or producer. For example,
GCONV FP2 in Table 2 can be processed as the post of FP1
or pre of FP3 and FP4. Since the outputs only need to be
processed once, fusing to the post operator is preferred. Af-
ter fusion, the pre and post operators may have more than
one parameter and the parameters can be reused in differ-
ent dimensions. Therefore, to minimize the parameter
loading overhead, the consistent mapping also takes the

TABLE 3
Data Movement for GCONV

Data Type Reuse Data Movement

input ∏𝑃𝑜𝑝𝑑 ∏(𝑃𝑔𝑑 × (𝑃𝑘𝑠𝑑+𝑃𝑠𝑑 × (𝑃𝑜𝑝𝑐𝑑 − 1)))

kernel param ∏𝑃𝑜𝑝𝑐𝑑 ∏(𝑃𝑔𝑑 × 𝑃𝑜𝑝𝑑 × 𝑃𝑘𝑠𝑑)

output ∏𝑃𝑘𝑠𝑑 ∏(𝑃𝑔𝑑 × 𝑃𝑜𝑝𝑑 × 𝑃𝑜𝑝𝑐𝑑)

O[0][0][0][0]~
O[0][0][0][13]

I[0][0][0][0]~
I[0][3][0][0]

I[0][0][0][0]~
I[0][0][0][2]

PE ... PE

...

PE ... PE

I I ...

I I ...

(c) Intermediate
Data

Production

(d) Intermediate
Data

Consumption

(e) Intermediate
Data

Consumption
after Exchange

(a) Unrolling Lists for Producer

(b) Unrolling Lists for Consumer

[opc,W,2]

[opc,B,32]

[opc,C,16]

ilst,
olst

temporal

pyt

spatial
klst

[opc,W,12]

[opc,W,14] [opc,H,256]

[op,C,12]

[ks,C,4]

[ks,W,3]

[opc,H,19]

[opc,B,32]

ilst,
olst

temporal

pyt
[ks,H,3]

[ks,C,4]

spatial
klst

[opc,H,14]

[opc,W,256]

switch

ILS

ILS

Fig. 10. An Example of Unrolling Loop Exchange

Authorized licensed use limited to: University of Florida. Downloaded on November 24,2021 at 23:26:11 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2021.3128159,
IEEE Transactions on Computers

8 IEEE TRANSACTIONS ON COMPUTERS, MANUSCRIPT ID

unrolling consistency with the pre/post operator into con-
sideration.

The operation fusion reduces the length of GCONV
Chain by up to 30%. It also reduces the input movement
cost by up to 63%. However, due to the pre/post parameter
loading, the kernel parameter movement of the global
buffer increases. On average, operation fusion improves
the performance by 1.1x and decreases the data movement
energy by 1.3x.

4.3 Generalizing to Other Accelerators

Although the GCONV Chain acceleration method is exem-
plified by Eyeriss, it easily generalizes to other accelera-
tors. The performance analysis in Section 4.2 intrinsically
applies to all the cases. Therefore, the exact mapping algo-
rithm of a random accelerator only relies on its specific
structure for unrolling. In our exploration, all the accelera-
tors manifest both the spatial and temporal unrolling di-
mensions. The difference lies in the number and functions
of the spatial dimensions as well as the capacity and hier-
archy of the memory. Among the evaluated accelerators in
Table 4, [6][16] possess two spatial dimensions, one with
input parallel-reuse and the other with reduce but no over-
lap-reuse; [20] has two spatial dimensions with one for
overlap-reuse; and the only spatial dimension in the sub-
system of [5] can exploit reduce and overlap-reuse at the
same time. In terms of memory, most accelerators adopt
two-level on-chip storage. For those accelerators with no
local scratchpads (e.g. [16]), the sizes of the local scratch-
pads can be set to 1. In some accelerators, only a certain
data type has a local memory (e.g., the input pool in [5]).

Despite the variance in the structure of the accelerators,
the underlying mapping philosophy, i.e., to first occupy
the spatial dimensions and special functions to maximize
the performance and data reuse, always holds. In the eval-
uation, we follow the mapping strategies in the original
works of the baselines, which just slightly changes the pri-
ority of the parameters in Lines 7 to 22 of Algorithm 1 in
Section 4.1. The two chain optimizations in Section 4.3 do
not rely on a certain accelerator either. For a given structure,
we just need to recognize the output and input format de-
termining dimensions to guarantee that the inner loops are
consistent.

5 GCONV CHAIN IMPLEMENTATION

To apply GCONV Chain to an existing accelerator, neces-
sary supports are inserted into the computation stack.

First, we implement a compiler that automatically trans-
forms a neural network into a GCONV Chain and then per-
forms optimizations and mapping based on the given ac-
celerator structure. Our compiler is implemented in Py-
thon and all the networks and hyperparameters are ex-
tracted from Caffe [34] through the Pycaffe interface. For
all the CNNs and accelerators, it takes an average of 0.024
seconds to transform and auto-map one layer. This gener-
ates a list of GCONV instructions, which are executed by
the GCONV-augmented accelerator shown in Fig. 11.

Fig. 11(a) shows the instructions of a GCONV operation.
There are three instruction buffers in the system. The basic
information buffer stores the stride, operators, input and
kernel parameter producer IDs. Considering that some
GCONVs do not have pre, main, reduce or post operators,
the first field of the operator instruction is utilized to indi-
cate the operator type. An all-zero entry delimits the basic
information of the GCONVs. For the unrolling list buffer,
the first three fields are the unrolling dimension, parame-
ter and unrolling factor respectively, as in Fig. 9, while the
last field indicates the argument of the parameter. If the pa-
rameter is unrolled more than once, the argument is the
sum of all the entries that unroll the same parameter. The
unrolling lists in different unrolling dimensions for the
GCONVs are also delimited by an all-zero entry. The last
instruction buffer stores the address of the output gener-
ated by each GCONV, the width of which is determined by
the size of the data buffer.

The accelerator is equipped with a set of registers to
buffer the stride, parameters, operators and unrolling lists.
In the set-up stage of each GCONV, one instruction entry
is read from the basic information and unrolling list buffers
in each cycle. The decoder translates the instructions dic-
tated by a state machine. During the process, the last entry
(e.g. pyt, ilst) of each dimension and the arguments of the
parameters are generated while decoding the unrolling
lists. The addresses of input and operands for the opera-
tions are derived by indexing the IDs in the output address
buffer and the output address is allocated in run-time

output address

...
0 0 0 0 0 0

2B

2B

4B

spatial

temporal

4B

x 4 12
typeoperator operand ID/operand

2 3 11

stride input IDparamdim unrolling factor parameter value
4 4 12 12

4 4 12 12

...
0 0 0 0 0 0 0 0 0 0

...
0 0 0 0 0 0 0 0 0 0

paramdim unrolling factor parameter value

Basic information bufferOutput address bufferUnrolling list buffer

Global buffer

LS PE LS PE
. . .

LS PE LS PE
. . .

...
...

LS PE LS PE
. . .

post
pre

KIO

input/kernel
parameters ID

Ln
unrolling factors

(b) PE Modification in Convolution Engine

(a) Instruction Buffers

(c) Mapping Controller

State machineL1 < ? Ppd1 - 1
L2 < ? Ppd2 - 1

L3 < ? Ppd3 - 1
...

c1
c2

c3

Comparators

MUX

C H W

opc

op

ks

g

B

Indices table

input/kernel
parameters/output base address

input/kernel
parameters/

output
address

current
indices

L1 0, L2++L1++

L1 0, L2 0, L3++

c1c2c3 == 0XX

10X

110

 ×

K I

+ O

P

I + MAX

O

×
K I

O

+I

P O

multiply

add

main

reduce

I: input
K: kernel
parameter
O: output
P: partial
result

address
generator

Convolution engine

innermost
loop

Fig. 11. An Overview of GCONV Chain Implementation

Authorized licensed use limited to: University of Florida. Downloaded on November 24,2021 at 23:26:11 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2021.3128159,
IEEE Transactions on Computers

ZHANG ET AL.: GCONV CHAIN: OPTIMIZING THE WHOLE-LIFE COST IN END-TO-END CNN ACCELERATION 9

based on the current data buffer occupation and the size of
the output. To eliminate the possible delay, instruction
loading and decoding are overlapped with the processing
of the previous GCONV.

As mentioned in Section 3.1, GCONV does not change
the inherent connections in the convolution engine. The
only modification is to replace the original multiply and add
functions with comprehensive main and reduce functions,
as shown in Fig. 11(b). As in [16], we deploy 8-bit data, 16
bits for the results of main operator and 32 bits for the re-
sults of reduce and post operators. The precision-sensitive
steps are fused into post operators. During GCONV pro-
cessing, the loop iterations are carried out by a state ma-
chine, as shown in Fig. 11(c). Since the unrolling lists are
not fixed, it is impossible to use a predefined state machine.
Instead, the transition conditions are set as the results of
comparison between the unrolling factors and the counters.
A 16:1 MUX is adopted to increase the index of the corre-
sponding parameter. The address generator generates the
offset of the data based on the index and data storage lay-
out. The layout generally follows the order of the indices
in Fig. 4. The indices on the right lie in inner loops of the
data layout. However, as discussed in Section 4.3, the pro-
ducer can generate and store data in any dimension in par-
allel. Therefore, based on the unrolling list of the producer,
the layout is adjusted to move a certain dimension to the
front. Note that this does not change the address calcula-
tion logic but just the parameters. Then based on the ad-
dress, the data loading module loads the data and feeds
them to the PEs through the data bus.

6 EVALUATION

6.1 Baselines and Benchmarks

For a comprehensive evaluation, we include all three types
of CNN accelerators discussed in Section 2.3, as listed in
Table 4. [4]–[6] baseline cases adopt the PE and memory
configurations as in the original works. Note that we per-
form dense computation on EP to focus on the hardware
acceleration. [16] is proposed as a datacenter-level design,
so we scale down its basic block by 4×4 to match the other
accelerators. [20] generates a customized accelerator for
each CNN. We adopt the configuration of AlexNet, the
only benchmark we share, on the moderate FPGA Altera
Stratix V SGSD5. For GCONV Chain implementation, all
the layers are converted into GCONV operations and auto-
mapped to the convolution engine (or matrix functional
unit in TIPs) of the accelerators. Since DNNW allocates

computation resources to some other dedicated functional
units, which will be idle in GCONV Chain processing, the
convolution engine of the GCONV Chain implementation
is scaled up so that they have the same number of PEs and
total bandwidth as the baselines. Columns 3-7 of Table 4
summarize the GCONV Chain configurations.

For the benchmarks, we evaluate the seven CNNs in Ta-
ble 1. Note that ZFFR, CapNN and C3D are not evaluated
on baseline DNNW and C3D is not evaluated on all the CIP
baselines since on-chip acceleration of the functional layers
in these networks is unclear in the original papers. In the
experiment, we focus on the training of CNNs, which in-
cludes the computation in inference and provides more in-
sights.

6.2 Methodologies

To demonstrate the three benefits brought by GCONV
Chain discussed in Section 1, we study the speedup, over-
head, energy efficiency and whole-life cost of GCONV
Chain. Specifically, Section 6.3 evaluates the speedup of
GCONV Chain over baselines to show that it can be ap-
plied to any accelerator. Sections 6.5 and 6.6 compare the
energy efficiency of GCONV Chain-armed CIPs with TIPs
and LIPs to show its potential in low-cost CNN accelera-
tion.

We develop a simulator to evaluate the performance and
data movement based on the model proposed in Section
4.2, which is validated on a cycle-accurate basis. To get the
area and energy estimation, we prototype the accelerators
and synthesize the RTL using Synopsys Design Compiler
and simulate the memory with CACTI [35]. All the accel-
erators run at 700MHz. In baseline CIPs, only the tradi-
tional layers mentioned in Section 2.2 are processed on-
chip while the others are offloaded to an ARM A53 CPU
through PCIe 4.0. Computations allocated to different
functional units or the host are processed in a pipeline.

6.3 Speedup

The end-to-end speedup brought by GCONV Chain comes
from two aspects: (1) it eliminates the inefficiencies of the
baselines in terms of processing the non-traditional layers;
(2) for the most computation-intensive convolution layers,
GCONV Chain can still improve the performance thanks
to its flexible mapping.

To implicate the inefficiencies of the baselines, Fig. 12
first shows the latency breakdown of them. Among the
baseline accelerators, TPU and DNNW suffer from pipe-
line bubbles with considerable time only running either the

TABLE 4
GCONV Chain Implementation Configurations

Category Accelerator Configuration PEs Local Storage Global Buffer Bandwidth

TIP TPU [16] 64 rows, 64 col-
umns 4096 IL : 1 per PE, OL :1 per PE, KL :1 per PE

I & O: 1.5MB K:
0.25MB I: 64, O: 64, K: 11

LIP DNNWeaver
(DNNW) [20]

14 PUs, 74 PEs per
PU 1036 IL : 1 per PE, OL : 1 per PE, KL : 1 per PU

I & O & K: 8.5kB per
PE, K: 8.5kB per PU

 I & O & K: 1 for 2 PEs, K: 1
per PU

CIP Eyeriss (ER)
[4]

12 rows, 14 col-
umns 168 IL : 12 per PE, OL : 24 per PE, KL : 224 per PE I & O: 100kB, K: 8kB I: 1, O: 4, K: 4

CIP EagerPruning
(EP) [5]

4 subsystems, 512
PEs per subsystem 2048 IL : 64 per subsystem, OL : 1 per PE, KL : 1 per PE

I: 1.5MB, O: 1.5MB,
K: 1.5MB

I: 32 per subsystem, O: 32 per
subsystem, K: 32 per subsystem

CIP NLR [6] Tm = 64, Tn = 7 448 IL : 1 per Tn, OL : 1 per Tm, KL : 1 per PE
I & K: 1.5MB, O:
0.75MB I & K: 7, O: 64

Authorized licensed use limited to: University of Florida. Downloaded on November 24,2021 at 23:26:11 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2021.3128159,
IEEE Transactions on Computers

10 IEEE TRANSACTIONS ON COMPUTERS, MANUSCRIPT ID

traditional or non-traditional layers (computation-tradi-
tional or computation-non-traditional in Fig. 12). The
runtime that all the components are busy (all-busy) only
accounts for 31% and 2% in TPU and DNNW respectively.
The utilization is higher in TPU because it accelerates fine-
grained tensor operations while the instructions in DNNW
are more complex. EP suffers the most from the offloading
(43% of runtime on average) because it has the highest on-
chip performance. While ER and NLR can overlap the of-
floading by computation to some extent, the offloading
power is not negligible as will be shown in Fig. 18. In terms
of each CNN, the offloading latency is more severe in re-
cent CNNs with more non-traditional layers (e.g., DN,
MN). However, CNNs with non-traditional layers highly
concatenated (e.g., ZFFR, C3D, CapNN) suffer less from
offloading.

Fig. 13 shows the speedup of the convolution layers to
demonstrate the effectiveness of GCONV mapping. In all
the cases, the performance of GCONV Chain is no worse
than the baselines. In MN, where the feature maps un-
rolling in the baselines is useless for depthwise convolu-
tion, the speedup is salient. GCONV Chain also signifi-
cantly speeds up the convolution layers in baseline NLR,
which only unrolls the input and output feature maps. The
speedup over baseline TPU and ER are low because they
explore flexible unrolling strategies. EP is similarly flexible
as ER but the huge PE array makes the baseline mapping
less effective. Fortunately, GCONV Chain manages to im-
prove its performance.

When it comes to the end-to-end CNN acceleration in-
cluding all the traditional and non-traditional layers, Fig.
14 shows the speedup of GCONV Chain to the baselines.
The results show that GCONV Chain speeds up the base-
lines by up to 8.2x and an average of 3.4x among all the
accelerators. The speedup of DN and MN on DNNW and

EP are high because their baselines suffer the most from
the pipeline bubbles and offloading. The speedup of
CapNN on ER and NLR is low because their on-chip
computing power cannot compare to that of A53.

6.4 Overhead

We aim to compare the total cost of GCONV Chain-armed
CIPs (GC-CIPs) with LIPs and TIPs, so this section focuses
on the overheads brought by GCONV Chain to CIPs. Fig.
15 compares the average code length of GC-CIPs with LIPs
and TIPs. On average, GC-CIPs instructions are 5.8x longer
than LIPs because LIPs have only one instruction for each
layer. TIPs only process basic matrix or vector algorithms,
so control operations are needed when the computation
cannot be mapped to only one matrix/vector operation. In
addition, they require load instructions while LIPs and
GC-CIPs load data implicitly. Therefore, their code density
is the worst (2.6x worse than GC-CIPs).

Fig. 16 and 17 list the overhead of GCONV Chain in the
area and the average power breakdown of Eyeriss. The
storage overhead refers to the storage for the instruction
buffers in Fig. 11(a) and the compute overhead corre-
sponds to the PE modification in Fig. 11(b). The control
overhead includes all the required signals in Fig. 11(a)(b)
and the controller in Fig. 11(c). In total, GCONV Chain
brings 20% area and 19% power consumption overhead.
This is acceptable considering the speedup and reduction
in data movement.

6.5 Energy Efficiency

In CNN accelerators, it is widely recognized that the data
movement dominates the energy efficiency [19]. The meas-
urement in Fig. 18 includes the on-chip global buffer move-
ments and offloading and reloading related power normal-
ized to the baseline of TPU. The off-chip data movement is
not considered because GCONV Chain does not substan-
tially affect the off-chip data access in our experiments. As
shown, although the on-chip data movement reduction
brought by GCONV Chain is not significant, it eliminates

Fig. 12. Baseline Latency Breakdown

Fig. 15. Code Length

Comparison

Fig. 16. Area

Breakdown

Fig. 17. Power

Breakdown

Fig. 18. On-chip and Offloading Data Movement Energy

Fig. 13. Convolution Layers Speedup

Fig. 14. End-to-end Speedup

AN GLN DN MN ZFFR C3D CapNN
0%

20%

40%

60%

80%

100%

B
re

a
k
d
o

w
n

 non-traditional traditional all busy offloading

 TPU DNNW ER EP NLR

AN GLN DN MN
0

5

10

15

20

25

N
o
rm

a
liz

e
d

C
o
d
e

 L
e

n
g
th

 LIP

 TIP

 GC-CIP

T
P

U
D

N
N

W
E

R
E

P
N

L
R

T
P

U
D

N
N

W
E

R
E

P
N

L
R

T
P

U
D

N
N

W
E

R
E

P
N

L
R

T
P

U
D

N
N

W
E

R
E

P
N

L
R

T
P

U
D

N
N

W
E

R
E

P
N

L
R

T
P

U
D

N
N

W
E

R
E

P
N

L
R

T
P

U
D

N
N

W
E

R
E

P
N

L
R

AN GLN DN MN ZFFR C3D CapNN

0

2

4

6

8

N
o
rm

a
liz

e
d
 E

n
e
rg

y

 offloading on-chip movement baseline GC

AN GLN DN MN ZFFR C3D CapNN
0

2

4

6

8

S
p

e
e

d
u

p

 TPU DNNW ER EP NLR

AN GLN DN MN ZFFR C3D CapNN
0

4

8

12

S
p

e
e

d
u

p

Authorized licensed use limited to: University of Florida. Downloaded on November 24,2021 at 23:26:11 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2021.3128159,
IEEE Transactions on Computers

ZHANG ET AL.: GCONV CHAIN: OPTIMIZING THE WHOLE-LIFE COST IN END-TO-END CNN ACCELERATION 11

the costly offloading and reloading of non-traditional lay-
ers in CIPs. Compared with TIPs, GC-CIPs that explore
more data reuses have the lowest data movement (16% and
22% in ER and EP). Note that NLR does not have low on-
chip data movement because it does not exploit any over-
lap-reuse.

Fig. 19 further shows the normalized overall energy ef-
ficiencies of the GC-CIPs, TIP, LIP and a state-of-the-art
GPU, i.e., NVIDIA Tesla V100. Equipped with GCONV
Chain, the CIP accelerators with overlap-reuse (i.e., ER and
EP) overcome the inefficiency in the baselines (37.6x on av-
erage) and show a promising edge over TIP (up to 3.4x,
2.1x on average), LIP (up to 4.9x, 3.0x on average) and GPU
(up to 7.6x, 4.5x on average).

6.6 Whole-life Cost

Last but not the least, we compare the whole-life costs of
TIP, LIP and GC-CIP. Fig. 20 shows the development costs
as a sum of hardware/software non-recurring expenses
(NRE) and update costs. Based on the complexity level of
the accelerator implementation, the hardware NRE of TIPs,
GC-CIPs and LIPs are quoted as 152K, 165K and 220K
USDs [36]. Then in each update, LIPs require 200K USDs
on the new hardware design. The software NRE and up-
date costs are calculated using the latest salary [37][38] and
lines of code in our prototype compiler. Although GC-CIPs
consume more in the hardware than TIPs, the software de-
velopment is cheaper due to code generation complexity.
This gap widens with more updates and 60K additional
USDs are consumed for development of TIPs than GC-
CIPs after ten updates.

Users who invest in the accelerators need to pay the cap-
ital expenses (CAPEX) for the device purchase and annual
update and the utility as operating expenses (OPEX). Fig.
21 shows the total costs of ownership for the ASIC version
of the three types of accelerators as well as FPGA LIPs and
GPUs, which are popular choices for CNN acceleration.
The CAPEX of FPGA and the ASICs are scaled to meet the
performance of GPU and the operating utility is calculated
assuming the devices are always working at the average
utility rate in US [39]. As observed, the GPU, FPGA and
ASIC LIPs with high CAPEX [36][40][41] are not the best
choices for pure CNN acceleration. Thanks to the high en-
ergy efficiency of convolution customized dataflows, GC-
CIPs win the most whole-life efficient CNN accelerators by
costing 45% less than TIPs after just three years and 65%
less after ten years.

7 RELATED WORK

Besides the accelerators discussed in Section 2.3, there are

several works trying to efficiently process the non-tradi-
tional computation in CNNs. [7] infuses the adder tree
with pooling functions and [9] adds local response normal-
ization layer support but the other layers are still left be-
hind. [42] introduces a method to break down the batch
normalization into two parts and fuse the computation to
the next and last layers in the CNNs, which is orthogonal
to our work and can be adopted when optimizing the
GCONV Chain. [43] introduces batch size as a tunable pa-
rameter in CNN accelerators to make up for the lack of par-
allelism in traditional convolution acceleration but it does
not systematically accelerate all the non-traditional layers.
[33] is proposed to assist mapping neural networks defined
in any framework to any hardware. However, it currently
only supports matrix/vector operations and commercial
general-purpose processors. [44][45] propose models to
explore the mapping design space of neural network
accelerators but they do not provide a systematic solution
to the end-to-end CNN acceleration.

8 CONCLUSION

This paper has addressed a highly critical but generally
overlooked challenge: the efficient and cost-effective accelera-
tion of the diverse end-to-end CNN computation. To exploit the
reuse opportunities in CNNs and to avoid resource un-
derutilization and costly upgrade brought by allocating
dedicated hardware to the non-traditional layers, we pro-
posed a general convolution model and generalizing the
diverse computations in CNNs into GCONV Chain. By
generalization, the end-to-end GCONV Chain can be effi-
ciently processed by existing accelerators customized for
convolution with low-overhead hardware support. Our
evaluation shows that GCONV Chain manifests great po-
tential in accelerating the CNNs with high performance, en-
ergy efficiency and low whole-life cost.

ACKNOWLEDGMENT

We appreciate the Department of Electrical and Computer
Engineering, University of Florida for the support.

Fig. 21. Total Cost of Ownership

Fig. 19. Energy Efficiency (Iso-power Performance)

Fig. 20. Development Cost

0 2 4 6 8 10
0

500
1000
1500
2000
4000

21500
24500

T
o
ta

l
C

o
s
t

o
f

O
w

n
e
rs

h
ip

 (
$
)

Year

 TIP(ASIC) GPU LIP (ASIC)

 LIP (FPGA) GC-CIP (ASIC)

 CAPEX-first CAPEX-update OPEX

AN GLN DN MN ZFFR C3D CapNN
0

2

4

6

8

N
o

rm
a

liz
e

d

1
/P

o
w

e
r/

L
a

te
n

c
y

 GPU TPU baseline DNNW baseline

 ER baseline EP baseline NLR baseline

 ER+GC EP+GC NLR+GC

0 2 4 6 8 10
0

150

200

250
350

1050
1750
2450

D
ev

el
o
p

m
en

t
C

o
st

 (
$
1
0

0
0
)

Update

 TIP LIP GC-CIP

 hw-NRE hw-update

 sw-NRE sw-update

Authorized licensed use limited to: University of Florida. Downloaded on November 24,2021 at 23:26:11 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2021.3128159,
IEEE Transactions on Computers

12 IEEE TRANSACTIONS ON COMPUTERS, MANUSCRIPT ID

REFERENCES

[1] C. E. Floyd, J. Y. Lo, A. J. Yun, D. C. Sullivan, and P. J. Kornguth, “Predic-

tion of breast cancer malignancy using an artificial neural network,” Can-

cer, 1994.

[2] H. A. Rowley, S. Baluja, and T. Kanade, “Neural Network-Based Face

Detection,” TPAMI, 1998.

[3] M. Bojarski et al., “End to End Learning for Self-Driving Cars,”

arXiv:1604.07316, 2016.

[4] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An Energy-Effi-

cient Reconfigurable Accelerator for Deep Convolutional Neural Net-

works,” IEEE J. Solid-State Circuits, vol. 1, 2016.

[5] J. Zhang, X. Chen, M. Song, and T. Li, “Eager Pruning: Algorithm and

Architecture Support for Fast Training of Deep Neural Networks,” in

Proceedings of the 46th International Symposium on Computer Archi-

tecture (ISCA), 2019, pp. 292–303.

[6] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing

FPGA-based Accelerator Design for Deep Convolutional Neural Net-

works,” in Proceedings of the 2015 ACM/SIGDA International Sympo-

sium on Field-Programmable Gate Arrays (FPGA), 2015, pp. 161–170.

[7] H. Kwon, A. Samajdar, and T. Krishna, “MAERI: Enabling Flexible Da-

taflow Mapping over DNN Accelerators via Reconfigurable Intercon-

nects,” in Proceedings of the Twenty-Third International Conference on

Architectural Support for Programming (ASPLOS), 2018, vol. 53, no. 2,

pp. 461–475.

[8] W. Lu, G. Yan, J. Li, S. Gong, Y. Han, and X. Li, “FlexFlow: A Flexible Da-

taflow Accelerator Architecture for Convolutional Neural Networks,” in

Proceedings of the International Symposium on High-Performance

Computer Architecture (HPCA), 2017, pp. 553–564.

[9] Y. Chen et al., “DaDianNao: A Machine-Learning Supercomputer,” in

Proceedings of the Annual International Symposium on Microarchitec-

ture (MICRO), 2015, vol. 2015-Janua, no. January, pp. 609–622.

[10] Z. Du et al., “ShiDianNao: Shifting Vision Processing Closer to the Sen-

sor,” in Proceedings of the 42nd Annual International Symposium on

Computer Architecture (ISCA), 2015.

[11] K. Hegde, J. Yu, R. Agrawal, M. Yan, M. Pellauer, and C. W. Fletcher,

“UCNN: Exploiting Computational Reuse in Deep Neural Networks via

Weight Repetition,” in Proceedings of the International Symposium on

Computer Architecture (ISCA), 2018, pp. 674–687.

[12] H. Lu, X. Wei, N. Lin, G. Yan, and X. Li, “Tetris: Re-Architecting Convo-

lutional Neural Network Computation for Machine Learning Accelera-

tors,” in Proceedings of the International Conference on Computer-

Aided Design, Digest of Technical (ICCAD), 2018, pp. 1–8.

[13] A. G. Howard et al., “MobileNets: Efficient Convolutional Neural Net-

works for Mobile Vision Applications,” arXiv:1704.04861, 2017.

[14] S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating Deep Net-

work Training by Reducing Internal Covariate Shift,” in Proceedings of

the 32nd International Conference on Machine Learning (ICML), 2015,

vol. 1, pp. 448–456.

[15] J. Frankle, D. J. Schwab, and A. S. Morcos, “Training BatchNorm and

Only BatchNorm: On the Expressive Power of Random Features in

CNNs,” arXiv:2003.00152, Feb. 2020.

[16] N. P. Jouppi et al., “In-Datacenter Performance Analysis of a Tensor Pro-

cessing Unit,” in Proceedings of the International Symposium on Com-

puter Architecture (ISCA), 2017, vol. Part F1286, pp. 1–12.

[17] S. Chetlur et al., “cuDNN: Efficient Primitives for Deep Learning,”

arXiv:1410.0759, 2014.

[18] S. Liu et al., “Cambricon: An Instruction Set Architecture for Neural Net-

works,” in Proceedings of the 43rd International Symposium on Com-

puter Architecture (ISCA), 2016, pp. 393–405.

[19] S. Han et al., “EIE: Efficient Inference Engine on Compressed Deep

Neural Network,” ACM SIGARCH Comput. Archit. News, vol. 44, no.

3, pp. 243–254, Oct. 2016.

[20] H. Sharma et al., “From High-Level Deep Neural Models to FPGAS,” in

Proceedings of the Annual International Symposium on Microarchitec-

ture (MICRO), 2016, vol. 2016-Decem.

[21] Y. S. Shao et al., “Simba: Scaling Deep-learning Inference with Multi-

Chip-Module-Based Architecture,” in Proceedings of the Annual Inter-

national Symposium on Microarchitecture (MICRO), 2019, pp. 14–27.

[22] S. Venkataramani et al., “Scaledeep: A Scalable Compute Architecture for

Learning and Evaluating Deep Networks,” in Proceedings of the Inter-

national Symposium on Computer Architecture (ISCA), 2017, vol. Part

F1286, pp. 13–26.

[23] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification

with Deep Convolutional Neural Networks,” Commun. ACM, vol. 60,

no. 6, pp. 84–90, Jun. 2017.

[24] Y. LeCun et al., “Handwritten digit recognition: applications of neural

network chips and automatic learning,” Commun. Mag., 1989.

[25] C. Szegedy et al., “Going Deeper with Convolutions,” in Proceedings of

the IEEE Computer Society Conference on Computer Vision and Pattern

Recognition, 2015, vol. 07-12-June, pp. 1–9.

[26] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely

Connected Convolutional Networks,” in Proceedings of the 30th Confer-

ence on Computer Vision and Pattern Recognition (CVPR), 2017, vol.

2017-Janua, pp. 2261–2269.

[27] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards Real-

Time Object Detection with Region Proposal Networks,” IEEE Trans.

Pattern Anal. Mach. Intell., vol. 39, no. 6, pp. 1137–1149, Jun. 2017.

[28] M. D. Zeiler and R. Fergus, “Visualizing and Understanding Convolu-

tional Networks,” in Proceedings of the European Conference on Com-

puter Vision (ECCV), 2014, vol. 8689 LNCS, no. PART 1, pp. 818–833.

[29] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, “Learning

Spatiotemporal Features with 3D Convolutional Networks,” in Proceed-

ings of the International Conference on Computer Vision (ICCV), 2015,

pp. 4489–4497.

[30] S. Sabour, N. Frosst, and G. E. Hinton, “Dynamic Routing Between Cap-

sules,” Adv. Neural Inf. Process. Syst., vol. 2017-Decem, pp. 3857–3867,

Oct. 2017.

[31] M. Song, J. Zhang, H. Chen, and T. Li, “Towards Efficient Microarchitec-

tural Design for Accelerating Unsupervised GAN-Based Deep Learn-

ing,” in Proceedings of the International Symposium on High Perfor-

mance Computer Architecture (HPCA), 2018, pp. 66–77.

[32] S. C. H. Hoi, D. Sahoo, J. Lu, and P. Zhao, “Online Learning: A Compre-

hensive Survey,” arXiv:1802.02871, 2018.

[33] T. Chen et al., “TVM: An Automated End-to-End Optimizing Compiler

for Deep Learning,” in Proceedings of the 13th USENIX Symposium on

Operating Systems Design and Implementation, 2018, pp. 578–594.

[34] Y. Jia et al., “Caffe: Convolutional Architecture for Fast Feature Embed-

ding,” in Proceedings of the 2014 ACM Conference on Multimedia, 2014,

pp. 675–678.

[35] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, “CACTI 6.0:

A Tool to Model Large Caches.”

 [36] “Custom ASIC Cost Calculator - Sigenics.” [Online]. Available:

https://www.sigenics.com/page/custom-asic-cost-calcula-

tor?gclid=Cj0KCQjw2or8BRCNARIsAC_ppy-

bUluAr8VWwRqO73cqrcugkB3zVH_EN54A6SE7t-

bkBvmii32QGXF0aAlJKEALw_wcB.

[37] “Apple Software Engineering Salaries | Glassdoor.” [Online]. Available:

https://www.glassdoor.com/Hourly-Pay/Apple-Software-Engineering-

Hourly-Pay-E1138_D_KO6,26.htm.

[38] “Better Embedded System SW.” [Online]. Available:

Authorized licensed use limited to: University of Florida. Downloaded on November 24,2021 at 23:26:11 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2021.3128159,
IEEE Transactions on Computers

ZHANG ET AL.: GCONV CHAIN: OPTIMIZING THE WHOLE-LIFE COST IN END-TO-END CNN ACCELERATION 13

https://betterembsw.blogspot.com/2010/05/only-10-lines-of-code-per-

day-really.html.

[39] “Electricity Rates by State (Updated September 2020) – Electric Choice.”

[Online]. Available: https://www.electricchoice.com/electricity-prices-by-

state/.

[40] “Xilinx Evaluation Boards.” [Online]. Available: https://www.xil-

inx.com/products/boards-and-kits/see-all-evaluation-boards.html.

[41] “Welcome to the Official NVIDIA Store.” [Online]. Available:

https://www.nvidia.com/en-us/shop/.

[42] W. Jung, D. Jung, B. Kim, S. Lee, W. Rhee, and J. H. Ahn, “Restructuring

Batch Normalization to Accelerate CNN Training,” arXiv:1807.01702,

2019.

[43] Y. Shen, M. Ferdman, and P. Milder, “Escher: A CNN Accelerator with

Flexible Buffering to Minimize Off-Chip Transfer,” in Proceedings of the

International Symposium on Field-Programmable Custom Computing

Machines (FCCM), 2017, pp. 93–100.

[44] A. Parashar et al., “Timeloop: A Systematic Approach to DNN Accelera-

tor Evaluation,” in Proceedings of the International Symposium on Per-

formance Analysis of Systems and Software (ISPASS), 2019.

[45] X. Yang et al., “Interstellar: Using Halide’s Scheduling Language to Ana-

lyze DNN Accelerators,” in Proceedings of the International Conference

on Architectural Support for Programming Languages and Operating

Systems (ASPLOS), 2020, pp. 369–383.

Jiaqi Zhang received the B.S. degree in
Communication Engineering from Beijing
Jiaotong University in 2016. She is currently a
Ph.D. candidate in the Department of Electri-
cal and Computer Engineering, University of
Florida. Her research interests lie in software
and hardware acceleration of emerging algo-
rithms and applications including machine
learning and IoT.

Xiangru Chen received the B.S. degree in
Electronic Information Engineering from Shan-
dong University in 2016 and M.S. degree in
Electrical and Computer Engineering from
University of Florida in 2018. He is currently
pursuing a Ph.D. degree in the Department of
Electrical and Computer Engineering, Univer-
sity of Florida. His research focuses on the ar-
chitecture support for ML applications.

Sandip Ray is an Endowed IoT Term Profes-
sor at the Department of Electrical and Com-
puter Engineering, University of Florida. His
research involves developing correct, de-
pendable, secure, and trustworthy computing
through cooperation of specification, synthe-
sis, architecture and validation technologies.
He focuses on next generation computing ap-
plications, including IoT, autonomous auto-
motive systems, etc. Before joining University
of Florida, he was a Senior Principal Engineer
at NXP Semiconductors, where he led the

R&D on security architecture and validation of hardware platforms
for automotive and IoT applications. Prior to that, he was a Research
Scientist at Intel Strategic CAD Labs, where he led research on vali-
dation technologies for security and functional correctness of SoC
designs. Dr. Ray is the author of three books and over 90 publica-
tions in international journals and conferences. He has a Ph.D. from
University of Texas at Austin and is a Senior Member of IEEE.

Authorized licensed use limited to: University of Florida. Downloaded on November 24,2021 at 23:26:11 UTC from IEEE Xplore. Restrictions apply.

