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Abstract—The acceleration of CNNs has gained increasing attention since their success in computer vision. Since the 

heterogeneous layers cannot be processed by accelerators proposed for convolution layers only, modern end-to-end CNN 

acceleration solutions either transform diverse computation into matrix/vector arithmetic, which loses data reuse opportunities in 

convolution, or introduce dedicated functional unit to each kind of layer, which results in underutilization and high update 

expense. To enhance the whole-life cost efficiency, we need a solution that is efficient in processing CNN layers and has the 

generality to apply to all kinds of existing and emerging layers. To this end, we propose GCONV Chain, a method to convert the 

entire CNN computation into a chain of standard general convolutions (GCONV) that can be efficiently processed by existing 

CNN accelerators with low-overhead hardware support. This paper comprehensively analyzes the GCONV Chain model and 

proposes a full-stack implementation to support GCONV Chain. Our results on various CNNs demonstrate that GCONV Chain 

improves the performance and energy efficiency of existing CNN accelerators by an average of 3.4x and 3.2x respectively. 

Furthermore, we show that GCONV Chain provides low whole-life costs for CNN acceleration, including both developer efforts 

and total cost of ownership. 

Index Terms— Computer architecture, convolution neural network, hardware acceleration, neural network.  

——————————   ◆   —————————— 

1 INTRODUCTION

Since its resurgence, Convolutional Neural Network 
(CNN) has demonstrated impressive success in promoting 
the computer vision in a wide range of applications [1]–[3]. 
However, the high accuracy of CNN is achieved at the cost 
of enormous computation and data movement, which is an 
undesirable obstacle to widely implementing and deploy-
ing them. Consequently, CNN acceleration has received 
increasing attentions. 

Normally, CNN computation and parameters are dom-
inated by the convolution layers. Based on this fact, abun-
dant prior works [4]–[12] focus on the acceleration of these 
layers by designing customized architectures and data-
flows to enhance the performance and data reuse in con-
volution operations (we classify these accelerators as CIP, 
i.e., convolution intended processors). However, recent 
CNNs incorporate more heterogeneous functional layers. 
For example, Fig. 1(a) depicts a basic block of MobileNet 
[13] with four various layers. Except for the first layer, each 
of them performs unique computation that cannot fit into 
the traditional definition of a convolution layer and thus 
cannot be accelerated by CIPs as illustrated in Fig. 1(b). 
Since these non-traditional layers play an important role in 
promoting the accuracy [14] of CNNs and are even proved 
to have better learning capability than the traditional lay-
ers [15], overlooking them can lead to degraded accuracy. 
Therefore, CIPs that only accelerate the convolution layers 
and are even incapable of parsing the other layers have to 
offload them to somewhere else, failing to efficiently 

perform the end-to-end CNN computation.  
To deal with the “elephant in the room”, a common 

practice is to transform the computation in diverse func-
tional layers into tensor (mostly matrix and vector) opera-
tions and perform them in the tensor instruction 
processors (TIP) [16]–[19]. As illustrated in Fig. 1(c), TIPs 
are able to process any CNN layer but they lose certain 
data reuse opportunities compared with CIPs and thus re-
sult in low data movement efficiency. TIPs also suffer from 
lower code density because they explicitly manage the data 
loading and each matrix/vector operation. Another plausi-
ble solution is to add a dedicated on-chip processing unit 
for each type of layer in addition to the convolution (these 
accelerators are categorized as LIP, i.e., the layer instruc-
tion processors) [20]–[22], as illustrated in Fig. 1(d). Never-
theless, almost every new network features a new func-
tional layer. It is costly for the hardware developers to de-
sign a new component to process the newly introduced 
layer for the full-fledged accelerators and for the users to 
upgrade their deployment. What is more, the varying 
CNN structures make it impossible to design a 
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Fig. 1. Three Types of Modern CNN Accelerators and GCONV Chain 
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heterogeneous accelerator with high utilization for all the 
workloads. 

To understand the issues involved, it is helpful to use 
analogy from instruction set architecture. In particular, 
think of TIPs as analogous to RISC and CIPs and LIPs to 
CISC. The challenges faced by the existing works drive us 
to find a balance point between the generality of RISC-like and 
efficiency of CISC-like CNN accelerators. We innovatively 
propose to convert the end-to-end diverse CNN computa-
tion into a series of general convolution (GCONV Chain), 
where the operations are as uniform as that in TIPs and the 
reuse opportunities can be leveraged as in CIPs and LIPs, 
as shown in Fig. 1(e). Specifically, though the diverse layers 
perform different functions, we develop a parameterized 
model that expresses all the CNN operations as a scale-up 
of a simple 1-D GCONV. For example, the local response 
normalization [23] and batch normalization [14] can be 
viewed as general convolutions in the channel dimension 
and batch dimension respectively. This enables the end-to-
end CNN to be efficiently accelerated by a uniform 
computation fabric, where the complex acceleration 
problem is simplified to a single mapping algorithm of the 
1-D GCONV.  

The benefits of our approach are threefold: (1) since 
GCONV Chain is composed of general convolutions and 
CNN accelerators are designed to perform convolution, it 
can be applied to almost any CNN accelerator with no 
worse if not better performance (Section 6.3); (2) when 
GCONV Chain is applied to CIPs, it eliminates the costly 
offloading overhead. And this GCONV armed CIP (GC-
CIP) does not suffer from the low data movement 
efficiency in TIPs and resource underutilization in LIPs, 
showing that GC-CIPs are promising accelerators for the 
entire end-to-end diverse CNN computation (Section 6.5); 
(3) the generality of GCONV Chain further makes GC-CIPs 
the most whole-life cost efficient choice by lessening the 
burden of both users and developers (Section 6.6).  

The paper makes the following contributions: 
(1) We recognize the gap between modern CNNs com-

posed of diverse functional layers and the existing CNN 
accelerators which are proposed for either generality or ef-
ficiency for certain layers. 

(2) We propose GCONV Chain, a method to convert the 
end-to-end CNN computation into a chain of general con-
volutions (GCONVs) so that all the CNN layers can be ef-
ficiently and uniformly accelerated. 

(3) We further propose a full-stack GCONV Chain im-
plementation on existing CNN accelerators, including 
GCONV Chain generation, acceleration and hardware 
support. 

(4) Our experiments on seven CNNs from a wide range 
and five representative accelerators of different types show 
that GCONV Chain can significantly improve the perfor-
mance and energy efficiency of existing CNN accelerators 
and optimize the cost of both development and ownership. 

The rest of this paper is organized as follows. Section 2 
provides the background on CNN acceleration and the 
motivation for CNN generalization. Section 3 describes the 
approach to transform CNN computation into a GCONV 
Chain. Then Section 4 introduces the methodologies to 

analyze the GCONV workload and the algorithm to accel-
erate GCONV Chain. Section 5 elaborates the system im-
plementation of GCONV Chain. Sections 6 evaluates our 
proposed GCONV Chain. And Sections 7 and 8 discusses 
the related work and concludes the paper respectively. 

2 BACKGROUND AND MOTIVATION 

2.1 A Traditional Convolution Layer 

CNNs are neural networks featured by the dominating 
convolution layers. Fig. 2(a) and (b) provide the illustration 
and pseudo code of a traditional convolution layer to help 
understand the computation pattern and reuse opportuni-
ties in the convolutional operation, where Np stands for the 
argument of parameter p. The same set of Noc kernels are 
applied to a batch of Nbs input samples. The size of each 
kernel is Nky×Nkx×Nic and they slide on the height and 
width of the input channels to generate Noc channels of 
Noy×Nox outputs. In some CNNs [23][13], the input chan-
nels are divided into Ngp groups to perform convolution 
individually.  

There are two kinds of reuses in convolution, parallel-re-
use and overlap-reuse. Parallel-reuse results from parallel 
computation in terms of a certain data. For example, each 
kernel is reused to generate outputs within each channel 
and the inputs are reused by different output channels. 
Similarly, each output is reused within the kernel since the 
partial results are reduced to generate one output. The slid-
ing of the kernel also brings overlap-reuse when the input 
windows of consecutive outputs are overlapped. For in-
stance, in Fig. 2(a), the inputs with dots are shared by the 
computation of different outputs, multiplied by different 
weights. Exploiting these two kinds of parallelism in the 
convolutional operation has been widely recognized as an 
effective method to reduce the costly data movement in 
CNN acceleration. 

2.2 Non-Traditional Layers in CNNs  

Aside from the convolution layers, there is a variety of 
other necessary layers in the CNNs, each of which per-
forms a different operation on the input data. And the op-
eration of a same layer even varies in the training and in-
ference of the network. Besides the traditional layers such 
as fully connection, max pooling, ReLU and softmax that 
breed the success of the nascent CNN model, i.e., LeNet 
[24], the growing power of the emerging CNNs is always 
accompanied with new functional layers. Benchmarked on 
seven popular CNNs in the timeline (i.e., four classification 
CNNs: AlexNet (AN) [23], GoogLeNet (GLN) [25], 
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Fig. 2. A Traditional Convolution Layer 
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DenseNet (DN) [26], MobileNet (MN) [13], in addition to 
an object detection network Faster R-CNN+ZFNet (ZFFR) 
[27][28], a 3-D CNN  for video processing (C3D) [29] and a 
capsule neural network (CapNN) [30]), Table 1(a) lists the 
newly introduced layers and the ratio of these non-tradi-
tional layers. As can be observed in Columns 5 to 7, the 
non-traditional layers account for increasing computation, 
data footprint and movement in the CNNs. And these lay-
ers are taking significant roles in determining the speedup 
and energy efficiency of CNNs.  

2.3 Modern CNN Acceleration Challenges 

As CNNs are being employed more frequently and the het-
erogeneity in CNN layers keeps increasing, it is obviously 
important to have a solution that efficiently accelerates all 
the CNN computation. Unfortunately, we notice that al-
most all the existing works suffer from various inefficien-
cies when processing modern CNNs.  

TIP: The tensor instruction processors (TIP) are able to 
process any CNN layer by transforming them into tensor 
(mostly matrix and vector) operations [16]–[19]. However, 
they cannot exploit the abundant overlap-reuses in CNNs. 
For instance, im2col [17] is commonly employed by TIPs to 
transform convolution into matrix multiplication, where 
the input windows are flattened to columns in a matrix and 
then multiplied by a weight matrix, as shown in Fig. 1(c). 
This results in the replication of the input data (marked in 
red) and thus low energy efficiency. Column 1 in Table 1(b) 
quantifies the total data replication of the CNNs in TIPs. 
Since the power consumption is dominated by the data 
movement [19], this overhead significantly increases the 
operating expense for the users. 

CIP: The main component of a convolution intended 
processor (CIP) is a convolution engine, which implements 
various exhaustively explored dataflows (e.g., weight sta-
tionary, output stationary, row stationary, etc.) to maxi-
mally exploit both the parallel and overlap-reuse opportu-
nities in convolution [4]–[12].  For example, the convolu-
tion engine in Fig. 1(b) adopts the weight stationary data-
flow, where the inputs are shifted along the stationary 
weights to exploit the overlap-reuse, avoiding data repli-
cation. However, since the proposed dataflows only apply 
to the computation model of traditional convolution lay-
ers, CIPs are inefficient or even incapable of parsing the 
parameters when processing the other layers. Therefore, 
offloading is required for non-traditional layers whose ac-
celeration is omitted in CIPs. Column 2 in Table 1(b) 

characterizes the ratio of intermediate data that requires 
offloading for a series of non-traditional processing. Note 
that since the offloading energy consumption can be as 
high as 146x of the on-chip data movement in our experi-
ment, this adds considerable burden to the system.  

LIP: The layer instruction processors (LIP) [20]–[22] add 
a dedicated on-chip processing unit for each type of layer 
in addition to the convolution engine and process the cor-
responding layers of different inputs in a pipeline. Re-
sulted from the variation of the number and shape of each 
kind of layers in a certain CNN, pipeline bubbles are una-
voidable. To implicate this, Column 3 in Table 1(b) lists the 
utilization of different networks assuming the pipeline has 
two stages for traditional and non-traditional layers respec-
tively. The resources are partitioned based on the ratio of the 
traditional and non-traditional computation in all the net-
works. As observed, the uniform partitioning results in sig-
nificantly varying utilization. And the utilization is ex-
tremely low in networks with more non-traditional compu-
tation (e.g., C3D and CapsuleNN). Layers that pose a pipe-
line barrier also lower the utilization (e.g., batch normaliza-
tion in DenseNet and MobileNet). What’s more, LIPs de-
mand the developers to design an efficient acceleration so-
lution to any new layer and the users to update the devices 
as frequently as the evolution of CNNs. 

To enhance the whole-life cost efficiency of end-to-end 
CNN computation, we need an acceleration solution that 
is efficient in processing CNN layers and has the generality 
to apply to all kinds of existing and emerging layers. 

3 GENERAL CONVOLUTION (GCONV) CHAIN 

Our goal is to convert the diverse CNN layers into a chain 
of standard operations without losing the convolution pat-
tern. Instead of breaking them down into basic matrix/vec-
tor arithmetic as in TIPs, we view them as multi-dimension 
convolutions under a more generalized definition. This 
section proposes the GCONV model and the method to 
transform the entire CNN computation into a GCONV 
Chain.  

3.1 GCONV Operation Definition 

GCONV is the most basic operation in our system. It is a 
concisely parameterized 1-D convolution which can be 
scaled up to multiple dimensions to define various CNN 
operations. Compared with the traditional definition of a 
convolution layer, the simplicity, scalability and representa-
bility of GCONV as discussed below make it ideal to 

TABLE 1 
CNN and Accelerator Characterization 

(a) Non-Traditional Layers in CNNs (b) Inefficiencies of Accelerators 

CNN 
type 

Net-
work New layer types 

Non-traditional ratio Data replication 
(TIP) 

Offloading 
(CIP) 

Utilization 
(LIP) Layers Computation Data footprint Movement 

classifi-
cation 

AN LRN, dropout 24% <1% 5% <1% 35x 3% 98% 

GLN ave pool, concat 13% <1% 17% 1% 6x 13% 80% 

DN batch norm, scale 66% 5% 76% 22% 2x 53% 17% 

MN depthwise conv 62% 8% 73% 16% 2x 77% 11% 

other 

ZFFR RoI, proposal 29% <1% 41% <1% 4x 57% 86% 

C3D 3D conv, 3D pool 52% 99% 46% 99% 6x 87% 1% 

CapNN prim, digicaps 18% 95% 6% 93% 3x 33% 1% 
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effortlessly, uniformly and efficiently accelerate all kinds 
of CNNs. 

Definition: Fig. 3 shows an example of 1-D GCONV. It 
is characterized by four parameters that form the nested 
loop of the computation as shown in Fig. 4: the inputs are 
separated into Ng groups and no connection or reuse exists 
inter-group; in each group, the inputs are convolved by 
Nop kernels in parallel; each kernel has Nks weights; Nopc 
outputs are generated by each kernel. There are also two 
auxiliary parameters, i.e., ps for padding size and s for 
stride, as in the traditional convolution.  The input size 
Nipc of 1-D GCONV is not required since it can be derived 
as: 

𝑁𝑖𝑝𝑐 = (𝑁𝑜𝑝𝑐 + 1) × 𝑠 + 𝑁𝑘𝑠 − 2𝑝𝑠     (1).  

Note that dilation is not modeled in GCONV since we 
adopt the technique proposed in [31] to turn the dilated 
convolution into dense convolution by simply reordering 
the computation. 

Simplicity: Recall that the traditional convolution layer 
in Fig. 2 has eight different parameters. The 1-D GCONV 
is relatively simple with only four. These four parameters 
are necessary to preserve the data reuse patterns. Specifi-
cally, the input, kernel and output can be parallel-reused 
for Nop, Nopc, Nks times and the input can be overlap-re-
used when Nks > s. In our system, if not explicitly denoted, 
the parameters take default values as [ps: 0, s: 1, Ng: 1, Nop: 
1, Nks: 1, Nopc: 1]. 

Scalability: This simple 1-D GCONV can easily scale up 
to multiple dimensions. The dimension of GCONV is de-
termined by the data in the network. For example, the con-
volution layer in Fig. 2 manifests four dimensions: the 
mini-batch (B), channel (C), height (H) and width (W). Fig. 
5 shows the view of Fig. 2(b) from each dimension, where 
the traditional convolution parameters are replaced 
(marked with strikethrough) by the GCONV parameters. 
While the operations in dimensions H and W are naturally 
1-D convolution, it might be counter-intuitive that the op-
erations in B and C can also be described as 1-D GCONVs. 
Specifically, in C, each kernel covers all the input channels, 
meaning the operation can be viewed as a convolution 
with kernel size equal to the input size (𝑁𝑘𝑠 = 𝑁𝑖𝑝𝑐). There 
are several such kernels generating output channels in par-
allel (𝑁𝑜𝑝). For dimension B, the same kernel is reused by 
all samples in a mini-batch. This can be viewed as a kernel 
with one weight moving along the inputs to generate dif-
ferent outputs (𝑁𝑜𝑝𝑐). 

One benefit of replacing the 4-D integrated operation 
with the scaled-up 1-D GCONV is the scalability. Fig. 4 

lists the nested loop for multi-dimension GCONV. Note 
that the exact same four loops are duplicated (marked as 
red and blue) for each new dimension, so it is easily in-
ferred that the 4-D GCONV is a nest of 16 loops. Further-
more, we can remove the four loops in dimension B to 
model real-time learning [32], duplicate four loops for time 
dimension in 3-D CNNs [29] or for vector dimension in 
Capsule Neural Networks [30], etc. Although the method 
seems to increase the loops in principle, a certain parame-
ter can be pruned if it takes the default value. Therefore, 
the GCONV model does not bring any overhead to the ef-
fectual number of parameters, as illustrated in Fig. 5. On 
the contrary, since all the dimensions are perfectly sym-
metric in terms of the computation and data reuse oppor-
tunities, it indeed shrinks our analysis and acceleration de-
sign space to just 1-D GCONV with only four loops.  

Representability: The proposed model can further 
shrink the effort-taking study of all kinds of layers in both 
training and inference into a 1-D GCONV. In a comprehen-
sive analysis, we find that all the layers in modern CNNs 
can be decomposed into a series of GCONV operations (an 
example will be given in Section 3.2). And it is future-proof 
because GCONV can always model a tensor operation by 
setting the kernel size equal to the input size.  

Notice that although the computation pattern of all the 
layers can be represented by the GCONV parameters, not 
all of them perform multiply-and-add operations. There-
fore, GCONV operators are introduced aside from the pa-
rameters. The four operators of respectively define how the 
inputs are preprocessed (pre); how they are processed by 
the kernels (main); how the partial results within a kernel 
are reduced (reduce); and how the outputs are postpro-
cessed (post). The pre or post operator applies the same pro-
cessing (e.g., multiply, and, square or LUT) to each input and 
output when they are loaded into the convolution engine 
or sent back to the global buffer. The convolution engine 
convolves the inputs with the kernels and performs main 
operation (e.g., square, multiply, and or add) between inputs 
and kernel parameters (which are no longer simply 
“weights” because the operation is not limited to multiply). 
Some connections in the convolution engine allow reduc-
tion (e.g., add or compare) of partial results spatially or tem-
porally. The operators are the same across all the dimen-
sions in a GCONV operation. 

Since GCONV does not modify the dataflow, almost all 
the CNN accelerators can support GCONV computation. 
The only modification required is that the traditional PEs 
that only perform multiply and add should be equipped 
with more comprehensive main and reduce functions. This 
only brings little overhead compared to the expensive da-
taflow implementation, as will be evaluated in Section 6.4.  

3.2 GCONV Chain Generation 

With a stack of different functional layers, the end-to-end 
CNN computation can be converted into a GCONV Chain 
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Fig. 5. Describing Convolution Layer in Fig. 2 by GCONV Ng = 2
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Fig. 3. 1-D GCONV 

for gH = [0:NgH-1]:
  for opH = [0:NopH-1]:
    for opcH = [0:NopcH-1]:
      for ksH = [0:NksH-1]:
        for gW = [0:NgW-1]:
          for opW = [0:NopW-1]:
            for opcW = [0:NopcW-1]:
              for ksW = [0:NksW-1]:
                O[gH][opH][opcH][gW][opW][opcW] 
= O[gH][opH][opcH][gW][opW][opcW] {reduce} 
K[gH][opH][ksH][gW][opW][ksW] {main} 

I[gH][ksH+sH×opcH][gW][ksW+sW×opcW]

GCONV 
computation 
of one 
dimension

 

Fig. 4.  Pseudo Code of 2-D 
GCONV in H and W Dimensions 
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based on producer-consumer relations.  
First, here is an example of how to transform the batch 

normalization (BN) layer in both forward (FP) and back 
(BP) propagation into a GCONV Chain. In FP, the outputs 
(O) are the normalization of the inputs (I) over the entire 
mini-batch: 

𝑂𝑖
𝑏 =

𝐼𝑖
𝑏−𝜇𝑖

√𝜎2𝑖+𝜀
     (2),  

where b denotes the index in B dimension, i iterates in the 
C, H, W dimensions and 𝜀 is a small parameter. 𝜇𝑖  and 𝜎2𝑖 
are the mean and variance of the mini-batch (the size is 
Nbs):  

𝜇𝑖 =
∑ 𝐼𝑖

𝑏𝑁𝑏𝑠−1
𝑏=0

𝑁𝑏𝑠
     (3), 

𝜎2𝑖 =
∑ (𝐼𝑖

𝑏−𝜇𝑖)
2𝑁𝑏𝑠−1

𝑏=0

𝑁𝑏𝑠
     (4). 

Table 2 and the GCONVs in bold in Fig. 6 show the 
GCONV Chain of BN. The FP GCONVs are generated by 
analyzing the dependencies of Equations (2) to (4). Since 
both O and 𝜎2 depend on 𝜇, the calculation of 𝜇 is first ap-
pended to the chain (FP1), which is a reduction in the B 
dimension. Then (𝐼 − 𝜇)  is calculated next (FP2) as a 
GCONV with no reduction but different kernel parameters 
for each data in C, H, W dimensions. After that, the calcu-
lations of 𝜎2 and O are appended as FP3 and FP4 sequen-
tially.  

The BP of BN performs the following operation: 

𝒈𝐼𝑖
𝑏 = ∑

𝜕𝑂𝑖
𝑏𝑏

𝜕𝐼𝑖
𝑏

𝑏𝑠−1
𝑏𝑏=0 𝒈𝑂𝑖

𝑏𝑏  

= (𝒈𝑂𝑖
𝑏 − ∑

𝒈𝑂𝑖
𝑏𝑏

𝑏𝑠
𝑏𝑠−1
𝑏𝑏=0⏟      
𝑩𝑷𝟑⏟            

𝑩𝑷𝟒

−𝑂𝑖
𝑛 ∑

𝑂𝑖
𝑏𝑏𝒈𝑂𝑖

𝑏𝑏

𝑏𝑠
𝑏𝑠−1
𝑏𝑏=0⏟        

𝑩𝑷𝟏⏟          
𝑩𝑷𝟐⏟                        

𝑩𝑷𝟓

)/√𝜎2𝑖 + 𝜀

⏟                                
𝑩𝑷𝟔

    (5), 

which is similarly decomposed into six GCONVs. The 
GCONVs of other layers can also be derived in this way. 

Then based on the inter-layer dependencies, we can es-
tablish the chain for the entire CNN. Fig. 6 illustrates the 
conversion of the block in Fig. 1(a) to a GCONV Chain. 
Like CISC instructions, the original block contains a pile of 
diverse layers, each requiring complicated customized 
analysis and optimization. Specially, our proposed tech-
nique works as a “micro code” layer that translates them 
into a chain composed of only GCONV operations. It 
might be noticed that the code density increases in Fig. 6. 

To this end, we will introduce an operation fusion tech-
nique in Section 4.3.  

4 GCONV CHAIN ACCELERATION 

As shown in Fig. 6, the generalization approach proposed 
in Sections 3 allows diverse operations in CNNs to be con-
verted into a chain of standard GCONV operations. Con-
sequently, the acceleration is no longer layer-specific. In-
stead, the entire CNN acceleration can be uniformly and 
systematically achieved by studying the acceleration of a 
single GCONV operation (Section 4.1) and optimizing the 
interaction between operations on the chain (Section 4.3).   

4.1 Mapping a Single GCONV Operation 

To accelerate the GCONV, we need to perform more com-
putation in parallel while increasing the data reuse, which 
is realized by unrolling and exchanging the order of the 
nested loop in Fig. 4. The loops can be unrolled both spa-
tially and temporally in an accelerator. Different accelera-
tors have different spatial dimensions to unroll the compu-
tation and different memory structures for temporary data 
storage. Here we build an example on Eyeriss [4], one of 
the most complicated and self-contained CNN accelera-
tors. The generality of the GCONV mapping will be dis-
cussed in Section 4.4. 

Accelerator structure: Fig. 7 shows the on-chip structure 
of Eyeriss. For neatness, we focus on the abstracted spatial 
and temporal unrolling dimensions while omitting the 
other implementation details that do not affect GCONV 
mapping. It contains a 𝑝𝑦 × 𝑝𝑥  PE array and a global 
buffer which broadcasts to the PEs. Each PE consists of a 
main and reduce (multiply and add in the original work) 
unit in addition to three local scratchpads for inputs (ILS), 
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Fig. 6. GCONV Chain of the MobileNet Block in Fig. 1(a) 

TABLE 2 
GCONVs for Batch Normalization Layer 

GCO
NV 

GCONV Parameters 
Input Kernel 

Param 
Operators 

Computation B C H W pre main reduce post 
FP 

FP1 [Nks: Nbs] [Nopc: Nic] [Nopc: Nix] [Nopc: Niy] L(l-1)_output     + × 1/𝑁𝑏𝑠 𝜇 = ∑𝐼/𝑁𝑏𝑠 

FP2 [Nopc: Nbs] [Ng: Nic] [Ng: Nix] [Ng: Niy] L(l-1)_output FP1_output  −   𝑡1 = 𝐼 − 𝜇 

FP3 [Nks: Nbs] [Nopc: Nic] [Nopc: Nix] [Nopc: Niy] FP2_output   ^2  + LUT 𝑡2 = 1/√∑𝑡12/𝑁𝑏𝑠 + 𝜀 

FP4 [Nopc: Nbs] [Ng: Nic] [Ng: Nix] [Ng: Niy] FP2_output FP3_output  ×   𝑂 = 𝑡1 × 𝑡2 
BP 

BP1 [Nks: Nbs] [Ng: Nic] [Ng: Nix] [Ng: Niy] L(l+1)_gradient FP4_output  × + × 1/𝑁𝑏𝑠 𝑡3 = ∑𝑂 × 𝒈𝑂/𝑁𝑏𝑠 

BP2 [Nopc: Nbs] [Ng: Nic] [Ng: Nix] [Ng: Niy] BP1_output FP4_output  ×   𝑡4 = 𝑂 × 𝑡3 

BP3 [Nks: Nbs] [Nopc: Nic] [Nopc: Nix] [Nopc: Niy] L(l+1)_gradient    + × 1/𝑁𝑏𝑠 𝑡5 = ∑𝒈𝑂/𝑁𝑏𝑠 

BP4 [Nopc: Nbs] [Ng: Nic] [Ng: Nix] [Ng: Niy] L(l+1)_gradient BP3_output  −   𝑡6 = 𝒈𝑂 − 𝑡5 

BP5 [Ng: Nbs] [Nopc: Nic] [Nopc: Nix] [Nopc: Niy] BP4_output BP2_output  −   𝑡7 = 𝑡6 − 𝑡4 

BP6 [Nopc: Nbs] [Ng: Nic] [Ng: Nix] [Ng: Niy] BP5_output FP3_output  ×   𝒈𝐼 = 𝑡7 × 𝑡2 

Nbs: mini-batch size, Nic: number of input channels, Noy/Nox: number of outputs in the H/W dimension per channel, I/O: input/output of the layer, 

𝒈𝐼/𝒈𝑂: gradient of I/O, L(l-1)/(l+1): the last/next layer. 
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kernel parameters (KLS) and outputs (OLS) to reduce 
global buffer access.  

First, the loops can be spatially unrolled vertically (py) 
or horizontally (px) in the PE array. The spatial unrolling 
determines the parallelization of the computation and the 
spatial data reuse. The input and kernel parameter paral-
lel-reuses are enabled both horizontally and vertically. The 
partial results can only be reduced (i.e. output parallel-re-
use) vertically thanks to the forwarding links between the 
rows. Second, the loops can be unrolled temporally so that 
each PE can reuse the data or reduce the partial results lo-
cally in LS.  

Like many accelerators proposed for convolution layers, 
the original work of Eyeriss provides overlap-reuse primi-
tives for W and H dimensions (i.e., row-stationary). As 
shown in Fig. 8(a), Loop[W][ks] is unrolled temporally fol-
lowed by Loop[W][opc]. This enables the local scratchpads 
to load only s instead of ks new inputs each time. In addi-
tion, Loop[H][ks] and Loop[H][opc] are unrolled in py and 
px respectively (Fig. 8(b)). This way, the inputs can be 
shared diagonally in the PE array. In GCONV, these 
specially-designed primitives will be allocated to any 

dimension with overlap-reuse instead of being dedicated 
to W or H.  

Mapping algorithm: The algorithm for GCONV map-
ping in Eyeriss is listed in Algorithm 1. The main function 
is a procedure to append unrolling entries to two unrolling 
lists, i.e., spatial and temporal, until all the loops are un-
rolled. Each entry in the lists is [p, d, uf], indicating the un-
rolling factor of parameter p in dimension d (Loop[d][p]). 
The unrolling function determines the unrolling factor of 
an entry by considering the remaining iterations of the 
loop and the related PE or LS resources (Lines 2 to 4). Here, 
we explain Algorithm 1 with example mapping results of 
three different types of layers in Fig. 9, i.e., (a) convolution, 
(b) batch normalization, (c) local response normalization. 
Since there are two spatial dimensions, a pointer (pyt) is 
used to point to the tail of the unrolling entries in py. Sim-
ilarly in the temporal unrolling list, three pointers, ilst, olst 
and klst, point to the last temporal unrolling entries that 
enable data reuse in ILS, OLS and KLS respectively.  

First, to avoid the waste of overlap-reuse primitives, we 
search for dimensions with overlap-reuse opportunities 
and unroll ks and opc in these dimensions in the overlap-
reuse primitives (Lines 7 to 13 in Algorithm 1). Note the 
spatial list is filled before temporal list to maximize paral-
lelism (①②, ③④ in Fig. 9). When performing spatial un-
rolling, the resources in Lines 2 and 4 are simply the PEs. 
For temporal unrolling, the entailed LS resources are de-
termined by the amount of data of the unrolled tile, which 
will be discussed in Section 4.2.  

After the overlap-reuse primitives, we further fill the 
spatial unrolling dimensions (Lines 14 to 19) if there are 
still spare PEs (⑤). It is important to allow the loops that 
need a certain function to fill the unrolling dimension with 
that function first. In Eyeriss, ks is first unrolled in py to 
exploit the reduce function and opc and op are first unrolled 
in px to exploit the output bandwidth.  

Then the loops are unrolled temporally to fill the local 
scratchpads to increase data reuses (Lines 20 to 22, un-
rolling entries ⑥). Here, op is first unrolled to reuse the 
inputs. When a local scratchpad (e.g., kls) is full, the loops 
that reuse this kind of data can still be appended (e.g., ⑦).  

When all the resources are exploited, the remaining 
loops are simply appended (Lines 23 to 25, unrolling en-
tries ⑧). Note that g is always unrolled the last because it 
never manifests any special function or data reuse.  

——————————————————————————— 
Algorithm 1: Algorithm for GCONV Mapping on Eyeriss 

Input: GCONV loops of four parameters in four dimensions loops; 
accelerator PE array size 𝑝𝑦 = 12 , 𝑝𝑥 = 14 ; L  size 𝑖𝑙𝑠 = 12 , 
𝑘𝑙𝑠 = 224, 𝑜𝑙𝑠 = 24 [4]. 
Output: two unrolling lists spatial and temporal.  

1:  function unrolling (ud, p, d) 

2:      uf ← min (remaining resources, loops[d][p])  

3:      loops[d][p] ← ceil (loops[d][p]/uf) 

4:      remaining resources ← floor (remaining resources/uf) 

5:      return uf 

6:  function main () 

7:      for d in ["W","H","C","B"] do 

8:          if overlap-reuse then  

9:              spatial.append (["ks", d, unrolling("py", "ks", d)]) 

10:            spatial.append (["opc", d, unrolling("px", "opc", d)]) 

11:        if second overlap-reuse then 

12:            temporal.append (["ks", d, unrolling("L ","ks", d)]) 

13:            temporal.append ([“opc”, d, loops[d]["opc"])]) 

14:     for p in ["ks","opc","op","g"] do 

15:         for d in ["W","H","C","B"] do 

16:             spatial.insert ([p, d, unrolling("py", p, d)]) 

17:     for p in ["opc","op","ks","g"] do 

18:         for d in ["W","H","C","B"] do 

19:             spatial.append ([p, d, unrolling("px", p, d)]) 

20:     for p in ["op","ks", “opc”, “g”] do 

21:         for d in ["W","H","C","B"] do 

22:             temporal.insert ([p, d, unrolling("L ", p, d)]) 

23:     for p in ["opc","op", “ks”, “g”] do 

24:         for d in ["W","H","C","B"] do 

25:             temporal.append ([p, d, loops[d][p]]) 

ud: accelerator unrolling dimension, uf: unrolling factor, L : local 
scratchpads. 

If uf is 1, do not append or insert. 
——————————————————————————— 

 

Fig. 9. Example Unrolling Lists (Mini-batch Size is 32) 
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(a) AlexNet Conv1 GCONV1 
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(b) MobileNet Conv1/bn GCONV1 

loops:
(a) {B: [opc: 64], C: [ks: 3, op: 96], 
H: [ks: 11, opc: 55], W: [ks: 11, opc: 55]}

(b) {B: [ks: 32], C: [opc: 32], 
H: [opc: 112], W: [opc: 112]}

(c) {B: [opc: 32], C: [ks: 5, opc: 64], 
H: [opc: 56], W: [opc: 56]}

 

Fig. 9. Example Unrolling Lists (Mini-batch Size is 32) 
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4.2 Modeling the Performance of GCONV Mapping 

To enable selection and evaluation of the mapping strate-
gies, this section builds a concise model on how the 
GCONV mapping results affect the performance and total 
data movement.  

Computation cycles: The total cycles to complete a 
GCONV can be derived from the spatial unrolling as: 

𝐶𝑦𝑐.= ∏ ∏ 𝑐𝑒𝑖𝑙(
𝑁𝑝𝑑

𝑆𝑃_𝑃𝑝𝑑
)𝑝∈{𝑘𝑠,𝑜𝑝𝑐,𝑜𝑝,𝑔}𝑑∈{𝐵,𝐶,𝐻,𝑊}      (6), 

where 𝑃𝑝𝑑 refers to the unrolling factor of parameter p in 
dimension d and SP means the unrolling in spatial list.  

Data movement: The total amount of data for a series of 
unrollings is related to the data reuse opportunities dis-
cussed in Section 3.1. As listed in Table 3, the amounts of 
inputs, kernel parameters and outputs are independent of 
Pop, Popc and Pks respectively because of the parallel-re-
uses. The relation between the input data and Popc can be 
derived using Equation (1), which takes the overlap-reuse 
into consideration. The total required data is the product 
of that in all the dimensions.  

Therefore, the amount of kernel parameters required by 
a series of temporal unrollings for each PE can be derived 
as:  
𝑇𝑃_𝐾 = ∏𝑑∈{𝐵,𝐶,𝐻,𝑊}(𝑇𝑃_𝑃𝑔𝑑 × 𝑇𝑃_𝑃𝑜𝑝𝑑 × 𝑇𝑃_𝑃𝑘𝑠𝑑) (7), 

where TP means unrolling in the temporal list. When the 
required amount of kernel parameters exceeds the capacity 
of KLS (e.g., the last loop that klst points to in Fig. 9), a data 
movement occurs to load new data to KLS. Therefore, the 
number of KLS data movements can be derived as: 
#𝐾𝑀 = ∏𝑑∈{𝐵,𝐶,𝐻,𝑊}∏ 𝑜𝑢𝑡_𝑘𝑙𝑠𝑡_𝑇𝑃_𝑃𝑝𝑑𝑝∈{𝑘𝑠,𝑜𝑝𝑐,𝑜𝑝,𝑔}   (8), 

where out_klst_TP refers to loops outside the klst. Similar 
to Equation (7), the total kernel parameters required by all 
the working PEs for each cycle is: 
𝑆𝑃_𝐾 = ∏𝑑∈{𝐵,𝐶,𝐻,𝑊}(𝑆𝑃_𝑃𝑔𝑑 × 𝑆𝑃_𝑃𝑜𝑝𝑑 × 𝑆𝑃_𝑃𝑘𝑠𝑑)  (9). 

Based on Equations (7) to (9), the data movement of KLS 
is: 

𝑘𝑙𝑠_𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 = #𝐾𝑀 × 𝑆𝑃_𝐾 × 𝑖𝑛_𝑘𝑙𝑠𝑡_𝑇𝑃_𝐾  (10).  

The data movement of inputs and outputs and the 
lower-level memory (e.g., global buffer, off-chip DRAM) 
can be derived similarly. 

4.3 Extending to GCONV Chain Acceleration 

Besides the algorithm to map a single GCONV operation 
to a given accelerator, our system also includes two chain 
optimizations to overcome the challenges to efficiently ac-
celerate the entire GCONV Chain. 

Consistent mapping: The sharing of global buffer re-
quires the consumer to load the intermediate data in the 
format stored by the producer. For example, in Eyeriss, 
outputs unrolled in px (𝑂1 and 𝑂2 in Fig. 8(b)) are gener-
ated in parallel and can be collected at the same time while 
the inputs unrolled temporally (𝐼1 and 𝐼2 in Fig. 8(a)) can 
be loaded into the local scratchpads in parallel through the 

data bus. Therefore, the inner opc/op/g loops in px unrolling 
of the producer determine the storage format of intermedi-
ate data while the inner ks/opc/g loops of the consumer’s 
temporal unrolling determine the optimal loading format. 
An inconsistent mapping example is illustrated in Fig. 10. 
Based on the mapping of the producer (e.g., DenseNet 
ReLU1 GCONV1) in Fig. 10(a), the buffering format for the 
intermediate data is shown in Fig. 10(c). However, the 
mapping of the consumer (e.g., DenseNet Convolution2 
GCONV1) in Fig. 10(b) requires loading the inputs in the 
format in Fig. 10(d), which is not consistent to that in (c).  

In GCONV Chain, the intermediate data format incon-
sistency can be simply solved by loop exchange. For in-
stance, in Fig. 10(b), if the unrollings [ks, C, 4] and [ks, W, 3] 
are exchanged, the inputs of the consumer can then be 
loaded in the format in Fig. 10(e). With the original un-
rolling, only one input is loaded into ILS per cycle. After 
the exchange, at least three inputs (determined by the un-
rolling factor and the width of the buffer) can be loaded in 
parallel. In practice, we also consider exchange of temporal 
and spatial unrollings of the same parameter as well as un-
rollings with different parameters in the same unrolling di-
mension. Additionally, if there are no appropriate ones in 
the consumer, we check exchange opportunities in the pro-
ducer. Note that the unrolling loop exchange does not af-
fect the performance or data movement based on Equa-
tions (6) and (10) but significantly reduces the loading time 
for the consumer. In our experiments, this reduces the data 
loading latency by up to 3.9x compared to the baseline. 

Operation fusion: Operation fusion is commonly 
adopted  to reduce the movement of intermediate data  and 
to fully exploit the memory bandwidth [33]. In GCONV 
Chain, we also notice an imbalance among the operations 
in terms of the data/computation ratio. This results in low 
performance of certain GCONVs with a bottleneck in data 
loading. Therefore, we apply operation fusion by fusing 
the GCONVs with no reduce operator into the pre, post or 
main operators of their consumer or producer. For example, 
GCONV FP2 in Table 2 can be processed as the post of FP1 
or pre of FP3 and FP4. Since the outputs only need to be 
processed once, fusing to the post operator is preferred. Af-
ter fusion, the pre and post operators may have more than 
one parameter and the parameters can be reused in differ-
ent dimensions. Therefore, to minimize the parameter 
loading overhead, the consistent mapping also takes the 

TABLE 3 
Data Movement for GCONV 

Data Type Reuse Data Movement 

input  ∏𝑃𝑜𝑝𝑑 ∏(𝑃𝑔𝑑 × (𝑃𝑘𝑠𝑑+𝑃𝑠𝑑 × (𝑃𝑜𝑝𝑐𝑑 − 1))) 

kernel param ∏𝑃𝑜𝑝𝑐𝑑 ∏(𝑃𝑔𝑑 × 𝑃𝑜𝑝𝑑 × 𝑃𝑘𝑠𝑑) 

output ∏𝑃𝑘𝑠𝑑 ∏(𝑃𝑔𝑑 × 𝑃𝑜𝑝𝑑 × 𝑃𝑜𝑝𝑐𝑑) 
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Fig. 10. An Example of Unrolling Loop Exchange 
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unrolling consistency with the pre/post operator into con-
sideration. 

The operation fusion reduces the length of GCONV 
Chain by up to 30%. It also reduces the input movement 
cost by up to 63%. However, due to the pre/post parameter 
loading, the kernel parameter movement of the global 
buffer increases. On average, operation fusion improves 
the performance by 1.1x and decreases the data movement 
energy by 1.3x. 

4.3 Generalizing to Other Accelerators 

Although the GCONV Chain acceleration method is exem-
plified by Eyeriss, it easily generalizes to other accelera-
tors. The performance analysis in Section 4.2 intrinsically 
applies to all the cases. Therefore, the exact mapping algo-
rithm of a random accelerator only relies on its specific 
structure for unrolling. In our exploration, all the accelera-
tors manifest both the spatial and temporal unrolling di-
mensions. The difference lies in the number and functions 
of the spatial dimensions as well as the capacity and hier-
archy of the memory. Among the evaluated accelerators in 
Table 4, [6][16] possess two spatial dimensions, one with 
input parallel-reuse and the other with reduce but no over-
lap-reuse; [20] has two spatial dimensions with one for 
overlap-reuse; and the only spatial dimension in the sub-
system of [5] can exploit reduce and overlap-reuse at the 
same time. In terms of memory, most accelerators adopt 
two-level on-chip storage. For those accelerators with no 
local scratchpads (e.g. [16]), the sizes of the local scratch-
pads can be set to 1. In some accelerators, only a certain 
data type has a local memory (e.g., the input pool in [5]). 

Despite the variance in the structure of the accelerators, 
the underlying mapping philosophy, i.e., to first occupy 
the spatial dimensions and special functions to maximize 
the performance and data reuse, always holds. In the eval-
uation, we follow the mapping strategies in the original 
works of the baselines, which just slightly changes the pri-
ority of the parameters in Lines 7 to 22 of Algorithm 1 in 
Section 4.1. The two chain optimizations in Section 4.3 do 
not rely on a certain accelerator either. For a given structure, 
we just need to recognize the output and input format de-
termining dimensions to guarantee that the inner loops are 
consistent.  

5 GCONV CHAIN IMPLEMENTATION 

To apply GCONV Chain to an existing accelerator, neces-
sary supports are inserted into the computation stack.  

First, we implement a compiler that automatically trans-
forms a neural network into a GCONV Chain and then per-
forms optimizations and mapping based on the given ac-
celerator structure. Our compiler is implemented in Py-
thon and all the networks and hyperparameters are ex-
tracted from Caffe [34] through the Pycaffe interface. For 
all the CNNs and accelerators, it takes an average of 0.024 
seconds to transform and auto-map one layer. This gener-
ates a list of GCONV instructions, which are executed by 
the GCONV-augmented accelerator shown in Fig. 11.  

Fig. 11(a) shows the instructions of a GCONV operation. 
There are three instruction buffers in the system. The basic 
information buffer stores the stride, operators, input and 
kernel parameter producer IDs. Considering that some 
GCONVs do not have pre, main, reduce or post operators, 
the first field of the operator instruction is utilized to indi-
cate the operator type. An all-zero entry delimits the basic 
information of the GCONVs. For the unrolling list buffer, 
the first three fields are the unrolling dimension, parame-
ter and unrolling factor respectively, as in Fig. 9, while the 
last field indicates the argument of the parameter. If the pa-
rameter is unrolled more than once, the argument is the 
sum of all the entries that unroll the same parameter. The 
unrolling lists in different unrolling dimensions for the 
GCONVs are also delimited by an all-zero entry. The last 
instruction buffer stores the address of the output gener-
ated by each GCONV, the width of which is determined by 
the size of the data buffer.  

The accelerator is equipped with a set of registers to 
buffer the stride, parameters, operators and unrolling lists. 
In the set-up stage of each GCONV, one instruction entry 
is read from the basic information and unrolling list buffers 
in each cycle. The decoder translates the instructions dic-
tated by a state machine. During the process, the last entry 
(e.g. pyt, ilst) of each dimension and the arguments of the 
parameters are generated while decoding the unrolling 
lists. The addresses of input and operands for the opera-
tions are derived by indexing the IDs in the output address 
buffer and the output address is allocated in run-time 
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Fig. 11. An Overview of GCONV Chain Implementation 
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based on the current data buffer occupation and the size of 
the output. To eliminate the possible delay, instruction 
loading and decoding are overlapped with the processing 
of the previous GCONV.  

As mentioned in Section 3.1, GCONV does not change 
the inherent connections in the convolution engine. The 
only modification is to replace the original multiply and add 
functions with comprehensive main and reduce functions, 
as shown in Fig. 11(b). As in [16], we deploy 8-bit data, 16 
bits for the results of main operator and 32 bits for the re-
sults of reduce and post operators. The precision-sensitive 
steps are fused into post operators. During GCONV pro-
cessing, the loop iterations are carried out by a state ma-
chine, as shown in Fig. 11(c). Since the unrolling lists are 
not fixed, it is impossible to use a predefined state machine. 
Instead, the transition conditions are set as the results of 
comparison between the unrolling factors and the counters. 
A 16:1 MUX is adopted to increase the index of the corre-
sponding parameter. The address generator generates the 
offset of the data based on the index and data storage lay-
out. The layout generally follows the order of the indices 
in Fig. 4. The indices on the right lie in inner loops of the 
data layout. However, as discussed in Section 4.3, the pro-
ducer can generate and store data in any dimension in par-
allel. Therefore, based on the unrolling list of the producer, 
the layout is adjusted to move a certain dimension to the 
front. Note that this does not change the address calcula-
tion logic but just the parameters. Then based on the ad-
dress, the data loading module loads the data and feeds 
them to the PEs through the data bus.   

6 EVALUATION 

6.1 Baselines and Benchmarks 

For a comprehensive evaluation, we include all three types 
of CNN accelerators discussed in Section 2.3, as listed in 
Table 4. [4]–[6] baseline cases adopt the PE and memory 
configurations as in the original works. Note that we per-
form dense computation on EP to focus on the hardware 
acceleration. [16] is proposed as a datacenter-level design, 
so we scale down its basic block by 4×4 to match the other 
accelerators. [20] generates a customized accelerator for 
each CNN. We adopt the configuration of AlexNet, the 
only benchmark we share, on the moderate FPGA Altera 
Stratix V SGSD5. For GCONV Chain implementation, all 
the layers are converted into GCONV operations and auto-
mapped to the convolution engine (or matrix functional 
unit in TIPs) of the accelerators. Since DNNW allocates 

computation resources to some other dedicated functional 
units, which will be idle in GCONV Chain processing, the 
convolution engine of the GCONV Chain implementation 
is scaled up so that they have the same number of PEs and 
total bandwidth as the baselines. Columns 3-7 of Table 4 
summarize the GCONV Chain configurations.  

For the benchmarks, we evaluate the seven CNNs in Ta-
ble 1. Note that ZFFR, CapNN and C3D are not evaluated 
on baseline DNNW and C3D is not evaluated on all the CIP 
baselines since on-chip acceleration of the functional layers 
in these networks is unclear in the original papers. In the 
experiment, we focus on the training of CNNs, which in-
cludes the computation in inference and provides more in-
sights.  

6.2 Methodologies 

To demonstrate the three benefits brought by GCONV 
Chain discussed in Section 1, we study the speedup, over-
head, energy efficiency and whole-life cost of GCONV 
Chain. Specifically, Section 6.3 evaluates the speedup of 
GCONV Chain over baselines to show that it can be ap-
plied to any accelerator. Sections 6.5 and 6.6 compare the 
energy efficiency of GCONV Chain-armed CIPs with TIPs 
and LIPs to show its potential in low-cost CNN accelera-
tion.  

We develop a simulator to evaluate the performance and 
data movement based on the model proposed in Section 
4.2, which is validated on a cycle-accurate basis. To get the 
area and energy estimation, we prototype the accelerators 
and synthesize the RTL using Synopsys Design Compiler 
and simulate the memory with CACTI [35]. All the accel-
erators run at 700MHz. In baseline CIPs, only the tradi-
tional layers mentioned in Section 2.2 are processed on-
chip while the others are offloaded to an ARM A53 CPU 
through PCIe 4.0. Computations allocated to different 
functional units or the host are processed in a pipeline.   

6.3 Speedup 

The end-to-end speedup brought by GCONV Chain comes 
from two aspects: (1) it eliminates the inefficiencies of the 
baselines in terms of processing the non-traditional layers; 
(2) for the most computation-intensive convolution layers, 
GCONV Chain can still improve the performance thanks 
to its flexible mapping. 

To implicate the inefficiencies of the baselines, Fig. 12 
first shows the latency breakdown of them. Among the 
baseline accelerators, TPU and DNNW suffer from pipe-
line bubbles with considerable time only running either the 

TABLE 4 
GCONV Chain Implementation Configurations 

Category Accelerator Configuration PEs Local Storage Global Buffer Bandwidth 

TIP TPU [16] 64 rows, 64 col-
umns 4096 IL : 1 per PE, OL :1 per PE, KL :1 per PE 

I & O: 1.5MB K: 
0.25MB I: 64, O: 64, K: 11 

LIP DNNWeaver 
(DNNW) [20] 

14 PUs, 74 PEs per 
PU 1036 IL : 1 per PE, OL : 1 per PE, KL : 1 per PU 

I & O & K: 8.5kB per 
PE, K: 8.5kB per PU 

 I & O & K: 1 for 2 PEs, K: 1 
per PU 

CIP Eyeriss (ER) 
[4] 

12 rows, 14 col-
umns 168 IL : 12 per PE, OL : 24 per PE, KL : 224 per PE I & O: 100kB, K: 8kB I: 1, O: 4, K: 4 

CIP EagerPruning 
(EP) [5] 

4 subsystems, 512 
PEs per subsystem 2048 IL : 64 per subsystem, OL : 1 per PE, KL : 1 per PE 

I: 1.5MB, O: 1.5MB, 
K: 1.5MB 

I: 32 per subsystem, O: 32 per 
subsystem, K: 32 per subsystem 

CIP NLR [6] Tm = 64, Tn = 7 448 IL : 1 per Tn, OL : 1 per Tm, KL : 1 per PE 
I & K: 1.5MB, O: 
0.75MB I & K: 7, O: 64 
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traditional or non-traditional layers (computation-tradi-
tional or computation-non-traditional in Fig. 12). The 
runtime that all the components are busy (all-busy) only 
accounts for 31% and 2% in TPU and DNNW respectively. 
The utilization is higher in TPU because it accelerates fine-
grained tensor operations while the instructions in DNNW 
are more complex. EP suffers the most from the offloading 
(43% of runtime on average) because it has the highest on-
chip performance. While ER and NLR can overlap the of-
floading by computation to some extent, the offloading 
power is not negligible as will be shown in Fig. 18. In terms 
of each CNN, the offloading latency is more severe in re-
cent CNNs with more non-traditional layers (e.g., DN, 
MN). However, CNNs with non-traditional layers highly 
concatenated (e.g., ZFFR, C3D, CapNN) suffer less from 
offloading.  

Fig. 13 shows the speedup of the convolution layers to 
demonstrate the effectiveness of GCONV mapping. In all 
the cases, the performance of GCONV Chain is no worse 
than the baselines. In MN, where the feature maps un-
rolling in the baselines is useless for depthwise convolu-
tion, the speedup is salient. GCONV Chain also signifi-
cantly speeds up the convolution layers in baseline NLR, 
which only unrolls the input and output feature maps. The 
speedup over baseline TPU and ER are low because they 
explore flexible unrolling strategies. EP is similarly flexible 
as ER but the huge PE array makes the baseline mapping 
less effective. Fortunately, GCONV Chain manages to im-
prove its performance. 

When it comes to the end-to-end CNN acceleration in-
cluding all the traditional and non-traditional layers, Fig. 
14 shows the speedup of GCONV Chain to the baselines. 
The results show that GCONV Chain speeds up the base-
lines by up to 8.2x and an average of 3.4x among all the 
accelerators. The speedup of DN and MN on DNNW and 

EP are high because their baselines suffer the most from 
the pipeline bubbles and offloading. The speedup of 
CapNN on ER and NLR is low because their on-chip 
computing power cannot compare to that of A53. 

6.4 Overhead 

We aim to compare the total cost of GCONV Chain-armed 
CIPs (GC-CIPs) with LIPs and TIPs, so this section focuses 
on the overheads brought by GCONV Chain to CIPs. Fig. 
15 compares the average code length of GC-CIPs with LIPs 
and TIPs. On average, GC-CIPs instructions are 5.8x longer 
than LIPs because LIPs have only one instruction for each 
layer. TIPs only process basic matrix or vector algorithms, 
so control operations are needed when the computation 
cannot be mapped to only one matrix/vector operation. In 
addition, they require load instructions while LIPs and 
GC-CIPs load data implicitly. Therefore, their code density 
is the worst (2.6x worse than GC-CIPs).  

Fig. 16 and 17 list the overhead of GCONV Chain in the 
area and the average power breakdown of Eyeriss. The 
storage overhead refers to the storage for the instruction 
buffers in Fig. 11(a) and the compute overhead corre-
sponds to the PE modification in Fig. 11(b). The control 
overhead includes all the required signals in Fig. 11(a)(b) 
and the controller in Fig. 11(c). In total, GCONV Chain 
brings 20% area and 19% power consumption overhead. 
This is acceptable considering the speedup and reduction 
in data movement. 

6.5 Energy Efficiency 

In CNN accelerators, it is widely recognized that the data 
movement dominates the energy efficiency [19]. The meas-
urement in Fig. 18 includes the on-chip global buffer move-
ments and offloading and reloading related power normal-
ized to the baseline of TPU. The off-chip data movement is 
not considered because GCONV Chain does not substan-
tially affect the off-chip data access in our experiments. As 
shown, although the on-chip data movement reduction 
brought by GCONV Chain is not significant, it eliminates 
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the costly offloading and reloading of non-traditional lay-
ers in CIPs. Compared with TIPs, GC-CIPs that explore 
more data reuses have the lowest data movement (16% and 
22% in ER and EP). Note that NLR does not have low on-
chip data movement because it does not exploit any over-
lap-reuse. 

Fig. 19 further shows the normalized overall energy ef-
ficiencies of the GC-CIPs, TIP, LIP and a state-of-the-art 
GPU, i.e., NVIDIA Tesla V100. Equipped with GCONV 
Chain, the CIP accelerators with overlap-reuse (i.e., ER and 
EP) overcome the inefficiency in the baselines (37.6x on av-
erage) and show a promising edge over TIP (up to 3.4x, 
2.1x on average), LIP (up to 4.9x, 3.0x on average) and GPU 
(up to 7.6x, 4.5x on average).  

6.6 Whole-life Cost 

Last but not the least, we compare the whole-life costs of 
TIP, LIP and GC-CIP. Fig. 20 shows the development costs 
as a sum of hardware/software non-recurring expenses 
(NRE) and update costs. Based on the complexity level of 
the accelerator implementation, the hardware NRE of TIPs, 
GC-CIPs and LIPs are quoted as 152K, 165K and 220K 
USDs [36]. Then in each update, LIPs require 200K USDs 
on the new hardware design. The software NRE and up-
date costs are calculated using the latest salary [37][38] and 
lines of code in our prototype compiler. Although GC-CIPs 
consume more in the hardware than TIPs, the software de-
velopment is cheaper due to code generation complexity. 
This gap widens with more updates and 60K additional 
USDs are consumed for development of TIPs than GC-
CIPs after ten updates. 

Users who invest in the accelerators need to pay the cap-
ital expenses (CAPEX) for the device purchase and annual 
update and the utility as operating expenses (OPEX). Fig. 
21 shows the total costs of ownership for the ASIC version 
of the three types of accelerators as well as FPGA LIPs and 
GPUs, which are popular choices for CNN acceleration. 
The CAPEX of FPGA and the ASICs are scaled to meet the 
performance of GPU and the operating utility is calculated 
assuming the devices are always working at the average 
utility rate in US [39]. As observed, the GPU, FPGA and 
ASIC LIPs with high CAPEX [36][40][41] are not the best 
choices for pure CNN acceleration. Thanks to the high en-
ergy efficiency of convolution customized dataflows, GC-
CIPs win the most whole-life efficient CNN accelerators by 
costing 45% less than TIPs after just three years and 65% 
less after ten years. 

7 RELATED WORK 

Besides the accelerators discussed in Section 2.3, there are 

several works trying to efficiently process the non-tradi-
tional computation in CNNs. [7] infuses the adder tree 
with pooling functions and [9] adds local response normal-
ization layer support but the other layers are still left be-
hind. [42] introduces a method to break down the batch 
normalization into two parts and fuse the computation to 
the next and last layers in the CNNs, which is orthogonal 
to our work and can be adopted when optimizing the 
GCONV Chain. [43] introduces batch size as a tunable pa-
rameter in CNN accelerators to make up for the lack of par-
allelism in traditional convolution acceleration but it does 
not systematically accelerate all the non-traditional layers. 
[33] is proposed to assist mapping neural networks defined 
in any framework to any hardware. However, it currently 
only supports matrix/vector operations and commercial 
general-purpose processors. [44][45] propose models to 
explore the mapping design space of neural network 
accelerators but they do not provide a systematic solution 
to the end-to-end CNN acceleration. 

8 CONCLUSION 

This paper has addressed a highly critical but generally 
overlooked challenge: the efficient and cost-effective accelera-
tion of the diverse end-to-end CNN computation. To exploit the 
reuse opportunities in CNNs and to avoid resource un-
derutilization and costly upgrade brought by allocating 
dedicated hardware to the non-traditional layers, we pro-
posed a general convolution model and generalizing the 
diverse computations in CNNs into GCONV Chain. By 
generalization, the end-to-end GCONV Chain can be effi-
ciently processed by existing accelerators customized for 
convolution with low-overhead hardware support. Our 
evaluation shows that GCONV Chain manifests great po-
tential in accelerating the CNNs with high performance, en-
ergy efficiency and low whole-life cost.  
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