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Abstract—The development of deep neural network (DNN) has provided transformative impacts on many fields, including 

computer vision and video recognition. However, the impact is limited by the need for large, labeled datasets to enable effective 

training. To address this fundamental problem, we propose a novel inter-network system (Dandelion), providing architecture 

support (Dandelion-architecture) for data augmentation that trains DNNs with rare images generated by the generative 

adversarial network (GAN) with orthogonal attributes modified (Dandelion-function. The approach can account for the latency 

requirement and resource limitation of target applications by exploiting data and computation reuses between the two networks; 

this amortizes the impact of bottleneck brought by GAN and facilitates design of inter-network accelerator. Moreover, we show 

how to implement two-network design on 3D architecture to further enhance the accelerator. Our results show that with the 

generated images, DNN yields 13.6% - 37.5% improvement on accuracy, depending on the data scarcity level.  Our architecture 

achieves at least 30% speedup compared with the baseline while 40% of the overhead brought by the incorporation of GAN is 

reduced in our design compared with ScaleDeep, and 26.3% of performance improvement over TETRIS. 

Index Terms—Neural network training, Inter-network accelerator, Data augmentation, Edge device 

——————————   ◆   —————————— 

1 INTRODUCTION

n the recent years DNN has established itself as an effi-
cient and accurate tool for image and video recognition.  

For instance, the auto-driving feature of Tesla [1] is based 
on the classification for the road condition using neural 
network and Google’s image engine trains its network to 
support image searching. There has been successful ap-
plication of DNN in diverse and critical areas including 
medical [2], cyber security [3], film preproduction [4] and 
gaming [5], performing tasks like object locating, face 
recognition, target partition and action tracking. 

However, a critical obstacle to usability of DNNs on a 
number of applications is the scarcity of data. The high 
accuracy of DNNs relies on training datasets that effec-
tively reflects the variations and distributions encoun-
tered in field. Unfortunately, for many applications that 
can benefit from DNN, it is challenging to collect suffi-
cient training data reach the desired accuracy within a 
short time or a cost budget.  For instance, the symptom 
images required by DNN training for automated COVID-
19 diagnosis [6] can only be collected as time elapses, on 
account of a long detection period. Enabling faster devel-
opment of DNN’s with sufficient accuracy could have 
significant impact on the response to the pandemic, with 
transformative impact to public health and social econo-
my [7]. Another example is the recognition of an escaped 

prisoner or criminal, which requires a training dataset 
including pictures of the targeted criminal that are diffi-
cult to obtain quickly even in the big data era.    

To enrich the training dataset, prior work relies on im-
age augmentation methods, e.g., cropping and rotation [8, 
9]. GAN (Generative Adversarial Network) has also been 
leveraged to generate new images from random noise [10, 
11, 12]. However, all existing approaches to our 
knowledge only utilize information from the scarce target 
data domain. Although network training benefits from 
these attempts, the performance improvement is limited 
due to lack of additional real-world information. Recent 
research [8] developed StarGAN to perform multi-
domain image translation which can add multiple desired 
features learned from orthogonal real-world dataset, tre-
mendously enhancing the ability of image generation. 
Nevertheless, data scarcity remains the bottleneck.  

The key result of this paper is Dandelion, an accelerator 
for the combination of two networks, to compensate for 
the scarce DNN training data by feeding GAN-generated 
data into it.  We demonstrate how this can efficiently 
solve the training dilemma on degraded DNN accuracy 
caused by scarce training data. Dandelion is specifically 
developed exploit data augmentation ability of StarGAN 
[13]. 

A critical challenge in realizing this vision is the con-
siderable hardware overhead added inevitably to the ac-
celerator by the inclusion of GAN, which can lead to low-
er performance and energy efficiency of the entire system. 
This problem is gerring particularly acute within the 
emergent paradigm of edge intelligence, where the net-
works must be deployed on resource constrained edge 
devices. Prior design [7] [8] on single-network accelerator 
support network training with advanced dataflow and 
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architecture. However, the data dependency between 
networks may cause either considerable idleness or 
memory consumption. Furthermore, the various sizes of 
kernels and feature maps result in resources underutiliza-
tion, resulting in less benefits when employing single-
network accelerator to handle two networks altogether. 

To reduce this overhead, we propose the inter-network 
accelerator, Dandelion-arch, with four techniques to maxi-
mally exploit the reuse opportunities between the two 
networks. First, we leverage a shared buffer to reuse the 
input images for the two networks, and the generated 
images are consumed on-chip to save bandwidth. In addi-
tion, the proposed architecture makes full utilization of 
the computing resources between networks by dynamic 
dataflow reconfiguration and processing element reallo-
cation. Furthermore, we propose mapping policies that 
can adapt our architecture to any two neural networks. 
Finally, we extend our accelerator to 3D implementation 
for even higher efficiency. 

In summary, the paper makes the following important 
contributions:  

1. We propose a new inter-network system: Dandeli-

on, which validate the accuracy improvement of 

DNN training by changing orthogonal attributes in 

light of dataset scarcity (Dandelion-function) with 

30% performance improvement brought by inter-

network accelerator (Dandelion-arch). 

2. We utilize the novel reuse opportunities lying on 

the combination of networks in our first inter-

network accelerator architecture design and fur-

ther extend it to support the inclusion of various 

network as a principle of inter-network accelerator 

design. 

3. We show how to implement the two-network sys-

tem using 3D architecture with optimized cross-

vault partitioning and buffer-bypassing strategy.  
The rest of this paper is organized as follows: Section 2 

provides the background on GAN and DNN training as 
well as our motivation for Dandelion. Section 3 introduces 
the detailed function design of Dandelion. Section 4 pro-
poses the architecture support for Dandelion and 3D inte-
gration. Sections 5 and 6 elaborates our evaluation meth-
odology and analyzes the results, respectively. The related 
work is discussed in Section 7, and Section 8 concludes 
the paper.  

2 BACKGROUND 

DNN Training: DNN typically consists of convolutional 
layers (i.e., hidden layer performing convolution opera-
tions), pooling layers and fully connected layers. As a 
supervised-learning algorithm, DNN is trained by labeled 
training data to adjust its parameters before deployed for 
inference on the unknown samples from real-world ap-
plications. In the training phase, there are three stages for 
each input sample organized by the gradient decent algo-
rithm, i.e., forward propagation (FP), backward propaga-
tion (BP), and weight update (WU). In forward propaga-
tion, the inputs are processed by kernels to extract fea-
tures as intermediate data of each layer. Once the output 
of one layer is generated, the intermediate data is stored 
for the next layer and the following training stages. The 
output of the last layer is the prediction vector which in-
dicates the network’s classification of input. The predic-
tion vector is compared with the input label to calculate 
the loss. Then, the loss is used in backward propagation 
to generate the error of each layer, which contains the 
information to update the kernel parameters. Finally, in 
weight update stage, the errors are convolved with the 
intermediate data to produce the weight updates.  

GAN: GAN is proposed as a feasible solution to unsu-
pervised learning. As indicated in Figure 1, it is composed 
of two components. The generator tries to learn the fea-
tures of real images and embeds them into the input (a 
random vector or a real image) to produce new images. 
The discriminator aims to distinguish generated images 
from the real one. During the training phase, the outputs 
of the discriminator by processing fake images along with 
real images are computed in a subtraction manner to 
form the loss which indicates the difference between 
them. The generator and discriminator are trained adver-
sarially against each other, i.e., the generator intends to 
reduce the loss while the discriminator attempts to en-
large it. When the training converges, the discriminator 
achieves the highest accuracy in classifying images into 
real and generated data while the generator can generate 
images that resemble the real ones to the most extent. 
During the inference phase, for each layer of the genera-
tor, the input is convolved with kernels. Simultaneously 
the image information already learnt by the kernels is 
reflected to the feature map to generate human-
recognizable images.  In terms of the computation, the 
GAN layers also perform convolution and fully connec-
tion operations on each input.   
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Fig. 1. StarGAN computation structure. 
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StarGAN: StarGAN [13 ]is a state-of-the-art GAN that 
provides unique ability for data augmentation compared 
to conventional GAN,.  In particular, StarGAN can learn 
multiple attributes in its generator and selectively apply 
them to the input. The red area in Figure 1 shows the in-
ference of the generator of StarGAN. Specifically, Star-
GAN utilizes a mask vector to control the output attrib-
utes. For each element in the vector, there will be an addi-
tional input channel with the same 2D dimension as im-
age. The value (true or false) of each vector element corre-
sponds to different additional feature maps. In the infer-
ence phase, the input with certain attribute information is 
convolved by a series of kernels to 32×32×256 and pro-
cessed several times under this size to apply attribute 
modification. After this, the data passes through the fol-
lowing convolution layers similarly, to be restored to the 
size of the input and serves as generated image.  Note 
that since Dandelion relies on the data augmentation func-
tion, we only deploy a generator which is readily trained 
on an orthogonal data domain and perform inference on 
it. 

3 DANDELION FUNCTIONALITY 

3.1 High -level Overview 

Dandelion connects the generator of the GAN with the 
DNN. The output of GAN generator is forwarded to 
DNN as inputs, as illustrated in Figure 2. For our work, 
we found StarGAN [8] the best fit because of its ability to 
change  multiple orthogonal attributes under the control 
of pre-defined state machine. In the following, we use a 
face recognition example to explain Dandelion functionali-
ty. 

Consider training the DNN to recognize different faces 
but assume that the labeled images of a specific face are 
too scarce to be appropriately learned. To enrich this da-
taset, the GAN generator works as a populating tool to 
increase the number and diversity of the certain face.  

The role of StarGAN in our design is to introduce addi-
tional real-world information to the input by only chang-
ing the subordinate attributes while preserving the origi-
nal primary characteristics. This could simulate the condi-
tion of training with real dataset. The attributes can be 
combined and permutated in a customized manner in 
image generation. When training the GAN to learn differ-
ent attributes, although the target dataset is scarce, it is 

still possible to use another dataset with abundant sam-
ples and orthogonal attributes. For example, in our exper-
iments, we utilize CelebA as our abundant dataset to train 
StarGAN and let it learn inessential face attributes like 
makeup, moustache and glasses. Then, StarGAN can 
augment the Pubfig dataset that classifies people by their 
names by adding certain features to the basic face images, 
as shown in Figure 2. This populating function can be 
applied to all the scarce classes. For those classes with 
plentiful samples, images are sent to the DNN directly. 
This way, the DNN can learn from an adequate and bal-
anced dataset which alleviates the problem of overfitting. 

3.2 Operation Modes of Dandelion 

Since the GAN only generates data for scarce classes as 
mentioned in Section 3.1, Dandelion is compatible with 
two modes dealing with samples from the scarce and 
abundant classes respectively, which are shown in Figure 
3.  

DNN-Only-Mode (DOM) is designed for images from 
the abundant class, where there are sufficient samples for 
training and GAN augmentation is unnecessary. The im-
ages are loaded from the memory into DNN directly for 
training.  

GAN + DNN Mode (GDM) applies to images from the 
scarce class that need to be populated by GAN. The pre-
trained StarGAN generates images with different features 
by setting the attribute mask vector introduced in 2.1. The 
attribute bits can be set one at a time for images with only 
one attribute modified or in combination to generate 
more complicated faces. In practice, the number of per-
mutations is adjusted by the ratio of scarcity of the class 
to be populated. The max number of generated images is  
∑ 𝐶𝑛

𝑟𝑟=𝑛
𝑟=1  when the length of the attribute mask vector is n.  
During the first epoch of DNN training, the DOM and 

GDM modes are dynamically alternated depending on 
the class of the input image in run-time. If the input im-
age belongs to scarce data, the mode is set to GDM, and 
GAN starts to generate images in the same speed of DNN 
training controlled by resources allocation. In another 
case, DNN takes all resources to reach highest speed. 
Then in the following epochs, all generated images have 
already been stored in off-chip memory, so the DNN iter-
ates the populated dataset with DOM mode statically on. 

3.3 Network structure for Dandelion 
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Fig. 2.  Overview function of Dandelion. GAN changes the attributes 
of input image and provides DNN with populated dataset. 

Fig. 3.  Two modes of Dandelion. The table indicates different char-
acteristics of two modes 
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As As explained in Section 3.1, we select StarGAN for the 
GAN component of Dandelion. For the DNN model, the 
choice can be more flexible. Dandelion can be utilized to 
facilitate the training of a variety of DNNs by adjusting 
architecture configuration. As an example, consider using 
SqueezeNet [18], a popular lightweight DNN with high 
accuracy, suitable to be deployed for the mobile and edge 
applications. SqueezeNet is a variation of AlexNet where 
most of the convolution layers are replaced with the spe-
cial fire layers which also helps us explain the following 
architecture with this complex configuration. Figure 4 
shows the structure of the fire layer. It is composed of two 
operations, squeeze and extend. In the squeeze operation, 
the number of input channels is reduced by 1×1 kernel to 
cut down the parameters required by the following 3×3 
convolution. The output of squeeze operation is then con-
volved by kernels with different sizes in the extend opera-
tion, the results of which are concatenated to form the 
total output of the fire layer. 

4 ARCHITECTURE DESIGN OF DANDELION 

Although GAN is an effective augmentation tool for 
DNN training on scarce dataset, it also aggravates the 
problem of limitation in hardware resource and energy 
consumption in DNN accelerators, especially in mobile 
and edge ends. To reduce this overhead, we propose a 
novel architecture for Dandelion to maximally exploit the 
interplay between two networks and make full use of the 
resources.  Note that our idea of inter-network accelera-
tion works for any two networks. We take SqueezeNet 
and StarGAN to clarify the detailed configuration. The 
detailed multi-network mapping policy is analyzed later 
in 4.3.  

4.1 Architecture Overview 

Our architecture is an FPGA-based system depicted in 
Figure 5, containing off-chip DRAM, on-chip BRAM, con-
trol unit, address management and processing elements 
(PE), which are connected through a bus. At training 
time, the input data is read from DRAM and the mode is 
signaled based on its label and the scarcity of the class. 
Then the control unit sets the corresponding state ma-
chine and registers including the weight loading signal, 
computation progress signal and PE allocation vector. 
Some of them are sent to address management module to 
calculate the addresses for weight buffer and data/error 
buffer in different training phase and the others are sent 
to PE channels to control their computation pattern. The 
detailed architecture which is designed for all 3 training 

phases and setup parameters will be discussed in the rest 
of this section and Section 5, respectively.   

We notice that between the two networks, the inputs 
can be shared to avoid being sent to the off-chip memory. 
Besides, the computing resources are compatible with the 
two networks through special dataflow support and con-
figuration. Therefore, we develop two kinds of reuses in 
our architecture, namely data reuse and PE reuse. We also 
discuss several important trade-offs in these two reuses 
that are important in determining the performance and 
energy efficiency.  Although the resourse reuse has been 
discussed in previous works, none of them focus on that 
between two networks. 
Considering the high bandwidth (3456 bits per clock cy-
cle) and storage requirement of loading GAN during 
DNN training, we realize that 3D architecture is especial-
ly suitable to further promote the performance of our de-
sign. Therefore, we extend our design to explore the 3D 
opportunities and propose a novel partitioning method 
for 3D vaults. 

4.2 Data Reuse 

In Dandelion, to save the footprint and bandwidth of the 
memory resource, the DNN and GAN share the on-chip 
dual-port BRAM for the inputs as shown in the left half of 

Dual
Port

BRAM

Dual
port

BRAM

Dual
Port

BRAM

Dual
Port

BRAM

3×3 PE

Channel

3×3 PE

Channel

3×3 PE

Channel

3×3 PE

Channel

3×3 PE

Channel
BRAM

3×3 PE

Channel
BRAM

6
6

 G
A

N
 

P
E

 C
h

a
n
n

e
ls

6
 D

N
N

 

P
E

 C
h

a
n
n

e
ls

... ...

... ...

Row 0

Row 1

Row 2

Row 71

BRAM

BRAM

BRAM

BRAM

BRAM

BRAM

...

...

D
R

A
M

Row 65

M
U

X
 f

o
r 

C
G

0

... ...

M
U

X

:Data management

 :Dataflow in DOM  :Special Dataflow in GDM

 :Adder tree

 

Fig. 6. Data management structure. 
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Figure 6. Besides, to reduce duplicate storage of the in-
termediate data and output muxings among PE channels, 
we use constrained output management within one chan-
nel group to be discussed in 4.3.  

Under different operation modes, the pattern of data 
storage varies to support different dataflows with less 
memory access and energy consuming. In DOM, the data 
is separated into feature maps and each feature map is 
stored in one PE channel’s buffer. During computation, 
one feature map is fetched and broadcast to all PE chan-
nels at a time. In GDM, the buffers are shared by the data 
of GAN and DNN. At this time, the input is separated 
into rows. Different rows are stored into buffers of differ-
ent PE channels. Then, they are used for both DNN train-
ing and GAN inference simultaneously but read from 
different ports. The details will be explained in the PE 
combination of Section 4.3.  

In GDM, the three stages of DNN training are pipelined 
with the generation of image of GAN, which is achieved 
by a precise resource allocation to be introduced in Sec-
tion 4.3. In this pipeline, the DNN keeps consuming the 
generated image and the GAN keeps generating them at 
the same pace. This effectively avoids the time- and ener-
gy- consuming accesses to the off-chip memory. After 
processed by the DNN, the generated images are sent to 
off-chip memory for next epoch.   

4.3 PE Reuse 

Since our system switches between the DOM and GDM 
modes, it is wasteful to assign fixed computation resource 
to each network, which will result in low utilization. 
Therefore, we propose a design to reconfigure the PEs so 
that they can be reused in different time slots by different 
networks. 

PE channels and dataflow: We first discuss the possible 
dataflow types because it determines the basic setting of 
computation unit pattern which has great impact on the 
PE reuse efficiency. There are three kinds of dataflows 
focusing on different kinds of data reuse, weight station-
ary, output stationery and row stationary. 

Output stationary (Figure 7(a)) is to keep a certain out-
put pixel in one PE while broadcasting one input in each 

cycle until the computation of the output completes.  
Weight stationary (Figure 7(b)) means that all the weights 
in each kernel are unrolled and stationary reused until all 
the pixels of one feature map are calculated. Different 
from output stationary, the PE pattern in weight station-
ary is determined by the kernel size, e.g., if the kernel size 
is 3×3, there are 3×3 PEs in one PE channel. Row station-
ary [10] handles computation in row pattern. Input fea-
ture maps and kernels are separated into rows and fed 
into PE array, which reduces under-utilization by half.  

Although output stationary is good at output reuse, it 
has limitation on the output size. For example, the out-
puts of StarGAN and SqueezeNet show significant differ-
ence in their sizes, so the output stationary dataflow will 
lead to a huge waste in the computation resource. There-
fore, we consider weight stationary dataflow in our de-
sign for FP and BP (output stationary for WU because the 
output size equals to kernel size). The difference between 
FP and BP lies on the input data (images or errors). As 
most of the kernels share the same size in both two net-
works, the weight stationary dataflow where the kernels 
are unrolled manifest higher efficiency. As most of the 
kernels in these two networks are 3×3 and the rest of them 
can be easily mapped to 3×3, we choose 3×3 as the size of 
our PE channel. There is a total of 72 such PE channels, 
which is determined by the on-chip resources in our im-
plementation.   
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(c) PE reuse between 1×1 and 3×3 

Fig. 8. PE reuse. C0 represents the first 3×3 PE channel in each 
PE group. 
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PE partitioning: As mentioned in Section 4.2, when two 
networks operate together, the speed of image generation 
should be equal to the speed of DNN training so that the 
computation unit will not be idle. The total cycles for 
StarGAN generator inference and SqueezeNet training 
stages are analyzed to help decide the resource partition 
ratio between GAN and DNN to achieve the same com-
putation latency. During training, the PEs are allocated at 
the channel level based on the mode. In GDM, 66 PE 
channels are allocated to GAN computation and 6 PE 
channels for DNN training (11:1). In DOM, with abun-
dant data, no image generation is involved, so all the PE 
channels are allocated to DNN to maximize performance. 

PE combination: Although most of the kernel size in 
StarGAN and SqueezeNet are 3×3, there still exist 7×7, 
4×4, and 1×1 kernels. To enable full utilization of the com-
putation resources when mapping all these kernels to 3×3 
PE channels, we propose a novel PE combination tech-
nique, shown in Figure 8. In PE combination, several PE 
channels are grouped together as a virtual channel. For 
example, one 7×7 kernel can be mapped to seven 3×3 
channels as a channel group (Figure 8(a)). Each 3×3 PE 
channel holds one row of the 7×7 kernel. Here, the partial 
results should be accumulated among these seven PE 
channels. This technique also applies when mapping 4×4 
kernels by mapping two rows of kernels to each PE chan-
nel (Figure 8(b)). Unlike Im2col [11] which is designed to 
reduce the memory latency of GPU but causes 
unpredictable storage pattern if applied to FPGA, our 
Dandelion-arch optimizes the dataflow to greatly improve 
the utilization. Compared with the simple kernel tiling, 
our proposed PE comination significantly raises the 
utilization (from 60% for 7×7 and 44% for 4×4 to 78% and 
89% respectively).  

For 1×1 kernels, each PE channel can hold nine of them. 
Therefore, we need to  load nine weights of different 
input channels to add them up as the result for one 
output channel. The 1×1 kernels exist in two kinds of 
operations, i.e., squeeze and extend (Figure 4), in 
Squeezenet. In squeeze operation, all the kernels are 1×1 
and the inputs are loaded in input channel order. In 
extend operation, there are two kinds of kernels. The 1×1 
convolution works together with 3×3 convolution, or one 
by one and the results are combine when finish. Either 
way will result in the difference in input loading pattern. 
Therefore, we also need to read them from the dual-port 
buffer, as shown in Figure 6. When processing layers with 
larger kernel size, the input loading is seperated into rows 
and n BRAMs are enabled to broadcast n rows of one 
input feature map to each channel group. 

Based on the PE combination, we propose the overall 
PE channel design in Figure 6 and Figure 9. In Figure 
10(a) and (b), the kernel K00 of kernel group K0 is loaded 
into the first channel C0 or CG0. After C0 or CG0 completes 
the computation with input I00, K01 is loaded. During this 
time, all channels share the input I00. To keep the same 
input loading pattern for the next layer, the outputs or 
rows from one channel group should be stored in one 
BRAM. However, storing outputs in a round robin order 
causes huge muxing overhead. Therefore, we constrain 

the output in one channel group which eliminates the 
output muxing overhead with little control overhead in 
the right half of Figure 6. What’s more, to collect the 
partial results of the PE groups, a flexible adder tree is 
implemented as in Figure 6 and Figure 9(c). The adder 
tree inside the channel is marked with three kinds of 
color. All of the sum points inside will be used during the 
3×3 setup, among which, the sum points in orange are for 
7×7 reuse setup and the deep orange point is for 4×4 reuse 
setup. Compared with the standard weight-stationary 
design, our design use 3750 (9%) more LUTs (adder tree) 
and 116(10%) more control LUTs. 

Multi-network mapping:  To broadly adapt our design 
to other neural networks, we define a series of formulas to 
compute the most appropriate configuration, referred as 
kernel size mapping formulas and resource mapping 
formulas, separately.  

The size of PE array should satisfy one of the following 
formulas, depends on the range of the size and corre-
sponding utilization,  
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(a) Kernel Allocation Pattern with size of 3×3 
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(b)  Kernel Allocation Pattern amd Output Storage Pattern with 
Size bigger than 3×3 
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(c) Output Accumulation Pattern 

Fig. 9. Normal 3×3 PE channel design: (a), (b) K00 is first kernel 
in the first kernel group K0. (c)The outputs inside one channel are 
accumulated through adder tree. Between channels, there is also 
an adder tree. Selecting which sum is determined by reuse and 
controlled by control unit.  
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(1) 

where Kd is the size of Dandelion’s PE array. Kmin, Kmid, Kmax 
are the kernel size of two neural networks. a, b, c, d, e, f, 
and g are integer. (𝐾𝑑)2 ≥ e × K𝑚𝑎𝑥  means that K𝑑 ≤ K𝑚𝑎𝑥. 

To finally determine the size of PE array, we should cal-
culate the utilization first. The formula of utilization is, 
when K𝑑 ≥ K𝑚𝑎𝑥: 

 (2) 

when K𝑚𝑖𝑑 ≤ K𝑑 ≤ K𝑚𝑎𝑥: 

(3) 

 
when K𝑚𝑖𝑛 ≤ K𝑑 ≤ K𝑚𝑖𝑑: 

(4) 

where L is the total number of layers. Ii and Oi are the 
number of input and output feature map, respectively. Osi 
is the output size for layer i. Ki is the size of kernel for 
layer i. This formula calculate the ratio between used PEs 
and available PEs during all the computation stages. 

To efficiently allocate resource to two neural networks, 
we define the method to acquire the computation ratio,  

 (5) 

where UG and UD are the utilization of GAN and DNN in 
a certain Kd, respectively. The ratio of resource determines 
whether the two-network system can be balanced to 
achieve best performance. 

The next step for resource allocation is to determine Cd, 

the number of PE arrays (channels) in one channel group. 
Assume that the number of PE channels equals to Nc, 
K𝑑 ≤ K𝑚𝑎𝑥, and Rd equals to a: 1 or 1: a, Cd should be equal 
to 𝐾𝑚𝑎𝑥 ×  𝐶𝑒𝑖𝑙((𝐾𝑑)2 ÷ 𝐾𝑚𝑎𝑥) to reuse input data. If  𝑁𝑐 ≠
b × C𝑑, the remaining part should be allocated to DNN 
channels which slightly affects the ideal ratio. 

With these mapping formulas and slight adjustment, 
one can easily connect any two neural networks with op-
timized configuration.  

4.4 3D Implementation 

Besides the normal 2D architecture design, the emerging 
and promising 3D architecture can further benefit our 
design. There are three significant advantages of 3D 
memory: high bandwidth support, low access latency and 
low dynamic energy. The bandwidth limitation of AXI 
bus (256 bits per clock cycle) is weakened in 3D architec-
ture, and the hardware could support larger PE channel 
on logic die using weight stationary dataflow. Besides, the 
large capacity and high speed save the time to write and 
read the data from the off-chip memory. Lower memory 
access latency could get rid of idleness. With less energy 
consumption, network on 3D architecture obtains porta-
bility on edge device.    

TETRIS[12] develops in-memory accumulation, by-pass 
buffer and across-vault partition to explore the neural 
network computation on 3D architecture. The partition of 
jobs among vaults is proposed to minimize the across-
vault memory access.  

Unlike TETRIS which applies row stationary dataflow 
of Eyeriss on its logic die, we place Dandelion-function to it 
and combine separate BRAMs into smaller global buffer 
in total size which requires slightly more registers for 
buffer writing than 2D design. Based on that, our design 
further focuses on the two-network acceleration and dis-
covers novel mode-partitioning and buffer-bypassing 
methods which is suitable for our training mode. In our 
3D implementation shown in Figure 10, 16 vaults are de-
ployed to perform network training. We evaluate batch-
partitioning (Figure 10(a)) and propose mode-partitioning 
(Figure 10(b)) with corresponding bypassing strategies.  

Batch partitioning indicates that each vault is in charge 
of the computation of one sample in a batch. Although it 
cannot benefit the inference latency and cause duplication 
of networks, our Dandelion take advantage of its flexibility 
by using small network and distributing computation to 
vaults with adaptive configuration thanks to the different 
samples of one batch(scarce data or abundant data). The 
ofmap buffer is bypassed for vaults dealing with scarce 
data. Ofmap and weight buffers are bypassed for 
abundant data. 

Mode partitioning means that all vaults are seperated 
into two types, two-mode vaults (TMV) and one-mode 
vaults (OMV). TMV will operate on both DOM and GDM 
which requires different buffer size and dynamic 
bypassing strategy caused by switching network weights. 
Instead of bufferring input feature maps as normal, 
weights for another network is loaded into global buffer 
to reach less latency.  

4.5 Tradeoff between Computation and Memory 
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Fig. 10. 3D architecture design.  
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Resource 

Apart from the opportunities mentioned above, we also 
notice that the GAN generator provides an opportunity to 
trade the computation for the memory resource. In our 
implementation, after the first epoch, all of the generated 
images are sent to the off-chip memory for the computa-
tion of later epochs. There is another choice that the im-
ages are generated every epoch without buffering so that 
the memory accesses can be avoided. This is especially 
beneficial to the mobile ends where the memory is expen-
sive, and the computation is small. Generating random 
training data over epochs also reduces the chance of over-
fitting. With GDM only in the first epoch, Dandelion has 
23% less overall benefits (1.53x->1.30x) and brings 90% 
more storage cost (depends on scarcity level). 

5 EVALUATION METHODOLOGY 

5.1 Function Validation 

 
Note that, the effectiveness of Dandelion on scarce dataset 
training accuracy is the key for its function and the archi-
tecture design. We modified the Pytorch code of StarGAN 
and SqueezeNet to conduct the following two experi-
ments. In both experiments, we use three methods to 
enrich the dataset, normal image processing method 
(NIP), DAGAN (representing normal GAN methods) and 
Dandelion-function(representing orthogonal GAN 
methods). 

The first training experiment is performed with the fa-
mous face dataset CelebA [13] , which contains 202599 
face images with 40 binary attributes and Pubfig [14], 
which labels 2399 images by 60 names and each class con-
tains at least 10 images. 10% images are randomly select-
ed as the test set (Pubfig-Test), and the rest are the train-
ing set (Pubfig-Train) which trains DNN to recognize one 
person in Pubfig.  

For our original baseline, the SqueezeNet is trained on 
full Pubfig-Train with different scarcity levels by random-
ly sampling it at a certain ratio.  For NIP, we preprocess 
the target images with normal image processing opera-
tions (resize, crop, flip, rotation, and grayscale). For DA-
GAN, we choose 5 classes with equal number of samples 
(60) from the scarce dataset (Pubfig-Train) to train it to 
enrich the samples for the target person. For our design, 
we first train the StarGAN on CelebA to allow it to learn 7 
attributes (i.e., face with smiling, glasses, hat, heavy 
makeup, and mustache). Then the sampled target images 
of Pubfig-Train as in the baseline are fed into the Star-
GAN and restore to the maximal number of target imag-
es. After that, the generated images are inserted back into 
the scarce Pubfig-Train and SqueezeNet is trained on it to 
obtain the accuracy with Dandelion.  The batch size is 16. 
We train 36 epochs for original dataset and 10 epochs for 
other methods. 

The second experiment is designed to show Dandelion’s 
potential improvement in real-world applications. CheX-
pert [15], a dataset of 191028 chest x-ray gray images with 
pneumonia-related symptom labels, and COVID-19 da-
taset containing 484 COVID images and 342 other images 

[16] are leveraged to train GAN and DNN respectively. 
Five attributes of the CheXpert dataset that are related to 
COVID-19, i.e., cardiomegaly, fracture, support devices, 
pleural other and lung opacity, are learnt by the GAN to 
enrich the scarce COVID-19 dataset.  

5.2 Architecture Evaluation 

We evaluate the architecture support for Dandelion. We 
prototype the first baseline and our 2D Dandelion-arch 
design with all the operation modes and reuse structures 
on a Xilinx VCU118 Evaluation board with 20Gb off-chip 
DDR4 and 76 Mb on-chip BRAM connected by AXI bus 
on 200MHz. The data width in our design is 16-bit for 
both the kernel weights and intermediate data. Each data 
buffer is 0.49Mb and supports 96-bit access. The size of 
one weight buffer is 0.28Kb and supports 144-bit access. 

Baseline: In the first baseline, to demonstrate the effec-
tiveness of our proposed inter-network optimization, we 
simply run StarGAN followed by the DNN in GDM as a 
general accelerator without PE or data reuse. Since there 
is no reuse and reconfiguration of the PE channels de-
signed for inter-network training, we choose the output 
stationary dataflow which results in higher utilization in 
the baseline. Each PE channel has 4×4 PEs to best fit the 
output sizes. To conduct fair evaluation, the baseline em-
ploys the same number of PEs as Dandelion (i.e., 41 PE 
channels).  

The second baseline is a representative accelerator for 
single-DNN training, i.e., ScaleDeep [9]. ScaleDeep uses 
two kinds of tiles to separate the computation-consuming 
works like most of the convolution layers, and memory-
consuming works like fully connection layers, respective-
ly. In computation-consuming tile, there is a 2D PE array 
which can be divided into two parts when necessary. In 
each 2D array, the inputs and weights are casted in rows 
and columns respectively to accumulate the partial results 
in diagonal. In memory consuming tile, the special func-
tion units are designed for various computation. Two 
kinds of tiles are connected in a delicate pattern depend-
ing on the chip type. In our experiment, we implement 7 
computation-consuming tiles, each of which has 8×3 2D 
PE arrays. We adjust ScaleDeep to use 4 lanes of each PE 
for normal convolution and 1 lane for convolution with 
kernel size of 1×1.   The performance is estimated using 
our in-house simulator with necessary scale-down of the 
design size. 
Dandelion: We compare the performance and utiliza-

tion of different accelerators under different modes of 
Dandelion and under different dataset scarcity levels to 
demonstrate the efficiency of our proposed accelerator. 
Different PE ratios are applied to evaluate the efficiency 

TABLE 1 
ACCURACY IMPROVEMENT  

SR Dandelion NIP DAGAN Original 

100 99.1|94.8 91.3|88.5 96.4|91.5 85.2|81.0 

50 95.2|91.5 85.5|83.2 91.8|83.2 76.5|73.6 

30 91.3|90.0 77.3|69.8 82.7|82.5 62.5|64.7 

10 78.8|72.5 64.1|57.5 70.4|68.7 52.5|51.5 

5 62.3|50.5 51.5|50.3 58.5|51.3 50|50 
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of PE reuse and our mapping formula. Furthermore, we 
evaluate our proposed multi-network mapping method 
across five DNNs (SqueezeNet, Alexnet, Resnet50, 
Resnet152 and VGG16). 

We also break down the energy consumption of Dande-
lion to show the overhead brought by the incorporation of 
GAN, based on which, we analyze the overall benefit 
brought by Dandelion. 

3D: The 3D extension of Dandelion utilizes HMC stack 
defined in gem-5 [17] with 16 vaults each of which sup-
ports a bandwidth of 8 GBps. 225 PEs per vault are de-
ployed on logic die to take advantage of the high band-
width, which follows the limitation discussed in TETRIS. 
The power estimation is based on [18] and the perfor-
mance is evaluated through  the combination between 2D 
logic die and 3D memory on gem5, using batch partition-
ing and mode partitioning with different vault number, 
network computation ratio and buffer ratio.  

5.3 System Evaluation 

To better understand the overall benefit of our Dandelion, 
we combine the functional and 2D architecture results to 
estimate the actual timing impact in two steps. 

Step1: We compute the total runtime and energy 
efficiency for different architectures to get usable 
accuracy (90%) with or without data augmentation, which 
takes the training time and data collection time into 
account. Based on the detection  time for COVID-19 in 
early 2020 [19][20], We assume that the data collection 
time is 3 days, also as, and the power for data collection is 
the power of medical diagnostic X-ray set (800W) 
multiplying its average working time (8 hours/day). 

Step2: From step1, we could figure out the time gap to 
reach the usable accuracy between different configura-
tions which further impacts the detection of COVID-19. 
We propose a matrix to quantify the real-world influence. 
The real-world evaluation explores the impact of COVID-
19 detection on health and economy.  

6 RESULTS AND ANALYSIS 

6.1 Function Evaluation Results 

Table 1 compares the training accuracies of SqueezeNet 
with different augmentation methods on Pubfig and 
COVID-19 dataset under different scarcity levels. As 
shown, Dandelion can significantly improve the accuracy 
of both datasets under all the scarcity levels. However, 
with extremely scarce dataset (e.g., sampling rate of 5%), 
the test accuracy is around 50% meaning that the network 
fails to learn anything even with the assistance of Dandeli-
on. When the scarcity level goes lower, the accuracy of 
Dandelion increases rapidly. With the scarcity of 30%, 
Dandelion improves the accuracy from 62.5%|64.7% to 
91.25%|90%, which is acceptably usable in our daily life. 
However, the accuracy of the other methods is still far 
from usable even when the scarcity is 50%. Impressively, 
Dandelion can further improve the accuracy from 
85.15%|81.0% to near optimal (99.07%|94.8%) when the 
dataset is considered abundant (i.e., the scarcity level is 
100%). For other applications where the accuracy re-
quirement can be slightly loosened, Dandelion can even 
make the training results usable with dataset scarcity at 
30%. Although DAGAN also increases the accuracy to 
some extent on relatively high scarcity level, its 
performance is restricted because of the lack of learning 
information learnt from the scarse dataset itself.  

6.2 Architecture Evaluation Results 

In Figure 11, we compare the runtime of two baselines 
and our Dandelion when equipped with different tech-
niques in different modes (DOM, GDM and overall train-
ing time with necessary mode activated). The scarcity 
level is set to 10%. In GDM, Dandelion gains the perfor-
mance improvement up to 52% compared with Scale-
Deep, which is because that: (1) The large sizes of Star-
GAN’s kernel results in great waste which the dataflow of 
ScaleDeep suffers from. (2) Our baseline uses output -

  

Fig. 11.  Performance of different modes between architectures. Fig. 12.  Performance with different dataset scarcity levels. 

  

Fig. 13. Performance with different PE ratio of GAN and DNN. Fig. 14.   Multi-network performance of Dandelion. 
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stationary dataflow. It can produce 4×4 outputs in each 
computation round which is suitable for 256×256 outputs 
and processes the weights in one kernel by loading them 
in each clock cycle to handle different kernel size. (3) 
Dandelion ‘s PE combination and partition reduce the 
runtime of convolutional computation. In DOM, the 
SqueezeNet only computes with smaller kernels and thus 
can benefit from the dataflow of ScaleDeep. The baseline 
architecture has limitation on the bandwidth of weights 
and performs the worst when computing 1×1 kernel in 
4×4 PE channels. To summarize, although ScaleDeep per-
forms better than Dandelion in DOM, our design has 
strength on the overall running time, thanks to the ad-
vantages on GDM, which occupies the dominant part of 
computation.  

Figure 12 measures the overall performance difference 
when we change the scarcity of dataset. In Section 6.1, we 
discuss the influence of dataset scarcity on the training 
accuracy. Now, the scarcity can also affect the hardware 
performance since it changes the ratio of computation 
time in two modes. As the scarcity level becomes higher, 
GDM computation tends to dominate the latency. There-
fore, the disadvantage of inter-network training along 
with the advantage of our acceleration becomes more 
substantial. With additional computation, ScaleDeep be-
comes 5.75 times slower, and Dandelion reduces at least 
40% of the gap with accuracy improvement according to 
the data scarcity level. 

As is defined in Section 4.3, the multi-network 
mapping method enables the deployment of any two 
networks on our architecture. Figure 13 validates the PE 
allocations formula. We set several kinds of PE ratio to 
search for the best allocation strategy. When the number 
of GAN PE channels is equal to the DNN PE channels 
(1:1), the computing resources are the same, but DNN still 
dominate the computation. In this situation, the DNN has 
to wait until GAN completes its work which reduces the 
performance or process next image which requires fur-
ther scheduling and control, to be discussed in future 
work. When the ratio between GAN and DNN channels 
increases, the idleness is relieved until the point 11:1, the 
most efficient ratio obtained through the formula in Sec-
tion 4.3. At this point, GAN and DNN work at the same 
pace which reduces data movement and achieves the best 
performance. Then, the ratio keeps increasing until all the 
PE channels are allocated to GAN. In this case, the GAN 
works first by itself and generates all the images and 
stores them back to off-chip, followed by the training of 

DNN. Although there is a sudden rise in the performance, 
it brings extra latency and energy to access the off-chip 
memory. If the ratio becomes smaller, the performance 
becomes worse, and GAN need to wait for DNN. The 
generated image either waits on-chip wasting time and 
storage or goes back to off-chip causing extra data move-
ment and energy consumption. Finally, the extreme small 
ratio means that there is no GAN in Dandelion. Dandelion 
becomes the training of baseline SqueezeNet with unusa-
ble accuracy under scarce dataset as shown in Table 1.  

Because of the computation varience of network, we 
evaluate the performance improvement with different 
networks on Dandelion in Figure 14, using the mapping 
method in 4.3. We keep the the sample rate to be 10% and 
the training epoch is 10. VGG16 gains the best utilization 
resulting from its unchanged 3×3 kernels. The total 
speedup suffers from the increasement of computation 
ratio. In addition, different network architectures are 
corresponding to various training epochs. With the 
epochs increasing, images generated in the first epoch 
take smaller ratio in total training images and the benefit 
of data reuse decrease slowly. However, networks which 
requires more training epochs are designed for abundant 
datasets and face less scarcity problems. 

Table2 elaborates the energy breakdown in Dandelion. 
Note that, the energy consumed by BRAM during GDM 
takes the dominant position due to frequent on-chip data 
movement. To clearly explain the power condition, we 
utilize the data from the first epoch, and the entire power 
performs much better for the whole training process. 

Figure 15 indicates Dandelion’s performance when 
equipped with batch-partitioning (BP) and mode-
partitioning (MP) on 3D architecture. As is shown, even 
though it cannot benefit the inference latency, batch-
partitioning performs 2 times better than TETRIS and 
wastes less cross-vault access energy, resulting from the 
fully parallelism. However, batch partition may suffer 
from the synchronization problem brought by the imbal-
ance between different processing speed of scarce data 
and abundant data to be addressed by dynamic batch size 
and larger vault number. Mode-partitioning utilize dy-
namic bypass buffer to reduce memory access times and 
latency, achieving higher energy efficiency in GDM while 
it acts worse in DOM. Moreover, it processes 26% faster 
than TETRIS and survives from the synchronization prob-
lem becoming more practical than batch partitioning.  

6.3 System Evaluation Results 

Combining the function and architecture results, in Fig-
ure 16 we compare the performance and energy efficiency 

TABLE 2 
ENERGY BREAKDOWN 

PE(DOM) 6.24% 

PE(GDM-DNN) 2.50% 

PE(GDM-GAN) 19.85% 

BRAM(DOM) 18.34% 

BRAM(GDM-DNN) 26.29% 

BRAM(GDM-GAN) 18.96% 

Attribute Control 1.31% 

Adder Tree 5% 

Other 1% 

 

Fig. 15. Performance on 3D architecture. 
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Figure is replaced with a table to make it clear.
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between different architectures (2D) to reach the same 
accuracy on Covid-19 dataset. As shown, without data 
augmentation,  it takes 625x more time to get the usable 
accuracy and the energy efficiency is even lower because 
of the high power of the medical X-ray device. Although 
the data collection may be pipelined, there will be 
considerable latency for data collection and training. With 
data augmentation, the time gap is reduced  to 0.3x which 
is still unignorable. 

Figure 17 shows how the cumulative cases and econo-
my condition are influenced by quarantine policy and 
COVID-19 detection. Data from WHO [21] is utilized to 
build the extended SEIR (Susceptible-Exposed-Infectious-
Recovered) compartmental mathematical model which 
indicates how the early detection and response could 
have rescued lives. To evaluate the real condition from 
reported case, we adjust the parameters of SEIR model, 
namely the initial cases and the transmission rate in each 
stage. According to Wikipedia [22], the U.S. government 
recommended to keep social distance on 03/16/2020 while 
most states placed stay-at-home order around 03/19/2020. 
Therefore, the impact of quarantine on epidemic control 
appears about 20 days later, obtained from two times of 
the incubation period. Assume that the government de-
cides to begin quarantine based on the number of detect-
ed cases, or the severity of COVID-19. If our early detec-
tion were available to use, the quarantine would have 
been assigned previously on 02/26/2020 (yellow line), 
which would result in a case number of 770k by Nov 20, 
representing 0.6% of reported cases. Based on the SEIR 
model and the report from Whitehouse [7], we further 
evaluate the average economy impact of COVID-19. The 
economy effect shown by purple stack indicate that alt-
hough the on-time quarantine results in early economy 
decrease and longer period, the range and degree of the 
negative impact is lower. 20% of the economy loss can be 
avoided. 

7 RELATEN WORK 

Some image processing methods are used to get simply 
changed picture [2][23]. But the neural network is hard to 
learn brand new information from them. Augmenter[24] 
combines different image processing methods in a ran-
dom order to generate new images. Generative adversari-
al network (GAN) has also emerged as a promising tech-
nique to generate new images. Some researchers random-
ly combine two images of dataset in a special manner to 
produce new samples [23]. CovidGAN[25] uses 
ACGAN[26] to enrich the CXR dataset for CNN training. 
DAGAN [27] generates images in the same class with 
different looks. Synthetic images are fed to SimGAN[28] 
and realism is added to refined outputs. PGGAN[29][30] 
improves generator and discriminator progressively to 
get high-resolution images. BAGAN[31] converts images 
to latent vector as the input data for pre-initialized GAN 
to get better performance. These methods are constrained 
by the limited information of the scarce dataset. In con-
trast, Dandelion can enrich the scarce dataset to enable 
better analysis using information from abundant dataset. 
CycleGAN[32] learns to translate characteristics into an-
other domain with unpaired data which gets rid of the 
dependency on dataset. In low-shot learning area, an hal-
lucinator[12] is proposed to change animals’ pose and 
surroundings, which is a three-layer MLP. However, with 
the ability of changing one characteristic at a time, Cy-
cleGAN and hallucinator provide relatively less aug-
mented data. 

Besides of function challenges, neural networks suffer 
from the large computation, memory, and energy con-
sumption. Most of the accelerators are designed for the 
inference phase as this is more time sensitive. PREMA[33] 
designed for multi-task DNN inference concentrates the 
preemption mechanisms on TPU, which could be applied 
to our work with some adjustment. The evolve-
ment of neural network’s function urges people to devel-
op training accelerators. Eager pruning [34] reduces com-
putation of the scarce weights in training to save time. 
GANAX[35] and [36] avoid zero computation by two dif-
ferent methods. These are orthogonal to our design which 
also benefit the GAN computation of Dandelion. Scale-
Deep [9] designs specific architecture for different func-
tion unit and use diagonal dataflow to speed up training 
which improves the performance of single neural net-
work training. TPU [37] proposes special matrix pro-
cessing unit to be suitable for convolution, designed for 
general computation. Multi-network accelerators like [38] 

 

Fig. 16.  Performance and Energy Efficiency with the 

same accuracy. 

 

Fig. 17. Real world benefits of Dandelion. 
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Fig.16 is separated into two sub figures.

The advantages of Dandelion are added here.

Detailed literature reviews of existing architectures are added here.
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are proposed  to support efficient cloud computing which 
processes various requests from clients and focus on sup-
porting large number of different networks as well. None 
of them exploit the opportunity of processing the same 
dataset with selected two neural networks. 

8 CONCLUSIONS 

In this paper, we build a function-architecture co-design 
to address the problem of data scarcity in DNN training 
and extend it to 3D area. Urged by DNN’s demand of la-
beled images, we explore the opportunities on connecting 
GAN to DNN to boost DNN usability. We also propose 
the first dual-network accelerator aiming at speeding up 
inter-network computation. The results indicate that our 
design improves up to 37.5% training accuracy with 30% 
performance improvement, 40% reduction of latency 
overhead and 26.3% overall performance on 3D architec-
ture. In the future, we will explore the opportunities 
when connecting various types of neural networks. 
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