
0018-9340 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2021.3132170,
IEEE Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, TC-2021-08-0442 1

Dandelion: Boosting DNN Usability under
Dataset Scarcity

Xiangru Chen, Student Member, IEEE, Jiaqi Zhang, Student Member, IEEE, and Sandip Ray,

Senior Member, IEEE

Abstract—The development of deep neural network (DNN) has provided transformative impacts on many fields, including

computer vision and video recognition. However, the impact is limited by the need for large, labeled datasets to enable effective

training. To address this fundamental problem, we propose a novel inter-network system (Dandelion), providing architecture

support (Dandelion-architecture) for data augmentation that trains DNNs with rare images generated by the generative

adversarial network (GAN) with orthogonal attributes modified (Dandelion-function. The approach can account for the latency

requirement and resource limitation of target applications by exploiting data and computation reuses between the two networks;

this amortizes the impact of bottleneck brought by GAN and facilitates design of inter-network accelerator. Moreover, we show

how to implement two-network design on 3D architecture to further enhance the accelerator. Our results show that with the

generated images, DNN yields 13.6% - 37.5% improvement on accuracy, depending on the data scarcity level. Our architecture

achieves at least 30% speedup compared with the baseline while 40% of the overhead brought by the incorporation of GAN is

reduced in our design compared with ScaleDeep, and 26.3% of performance improvement over TETRIS.

Index Terms—Neural network training, Inter-network accelerator, Data augmentation, Edge device

—————————— ◆ ——————————

1 INTRODUCTION

n the recent years DNN has established itself as an effi-
cient and accurate tool for image and video recognition.

For instance, the auto-driving feature of Tesla [1] is based
on the classification for the road condition using neural
network and Google’s image engine trains its network to
support image searching. There has been successful ap-
plication of DNN in diverse and critical areas including
medical [2], cyber security [3], film preproduction [4] and
gaming [5], performing tasks like object locating, face
recognition, target partition and action tracking.

However, a critical obstacle to usability of DNNs on a
number of applications is the scarcity of data. The high
accuracy of DNNs relies on training datasets that effec-
tively reflects the variations and distributions encoun-
tered in field. Unfortunately, for many applications that
can benefit from DNN, it is challenging to collect suffi-
cient training data reach the desired accuracy within a
short time or a cost budget. For instance, the symptom
images required by DNN training for automated COVID-
19 diagnosis [6] can only be collected as time elapses, on
account of a long detection period. Enabling faster devel-
opment of DNN’s with sufficient accuracy could have
significant impact on the response to the pandemic, with
transformative impact to public health and social econo-
my [7]. Another example is the recognition of an escaped

prisoner or criminal, which requires a training dataset
including pictures of the targeted criminal that are diffi-
cult to obtain quickly even in the big data era.

To enrich the training dataset, prior work relies on im-
age augmentation methods, e.g., cropping and rotation [8,
9]. GAN (Generative Adversarial Network) has also been
leveraged to generate new images from random noise [10,
11, 12]. However, all existing approaches to our
knowledge only utilize information from the scarce target
data domain. Although network training benefits from
these attempts, the performance improvement is limited
due to lack of additional real-world information. Recent
research [8] developed StarGAN to perform multi-
domain image translation which can add multiple desired
features learned from orthogonal real-world dataset, tre-
mendously enhancing the ability of image generation.
Nevertheless, data scarcity remains the bottleneck.

The key result of this paper is Dandelion, an accelerator
for the combination of two networks, to compensate for
the scarce DNN training data by feeding GAN-generated
data into it. We demonstrate how this can efficiently
solve the training dilemma on degraded DNN accuracy
caused by scarce training data. Dandelion is specifically
developed exploit data augmentation ability of StarGAN
[13].

A critical challenge in realizing this vision is the con-
siderable hardware overhead added inevitably to the ac-
celerator by the inclusion of GAN, which can lead to low-
er performance and energy efficiency of the entire system.
This problem is gerring particularly acute within the
emergent paradigm of edge intelligence, where the net-
works must be deployed on resource constrained edge
devices. Prior design [7] [8] on single-network accelerator
support network training with advanced dataflow and

————————————————

• Xiangru Chen is with the Department of Electrical and Computer Engi-
neering, University of Florida, Gainesville, FL 32611. E-mail:
cxr1994816@ufl.edu

• Jiaqi Zhang is with the Department of Electrical and Computer Engineer-
ing, University of Florida, Gainesville, FL 32611. E-mail: jia-
qizhang@ufl.edu.

• Sandip Ray is with the Department of Electrical and Computer Engineer-
ing, University of Florida, Gainesville, FL 32611. E-mail: san-
dip@ece.ufl.edu.

I

Authorized licensed use limited to: University of Florida. Downloaded on December 05,2021 at 03:03:55 UTC from IEEE Xplore. Restrictions apply.

mailto:author@nrim.go.jp
mailto:author@nrim.go.jp

0018-9340 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2021.3132170,
IEEE Transactions on Computers

2 IEEE TRANSACTIONS ON COMPUTERS, TC-2021-08-0442

architecture. However, the data dependency between
networks may cause either considerable idleness or
memory consumption. Furthermore, the various sizes of
kernels and feature maps result in resources underutiliza-
tion, resulting in less benefits when employing single-
network accelerator to handle two networks altogether.

To reduce this overhead, we propose the inter-network
accelerator, Dandelion-arch, with four techniques to maxi-
mally exploit the reuse opportunities between the two
networks. First, we leverage a shared buffer to reuse the
input images for the two networks, and the generated
images are consumed on-chip to save bandwidth. In addi-
tion, the proposed architecture makes full utilization of
the computing resources between networks by dynamic
dataflow reconfiguration and processing element reallo-
cation. Furthermore, we propose mapping policies that
can adapt our architecture to any two neural networks.
Finally, we extend our accelerator to 3D implementation
for even higher efficiency.

In summary, the paper makes the following important
contributions:

1. We propose a new inter-network system: Dandeli-

on, which validate the accuracy improvement of

DNN training by changing orthogonal attributes in

light of dataset scarcity (Dandelion-function) with

30% performance improvement brought by inter-

network accelerator (Dandelion-arch).

2. We utilize the novel reuse opportunities lying on

the combination of networks in our first inter-

network accelerator architecture design and fur-

ther extend it to support the inclusion of various

network as a principle of inter-network accelerator

design.

3. We show how to implement the two-network sys-

tem using 3D architecture with optimized cross-

vault partitioning and buffer-bypassing strategy.
The rest of this paper is organized as follows: Section 2

provides the background on GAN and DNN training as
well as our motivation for Dandelion. Section 3 introduces
the detailed function design of Dandelion. Section 4 pro-
poses the architecture support for Dandelion and 3D inte-
gration. Sections 5 and 6 elaborates our evaluation meth-
odology and analyzes the results, respectively. The related
work is discussed in Section 7, and Section 8 concludes
the paper.

2 BACKGROUND

DNN Training: DNN typically consists of convolutional
layers (i.e., hidden layer performing convolution opera-
tions), pooling layers and fully connected layers. As a
supervised-learning algorithm, DNN is trained by labeled
training data to adjust its parameters before deployed for
inference on the unknown samples from real-world ap-
plications. In the training phase, there are three stages for
each input sample organized by the gradient decent algo-
rithm, i.e., forward propagation (FP), backward propaga-
tion (BP), and weight update (WU). In forward propaga-
tion, the inputs are processed by kernels to extract fea-
tures as intermediate data of each layer. Once the output
of one layer is generated, the intermediate data is stored
for the next layer and the following training stages. The
output of the last layer is the prediction vector which in-
dicates the network’s classification of input. The predic-
tion vector is compared with the input label to calculate
the loss. Then, the loss is used in backward propagation
to generate the error of each layer, which contains the
information to update the kernel parameters. Finally, in
weight update stage, the errors are convolved with the
intermediate data to produce the weight updates.

GAN: GAN is proposed as a feasible solution to unsu-
pervised learning. As indicated in Figure 1, it is composed
of two components. The generator tries to learn the fea-
tures of real images and embeds them into the input (a
random vector or a real image) to produce new images.
The discriminator aims to distinguish generated images
from the real one. During the training phase, the outputs
of the discriminator by processing fake images along with
real images are computed in a subtraction manner to
form the loss which indicates the difference between
them. The generator and discriminator are trained adver-
sarially against each other, i.e., the generator intends to
reduce the loss while the discriminator attempts to en-
large it. When the training converges, the discriminator
achieves the highest accuracy in classifying images into
real and generated data while the generator can generate
images that resemble the real ones to the most extent.
During the inference phase, for each layer of the genera-
tor, the input is convolved with kernels. Simultaneously
the image information already learnt by the kernels is
reflected to the feature map to generate human-
recognizable images. In terms of the computation, the
GAN layers also perform convolution and fully connec-
tion operations on each input.

128×128×(3+n)

7×7

128×128×64

4×4

64×64×128

4×4

32×32×256

3×3

32×32×56

×6

0 1 0

128×128×3

Input

Mask Vector

n

Kernel

+

128×128×3

4×4

Real

64×64×64

Generated

4×4

32×32×28

...

...

4×4×2048

GAN

Loss

Generator Discriminator

Fig. 1. StarGAN computation structure.

Authorized licensed use limited to: University of Florida. Downloaded on December 05,2021 at 03:03:55 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2021.3132170,
IEEE Transactions on Computers

CHEN ET AL.: DANDELION: BOOSTING DNN USABILITY UNDER DATASET SCARCITY 3

StarGAN: StarGAN [13]is a state-of-the-art GAN that
provides unique ability for data augmentation compared
to conventional GAN,. In particular, StarGAN can learn
multiple attributes in its generator and selectively apply
them to the input. The red area in Figure 1 shows the in-
ference of the generator of StarGAN. Specifically, Star-
GAN utilizes a mask vector to control the output attrib-
utes. For each element in the vector, there will be an addi-
tional input channel with the same 2D dimension as im-
age. The value (true or false) of each vector element corre-
sponds to different additional feature maps. In the infer-
ence phase, the input with certain attribute information is
convolved by a series of kernels to 32×32×256 and pro-
cessed several times under this size to apply attribute
modification. After this, the data passes through the fol-
lowing convolution layers similarly, to be restored to the
size of the input and serves as generated image. Note
that since Dandelion relies on the data augmentation func-
tion, we only deploy a generator which is readily trained
on an orthogonal data domain and perform inference on
it.

3 DANDELION FUNCTIONALITY

3.1 High -level Overview

Dandelion connects the generator of the GAN with the
DNN. The output of GAN generator is forwarded to
DNN as inputs, as illustrated in Figure 2. For our work,
we found StarGAN [8] the best fit because of its ability to
change multiple orthogonal attributes under the control
of pre-defined state machine. In the following, we use a
face recognition example to explain Dandelion functionali-
ty.

Consider training the DNN to recognize different faces
but assume that the labeled images of a specific face are
too scarce to be appropriately learned. To enrich this da-
taset, the GAN generator works as a populating tool to
increase the number and diversity of the certain face.

The role of StarGAN in our design is to introduce addi-
tional real-world information to the input by only chang-
ing the subordinate attributes while preserving the origi-
nal primary characteristics. This could simulate the condi-
tion of training with real dataset. The attributes can be
combined and permutated in a customized manner in
image generation. When training the GAN to learn differ-
ent attributes, although the target dataset is scarce, it is

still possible to use another dataset with abundant sam-
ples and orthogonal attributes. For example, in our exper-
iments, we utilize CelebA as our abundant dataset to train
StarGAN and let it learn inessential face attributes like
makeup, moustache and glasses. Then, StarGAN can
augment the Pubfig dataset that classifies people by their
names by adding certain features to the basic face images,
as shown in Figure 2. This populating function can be
applied to all the scarce classes. For those classes with
plentiful samples, images are sent to the DNN directly.
This way, the DNN can learn from an adequate and bal-
anced dataset which alleviates the problem of overfitting.

3.2 Operation Modes of Dandelion

Since the GAN only generates data for scarce classes as
mentioned in Section 3.1, Dandelion is compatible with
two modes dealing with samples from the scarce and
abundant classes respectively, which are shown in Figure
3.

DNN-Only-Mode (DOM) is designed for images from
the abundant class, where there are sufficient samples for
training and GAN augmentation is unnecessary. The im-
ages are loaded from the memory into DNN directly for
training.

GAN + DNN Mode (GDM) applies to images from the
scarce class that need to be populated by GAN. The pre-
trained StarGAN generates images with different features
by setting the attribute mask vector introduced in 2.1. The
attribute bits can be set one at a time for images with only
one attribute modified or in combination to generate
more complicated faces. In practice, the number of per-
mutations is adjusted by the ratio of scarcity of the class
to be populated. The max number of generated images is
∑ 𝐶𝑛

𝑟𝑟=𝑛
𝑟=1 when the length of the attribute mask vector is n.
During the first epoch of DNN training, the DOM and

GDM modes are dynamically alternated depending on
the class of the input image in run-time. If the input im-
age belongs to scarce data, the mode is set to GDM, and
GAN starts to generate images in the same speed of DNN
training controlled by resources allocation. In another
case, DNN takes all resources to reach highest speed.
Then in the following epochs, all generated images have
already been stored in off-chip memory, so the DNN iter-
ates the populated dataset with DOM mode statically on.

3.3 Network structure for Dandelion

GAN
Generator

Attribute vector

Label
check

DNN
Training

Control unit
Mode

GDMDOM

Sharing

image

Yes

No

Yes

No

GDM

DOM

Sparse

data

Yes

No

(1, 0, 0, 0, 0)(0, 1, 0, 0, 0) (0, 0, 0, 0, 1)

(1, 1, 0, 0, 0)(1, 0, 1, 0, 0) (0, 0, 0, 1, 1)

Attr1

0/1 0/1 0/1

Attr2 Attr3

0/1

Attr4

0/1

Attr5
(1, 1, 1, 0, 0)

(0, 0, 1, 1, 1)

Dandelion

mode

Sharing

PE

Fig. 2. Overview function of Dandelion. GAN changes the attributes
of input image and provides DNN with populated dataset.

Fig. 3. Two modes of Dandelion. The table indicates different char-
acteristics of two modes

Authorized licensed use limited to: University of Florida. Downloaded on December 05,2021 at 03:03:55 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2021.3132170,
IEEE Transactions on Computers

4 IEEE TRANSACTIONS ON COMPUTERS, TC-2021-08-0442

As As explained in Section 3.1, we select StarGAN for the
GAN component of Dandelion. For the DNN model, the
choice can be more flexible. Dandelion can be utilized to
facilitate the training of a variety of DNNs by adjusting
architecture configuration. As an example, consider using
SqueezeNet [18], a popular lightweight DNN with high
accuracy, suitable to be deployed for the mobile and edge
applications. SqueezeNet is a variation of AlexNet where
most of the convolution layers are replaced with the spe-
cial fire layers which also helps us explain the following
architecture with this complex configuration. Figure 4
shows the structure of the fire layer. It is composed of two
operations, squeeze and extend. In the squeeze operation,
the number of input channels is reduced by 1×1 kernel to
cut down the parameters required by the following 3×3
convolution. The output of squeeze operation is then con-
volved by kernels with different sizes in the extend opera-
tion, the results of which are concatenated to form the
total output of the fire layer.

4 ARCHITECTURE DESIGN OF DANDELION

Although GAN is an effective augmentation tool for
DNN training on scarce dataset, it also aggravates the
problem of limitation in hardware resource and energy
consumption in DNN accelerators, especially in mobile
and edge ends. To reduce this overhead, we propose a
novel architecture for Dandelion to maximally exploit the
interplay between two networks and make full use of the
resources. Note that our idea of inter-network accelera-
tion works for any two networks. We take SqueezeNet
and StarGAN to clarify the detailed configuration. The
detailed multi-network mapping policy is analyzed later
in 4.3.

4.1 Architecture Overview

Our architecture is an FPGA-based system depicted in
Figure 5, containing off-chip DRAM, on-chip BRAM, con-
trol unit, address management and processing elements
(PE), which are connected through a bus. At training
time, the input data is read from DRAM and the mode is
signaled based on its label and the scarcity of the class.
Then the control unit sets the corresponding state ma-
chine and registers including the weight loading signal,
computation progress signal and PE allocation vector.
Some of them are sent to address management module to
calculate the addresses for weight buffer and data/error
buffer in different training phase and the others are sent
to PE channels to control their computation pattern. The
detailed architecture which is designed for all 3 training

phases and setup parameters will be discussed in the rest
of this section and Section 5, respectively.

We notice that between the two networks, the inputs
can be shared to avoid being sent to the off-chip memory.
Besides, the computing resources are compatible with the
two networks through special dataflow support and con-
figuration. Therefore, we develop two kinds of reuses in
our architecture, namely data reuse and PE reuse. We also
discuss several important trade-offs in these two reuses
that are important in determining the performance and
energy efficiency. Although the resourse reuse has been
discussed in previous works, none of them focus on that
between two networks.
Considering the high bandwidth (3456 bits per clock cy-
cle) and storage requirement of loading GAN during
DNN training, we realize that 3D architecture is especial-
ly suitable to further promote the performance of our de-
sign. Therefore, we extend our design to explore the 3D
opportunities and propose a novel partitioning method
for 3D vaults.

4.2 Data Reuse

In Dandelion, to save the footprint and bandwidth of the
memory resource, the DNN and GAN share the on-chip
dual-port BRAM for the inputs as shown in the left half of

Dual
Port

BRAM

Dual
port

BRAM

Dual
Port

BRAM

Dual
Port

BRAM

3×3 PE

Channel

3×3 PE

Channel

3×3 PE

Channel

3×3 PE

Channel

3×3 PE

Channel
BRAM

3×3 PE

Channel
BRAM

6
6

 G
A

N

P
E

 C
h

a
n
n

e
ls

6
 D

N
N

P
E

 C
h

a
n
n

e
ls

... ...

... ...

Row 0

Row 1

Row 2

Row 71

BRAM

BRAM

BRAM

BRAM

BRAM

BRAM

...

...

D
R

A
M

Row 65

M
U

X
 f

o
r

C
G

0

... ...

M
U

X

:Data management

 :Dataflow in DOM :Special Dataflow in GDM

 :Adder tree

Fig. 6. Data management structure.

56×56×64
1×1×16×64

1×1×64×16

56×56×64
56×56×16

+

56×56×128

Squeeze

Extend

3×3×16×64

Fig. 4. One fire layer of SqueezeNet.

control unit

address managment

Data/

Error

Buffer

Weight

Buffer

Mode

Used and
Generated

Images

Weight

addr/enable

images/intermediate data

state machine for 1 or 2 network

weight

Original
Images

DRAM
3×3 PE

Channels

on chip

Error
Intermediate data

Off

Chip bus

Fig. 5. An overview of Dandelion architecture.

Authorized licensed use limited to: University of Florida. Downloaded on December 05,2021 at 03:03:55 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2021.3132170,
IEEE Transactions on Computers

CHEN ET AL.: DANDELION: BOOSTING DNN USABILITY UNDER DATASET SCARCITY 5

Figure 6. Besides, to reduce duplicate storage of the in-
termediate data and output muxings among PE channels,
we use constrained output management within one chan-
nel group to be discussed in 4.3.

Under different operation modes, the pattern of data
storage varies to support different dataflows with less
memory access and energy consuming. In DOM, the data
is separated into feature maps and each feature map is
stored in one PE channel’s buffer. During computation,
one feature map is fetched and broadcast to all PE chan-
nels at a time. In GDM, the buffers are shared by the data
of GAN and DNN. At this time, the input is separated
into rows. Different rows are stored into buffers of differ-
ent PE channels. Then, they are used for both DNN train-
ing and GAN inference simultaneously but read from
different ports. The details will be explained in the PE
combination of Section 4.3.

In GDM, the three stages of DNN training are pipelined
with the generation of image of GAN, which is achieved
by a precise resource allocation to be introduced in Sec-
tion 4.3. In this pipeline, the DNN keeps consuming the
generated image and the GAN keeps generating them at
the same pace. This effectively avoids the time- and ener-
gy- consuming accesses to the off-chip memory. After
processed by the DNN, the generated images are sent to
off-chip memory for next epoch.

4.3 PE Reuse

Since our system switches between the DOM and GDM
modes, it is wasteful to assign fixed computation resource
to each network, which will result in low utilization.
Therefore, we propose a design to reconfigure the PEs so
that they can be reused in different time slots by different
networks.

PE channels and dataflow: We first discuss the possible
dataflow types because it determines the basic setting of
computation unit pattern which has great impact on the
PE reuse efficiency. There are three kinds of dataflows
focusing on different kinds of data reuse, weight station-
ary, output stationery and row stationary.

Output stationary (Figure 7(a)) is to keep a certain out-
put pixel in one PE while broadcasting one input in each

cycle until the computation of the output completes.
Weight stationary (Figure 7(b)) means that all the weights
in each kernel are unrolled and stationary reused until all
the pixels of one feature map are calculated. Different
from output stationary, the PE pattern in weight station-
ary is determined by the kernel size, e.g., if the kernel size
is 3×3, there are 3×3 PEs in one PE channel. Row station-
ary [10] handles computation in row pattern. Input fea-
ture maps and kernels are separated into rows and fed
into PE array, which reduces under-utilization by half.

Although output stationary is good at output reuse, it
has limitation on the output size. For example, the out-
puts of StarGAN and SqueezeNet show significant differ-
ence in their sizes, so the output stationary dataflow will
lead to a huge waste in the computation resource. There-
fore, we consider weight stationary dataflow in our de-
sign for FP and BP (output stationary for WU because the
output size equals to kernel size). The difference between
FP and BP lies on the input data (images or errors). As
most of the kernels share the same size in both two net-
works, the weight stationary dataflow where the kernels
are unrolled manifest higher efficiency. As most of the
kernels in these two networks are 3×3 and the rest of them
can be easily mapped to 3×3, we choose 3×3 as the size of
our PE channel. There is a total of 72 such PE channels,
which is determined by the on-chip resources in our im-
plementation.

W00W01W02W03 W10W11W12W13 W20W21W22W23 W30W31W32W33

× + × + × +

(b) Weight Stationary Dataflow with 4×4 Kernel

I00 I01 I02 I03 I10 I11 I12 I13 I20 I21 I22 I23 I30 I31 I32 I33

= O00

...

× + × + × +
I33 I34 I35 I36 I43 I44 I45 I46 I53 I54 I55 I56 I63 I64 I65 I66

= O33

Time

W00W01W02W03 W10W11W12W13 W20W21W22W23 W30W31W32W33

W00 I00 I01 I02 I03 I10 I11 I12 I13 I20 I21 I22 I23 I30 I31 I32 I33×
...

I33 I34 I05 I06W33 × I43 I44 I55 I56 I63 I64 I65 I66 I73 I74 I75 I76

(a) Output Stationary Dataflow with 4×4 Kernel

+ + + +

O00O01O02O03 O10O11O12O13 O20O21O22O23 O30O31O32O33

= = = = = = = = = = = = = = = =

Time

Fig. 7. Different dataflow types.

...

3×3 PE Channels

S
e

v
e
n

 3
×

3
 P

E
 c

h
a

n
n

e
ls W00 W01 W02

W03 W04 W05

W06

W10 W11 W12

W13 W14 W15

W16

W60 W61 W62

W63 W64 W65

W66

One Virtual
7×7 PE Channel

Input Pattern for
 Virtual 7×7 PE Channel

...

...W00W01W02 W06

...W10W11W12 W16

...W60W61W62 W66

...

...

I00 I01 I02 I06
...I10 I11 I12 I16

...I60 I61 I62 I66

C1

C6

C0

(a) PE reuse between 7×7 and 3×3

3×3 PE Channels

T
w

o
 3

×
3

P

E
 C

h
a

n
n

e
lsOne Virtual

4×4 PE Channel
W00W01W02W03
W10W11W12W13

W30W31W32W33
W20W21W22W23

W00 W01 W02

W03 W10 W11

W12 W13

W20 W21 W22

W23 W30 W31

W32 W33

(b) PE reuse between 4×4 and 3×3

3×3 PE

Channel

Nine Virtual 1×1 PE

Channels from Different

Output Channel

W00 W00 W00

W00 W00 W00

W00 W00 W00

W00 W00W00

W00 W00W00

W00 W00W00

(c) PE reuse between 1×1 and 3×3

Fig. 8. PE reuse. C0 represents the first 3×3 PE channel in each
PE group.

Authorized licensed use limited to: University of Florida. Downloaded on December 05,2021 at 03:03:55 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2021.3132170,
IEEE Transactions on Computers

6 IEEE TRANSACTIONS ON COMPUTERS, TC-2021-08-0442

PE partitioning: As mentioned in Section 4.2, when two
networks operate together, the speed of image generation
should be equal to the speed of DNN training so that the
computation unit will not be idle. The total cycles for
StarGAN generator inference and SqueezeNet training
stages are analyzed to help decide the resource partition
ratio between GAN and DNN to achieve the same com-
putation latency. During training, the PEs are allocated at
the channel level based on the mode. In GDM, 66 PE
channels are allocated to GAN computation and 6 PE
channels for DNN training (11:1). In DOM, with abun-
dant data, no image generation is involved, so all the PE
channels are allocated to DNN to maximize performance.

PE combination: Although most of the kernel size in
StarGAN and SqueezeNet are 3×3, there still exist 7×7,
4×4, and 1×1 kernels. To enable full utilization of the com-
putation resources when mapping all these kernels to 3×3
PE channels, we propose a novel PE combination tech-
nique, shown in Figure 8. In PE combination, several PE
channels are grouped together as a virtual channel. For
example, one 7×7 kernel can be mapped to seven 3×3
channels as a channel group (Figure 8(a)). Each 3×3 PE
channel holds one row of the 7×7 kernel. Here, the partial
results should be accumulated among these seven PE
channels. This technique also applies when mapping 4×4
kernels by mapping two rows of kernels to each PE chan-
nel (Figure 8(b)). Unlike Im2col [11] which is designed to
reduce the memory latency of GPU but causes
unpredictable storage pattern if applied to FPGA, our
Dandelion-arch optimizes the dataflow to greatly improve
the utilization. Compared with the simple kernel tiling,
our proposed PE comination significantly raises the
utilization (from 60% for 7×7 and 44% for 4×4 to 78% and
89% respectively).

For 1×1 kernels, each PE channel can hold nine of them.
Therefore, we need to load nine weights of different
input channels to add them up as the result for one
output channel. The 1×1 kernels exist in two kinds of
operations, i.e., squeeze and extend (Figure 4), in
Squeezenet. In squeeze operation, all the kernels are 1×1
and the inputs are loaded in input channel order. In
extend operation, there are two kinds of kernels. The 1×1
convolution works together with 3×3 convolution, or one
by one and the results are combine when finish. Either
way will result in the difference in input loading pattern.
Therefore, we also need to read them from the dual-port
buffer, as shown in Figure 6. When processing layers with
larger kernel size, the input loading is seperated into rows
and n BRAMs are enabled to broadcast n rows of one
input feature map to each channel group.

Based on the PE combination, we propose the overall
PE channel design in Figure 6 and Figure 9. In Figure
10(a) and (b), the kernel K00 of kernel group K0 is loaded
into the first channel C0 or CG0. After C0 or CG0 completes
the computation with input I00, K01 is loaded. During this
time, all channels share the input I00. To keep the same
input loading pattern for the next layer, the outputs or
rows from one channel group should be stored in one
BRAM. However, storing outputs in a round robin order
causes huge muxing overhead. Therefore, we constrain

the output in one channel group which eliminates the
output muxing overhead with little control overhead in
the right half of Figure 6. What’s more, to collect the
partial results of the PE groups, a flexible adder tree is
implemented as in Figure 6 and Figure 9(c). The adder
tree inside the channel is marked with three kinds of
color. All of the sum points inside will be used during the
3×3 setup, among which, the sum points in orange are for
7×7 reuse setup and the deep orange point is for 4×4 reuse
setup. Compared with the standard weight-stationary
design, our design use 3750 (9%) more LUTs (adder tree)
and 116(10%) more control LUTs.

Multi-network mapping: To broadly adapt our design
to other neural networks, we define a series of formulas to
compute the most appropriate configuration, referred as
kernel size mapping formulas and resource mapping
formulas, separately.

The size of PE array should satisfy one of the following
formulas, depends on the range of the size and corre-
sponding utilization,

K0

K1

Kn

K00
K01

K02

... ...

C0

C1

Ci

Input

Output

Weight

I00

BRAM

BRAM

BRAM

(a) Kernel Allocation Pattern with size of 3×3

Kn

...
...

C0

Ci

Cj

Input

Output

Weight

I00

BRAMs

for CG0 K0
K00

K01
K02

...

Ck

BRAMs

for CGn

...

...

......

(b) Kernel Allocation Pattern amd Output Storage Pattern with
Size bigger than 3×3

W00 W01 W02

W10 W11 W12

W20 W21 W22

O00O01O02O03O04 O05 O06O07O08

sum sum sum sum

sum sum

sum

sum

3×3 PE

Channel

3×3 PE

Channel

3×3 PE

Channel

3×3 PE

Channel

3×3 PE

Channel

3×3 PE

Channel

3×3 PE

Channel

sum

sum

sum

sum

sum

sum

S
to

p
 h

e
re

fo

r
4

×
4

o
u

tp
u
t

S
to

p
 h

e
re

fo

r
3

×
3

o
u

tp
u
t

S
to

p
 h

e
re

 f
o

r

7
×

7
 o

u
tp

u
t

Adder Tree inside Channel Adder Tree outside Channel

(c) Output Accumulation Pattern

Fig. 9. Normal 3×3 PE channel design: (a), (b) K00 is first kernel
in the first kernel group K0. (c)The outputs inside one channel are
accumulated through adder tree. Between channels, there is also
an adder tree. Selecting which sum is determined by reuse and
controlled by control unit.

Authorized licensed use limited to: University of Florida. Downloaded on December 05,2021 at 03:03:55 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2021.3132170,
IEEE Transactions on Computers

CHEN ET AL.: DANDELION: BOOSTING DNN USABILITY UNDER DATASET SCARCITY 7

(1)

where Kd is the size of Dandelion’s PE array. Kmin, Kmid, Kmax
are the kernel size of two neural networks. a, b, c, d, e, f,
and g are integer. (𝐾𝑑)2 ≥ e × K𝑚𝑎𝑥 means that K𝑑 ≤ K𝑚𝑎𝑥.

To finally determine the size of PE array, we should cal-
culate the utilization first. The formula of utilization is,
when K𝑑 ≥ K𝑚𝑎𝑥:

 (2)

when K𝑚𝑖𝑑 ≤ K𝑑 ≤ K𝑚𝑎𝑥:

(3)

when K𝑚𝑖𝑛 ≤ K𝑑 ≤ K𝑚𝑖𝑑:

(4)

where L is the total number of layers. Ii and Oi are the
number of input and output feature map, respectively. Osi
is the output size for layer i. Ki is the size of kernel for
layer i. This formula calculate the ratio between used PEs
and available PEs during all the computation stages.

To efficiently allocate resource to two neural networks,
we define the method to acquire the computation ratio,

 (5)

where UG and UD are the utilization of GAN and DNN in
a certain Kd, respectively. The ratio of resource determines
whether the two-network system can be balanced to
achieve best performance.

The next step for resource allocation is to determine Cd,

the number of PE arrays (channels) in one channel group.
Assume that the number of PE channels equals to Nc,
K𝑑 ≤ K𝑚𝑎𝑥, and Rd equals to a: 1 or 1: a, Cd should be equal
to 𝐾𝑚𝑎𝑥 × 𝐶𝑒𝑖𝑙((𝐾𝑑)2 ÷ 𝐾𝑚𝑎𝑥) to reuse input data. If 𝑁𝑐 ≠
b × C𝑑, the remaining part should be allocated to DNN
channels which slightly affects the ideal ratio.

With these mapping formulas and slight adjustment,
one can easily connect any two neural networks with op-
timized configuration.

4.4 3D Implementation

Besides the normal 2D architecture design, the emerging
and promising 3D architecture can further benefit our
design. There are three significant advantages of 3D
memory: high bandwidth support, low access latency and
low dynamic energy. The bandwidth limitation of AXI
bus (256 bits per clock cycle) is weakened in 3D architec-
ture, and the hardware could support larger PE channel
on logic die using weight stationary dataflow. Besides, the
large capacity and high speed save the time to write and
read the data from the off-chip memory. Lower memory
access latency could get rid of idleness. With less energy
consumption, network on 3D architecture obtains porta-
bility on edge device.

TETRIS[12] develops in-memory accumulation, by-pass
buffer and across-vault partition to explore the neural
network computation on 3D architecture. The partition of
jobs among vaults is proposed to minimize the across-
vault memory access.

Unlike TETRIS which applies row stationary dataflow
of Eyeriss on its logic die, we place Dandelion-function to it
and combine separate BRAMs into smaller global buffer
in total size which requires slightly more registers for
buffer writing than 2D design. Based on that, our design
further focuses on the two-network acceleration and dis-
covers novel mode-partitioning and buffer-bypassing
methods which is suitable for our training mode. In our
3D implementation shown in Figure 10, 16 vaults are de-
ployed to perform network training. We evaluate batch-
partitioning (Figure 10(a)) and propose mode-partitioning
(Figure 10(b)) with corresponding bypassing strategies.

Batch partitioning indicates that each vault is in charge
of the computation of one sample in a batch. Although it
cannot benefit the inference latency and cause duplication
of networks, our Dandelion take advantage of its flexibility
by using small network and distributing computation to
vaults with adaptive configuration thanks to the different
samples of one batch(scarce data or abundant data). The
ofmap buffer is bypassed for vaults dealing with scarce
data. Ofmap and weight buffers are bypassed for
abundant data.

Mode partitioning means that all vaults are seperated
into two types, two-mode vaults (TMV) and one-mode
vaults (OMV). TMV will operate on both DOM and GDM
which requires different buffer size and dynamic
bypassing strategy caused by switching network weights.
Instead of bufferring input feature maps as normal,
weights for another network is loaded into global buffer
to reach less latency.

4.5 Tradeoff between Computation and Memory

Logic Die (Dynamically Bypassing)

DRAM Dies

GDM

DOM

B1 B2 B3 B4

B5 B6 B7 B8

B9 B10B11B12

B13B14B15B16

(a)

(b)

Tsv

In-memory
Accumulation

Bank

T

S

V

PE array

Ifmap/weight

buffer

Fig. 10. 3D architecture design.

Authorized licensed use limited to: University of Florida. Downloaded on December 05,2021 at 03:03:55 UTC from IEEE Xplore. Restrictions apply.

Fig. 10: The dynamically partition is modified to bypassing for better understanding.

Dynamically bypassing is explained here.

0018-9340 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2021.3132170,
IEEE Transactions on Computers

8 IEEE TRANSACTIONS ON COMPUTERS, TC-2021-08-0442

Resource

Apart from the opportunities mentioned above, we also
notice that the GAN generator provides an opportunity to
trade the computation for the memory resource. In our
implementation, after the first epoch, all of the generated
images are sent to the off-chip memory for the computa-
tion of later epochs. There is another choice that the im-
ages are generated every epoch without buffering so that
the memory accesses can be avoided. This is especially
beneficial to the mobile ends where the memory is expen-
sive, and the computation is small. Generating random
training data over epochs also reduces the chance of over-
fitting. With GDM only in the first epoch, Dandelion has
23% less overall benefits (1.53x->1.30x) and brings 90%
more storage cost (depends on scarcity level).

5 EVALUATION METHODOLOGY

5.1 Function Validation

Note that, the effectiveness of Dandelion on scarce dataset
training accuracy is the key for its function and the archi-
tecture design. We modified the Pytorch code of StarGAN
and SqueezeNet to conduct the following two experi-
ments. In both experiments, we use three methods to
enrich the dataset, normal image processing method
(NIP), DAGAN (representing normal GAN methods) and
Dandelion-function(representing orthogonal GAN
methods).

The first training experiment is performed with the fa-
mous face dataset CelebA [13] , which contains 202599
face images with 40 binary attributes and Pubfig [14],
which labels 2399 images by 60 names and each class con-
tains at least 10 images. 10% images are randomly select-
ed as the test set (Pubfig-Test), and the rest are the train-
ing set (Pubfig-Train) which trains DNN to recognize one
person in Pubfig.

For our original baseline, the SqueezeNet is trained on
full Pubfig-Train with different scarcity levels by random-
ly sampling it at a certain ratio. For NIP, we preprocess
the target images with normal image processing opera-
tions (resize, crop, flip, rotation, and grayscale). For DA-
GAN, we choose 5 classes with equal number of samples
(60) from the scarce dataset (Pubfig-Train) to train it to
enrich the samples for the target person. For our design,
we first train the StarGAN on CelebA to allow it to learn 7
attributes (i.e., face with smiling, glasses, hat, heavy
makeup, and mustache). Then the sampled target images
of Pubfig-Train as in the baseline are fed into the Star-
GAN and restore to the maximal number of target imag-
es. After that, the generated images are inserted back into
the scarce Pubfig-Train and SqueezeNet is trained on it to
obtain the accuracy with Dandelion. The batch size is 16.
We train 36 epochs for original dataset and 10 epochs for
other methods.

The second experiment is designed to show Dandelion’s
potential improvement in real-world applications. CheX-
pert [15], a dataset of 191028 chest x-ray gray images with
pneumonia-related symptom labels, and COVID-19 da-
taset containing 484 COVID images and 342 other images

[16] are leveraged to train GAN and DNN respectively.
Five attributes of the CheXpert dataset that are related to
COVID-19, i.e., cardiomegaly, fracture, support devices,
pleural other and lung opacity, are learnt by the GAN to
enrich the scarce COVID-19 dataset.

5.2 Architecture Evaluation

We evaluate the architecture support for Dandelion. We
prototype the first baseline and our 2D Dandelion-arch
design with all the operation modes and reuse structures
on a Xilinx VCU118 Evaluation board with 20Gb off-chip
DDR4 and 76 Mb on-chip BRAM connected by AXI bus
on 200MHz. The data width in our design is 16-bit for
both the kernel weights and intermediate data. Each data
buffer is 0.49Mb and supports 96-bit access. The size of
one weight buffer is 0.28Kb and supports 144-bit access.

Baseline: In the first baseline, to demonstrate the effec-
tiveness of our proposed inter-network optimization, we
simply run StarGAN followed by the DNN in GDM as a
general accelerator without PE or data reuse. Since there
is no reuse and reconfiguration of the PE channels de-
signed for inter-network training, we choose the output
stationary dataflow which results in higher utilization in
the baseline. Each PE channel has 4×4 PEs to best fit the
output sizes. To conduct fair evaluation, the baseline em-
ploys the same number of PEs as Dandelion (i.e., 41 PE
channels).

The second baseline is a representative accelerator for
single-DNN training, i.e., ScaleDeep [9]. ScaleDeep uses
two kinds of tiles to separate the computation-consuming
works like most of the convolution layers, and memory-
consuming works like fully connection layers, respective-
ly. In computation-consuming tile, there is a 2D PE array
which can be divided into two parts when necessary. In
each 2D array, the inputs and weights are casted in rows
and columns respectively to accumulate the partial results
in diagonal. In memory consuming tile, the special func-
tion units are designed for various computation. Two
kinds of tiles are connected in a delicate pattern depend-
ing on the chip type. In our experiment, we implement 7
computation-consuming tiles, each of which has 8×3 2D
PE arrays. We adjust ScaleDeep to use 4 lanes of each PE
for normal convolution and 1 lane for convolution with
kernel size of 1×1. The performance is estimated using
our in-house simulator with necessary scale-down of the
design size.
Dandelion: We compare the performance and utiliza-

tion of different accelerators under different modes of
Dandelion and under different dataset scarcity levels to
demonstrate the efficiency of our proposed accelerator.
Different PE ratios are applied to evaluate the efficiency

TABLE 1
ACCURACY IMPROVEMENT

SR Dandelion NIP DAGAN Original

100 99.1|94.8 91.3|88.5 96.4|91.5 85.2|81.0

50 95.2|91.5 85.5|83.2 91.8|83.2 76.5|73.6

30 91.3|90.0 77.3|69.8 82.7|82.5 62.5|64.7

10 78.8|72.5 64.1|57.5 70.4|68.7 52.5|51.5

5 62.3|50.5 51.5|50.3 58.5|51.3 50|50

Authorized licensed use limited to: University of Florida. Downloaded on December 05,2021 at 03:03:55 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2021.3132170,
IEEE Transactions on Computers

CHEN ET AL.: DANDELION: BOOSTING DNN USABILITY UNDER DATASET SCARCITY 9

of PE reuse and our mapping formula. Furthermore, we
evaluate our proposed multi-network mapping method
across five DNNs (SqueezeNet, Alexnet, Resnet50,
Resnet152 and VGG16).

We also break down the energy consumption of Dande-
lion to show the overhead brought by the incorporation of
GAN, based on which, we analyze the overall benefit
brought by Dandelion.

3D: The 3D extension of Dandelion utilizes HMC stack
defined in gem-5 [17] with 16 vaults each of which sup-
ports a bandwidth of 8 GBps. 225 PEs per vault are de-
ployed on logic die to take advantage of the high band-
width, which follows the limitation discussed in TETRIS.
The power estimation is based on [18] and the perfor-
mance is evaluated through the combination between 2D
logic die and 3D memory on gem5, using batch partition-
ing and mode partitioning with different vault number,
network computation ratio and buffer ratio.

5.3 System Evaluation

To better understand the overall benefit of our Dandelion,
we combine the functional and 2D architecture results to
estimate the actual timing impact in two steps.

Step1: We compute the total runtime and energy
efficiency for different architectures to get usable
accuracy (90%) with or without data augmentation, which
takes the training time and data collection time into
account. Based on the detection time for COVID-19 in
early 2020 [19][20], We assume that the data collection
time is 3 days, also as, and the power for data collection is
the power of medical diagnostic X-ray set (800W)
multiplying its average working time (8 hours/day).

Step2: From step1, we could figure out the time gap to
reach the usable accuracy between different configura-
tions which further impacts the detection of COVID-19.
We propose a matrix to quantify the real-world influence.
The real-world evaluation explores the impact of COVID-
19 detection on health and economy.

6 RESULTS AND ANALYSIS

6.1 Function Evaluation Results

Table 1 compares the training accuracies of SqueezeNet
with different augmentation methods on Pubfig and
COVID-19 dataset under different scarcity levels. As
shown, Dandelion can significantly improve the accuracy
of both datasets under all the scarcity levels. However,
with extremely scarce dataset (e.g., sampling rate of 5%),
the test accuracy is around 50% meaning that the network
fails to learn anything even with the assistance of Dandeli-
on. When the scarcity level goes lower, the accuracy of
Dandelion increases rapidly. With the scarcity of 30%,
Dandelion improves the accuracy from 62.5%|64.7% to
91.25%|90%, which is acceptably usable in our daily life.
However, the accuracy of the other methods is still far
from usable even when the scarcity is 50%. Impressively,
Dandelion can further improve the accuracy from
85.15%|81.0% to near optimal (99.07%|94.8%) when the
dataset is considered abundant (i.e., the scarcity level is
100%). For other applications where the accuracy re-
quirement can be slightly loosened, Dandelion can even
make the training results usable with dataset scarcity at
30%. Although DAGAN also increases the accuracy to
some extent on relatively high scarcity level, its
performance is restricted because of the lack of learning
information learnt from the scarse dataset itself.

6.2 Architecture Evaluation Results

In Figure 11, we compare the runtime of two baselines
and our Dandelion when equipped with different tech-
niques in different modes (DOM, GDM and overall train-
ing time with necessary mode activated). The scarcity
level is set to 10%. In GDM, Dandelion gains the perfor-
mance improvement up to 52% compared with Scale-
Deep, which is because that: (1) The large sizes of Star-
GAN’s kernel results in great waste which the dataflow of
ScaleDeep suffers from. (2) Our baseline uses output -

Fig. 11. Performance of different modes between architectures. Fig. 12. Performance with different dataset scarcity levels.

Fig. 13. Performance with different PE ratio of GAN and DNN. Fig. 14. Multi-network performance of Dandelion.

Overall GDM DOM
0.0

0.5

1.0

N
o
rm

a
liz

e
d

R
u
n
ti
m

e

 Baseline Scaledeep Dandelion

 PE reuse + partitioning PE combination

 Conv Computaion Non-Conv Computaion

100% 50% 30% 25% 20% 10%
0.0

0.2

0.4
1.0

1.5

N
o

rm
a

liz
e

d

p
e

rf
o

rm
a

n
c
e

Sampling Rate (Reverse of Scarcity)

 Baseline

 Scaledeep

 Dandelion5.75x

∞
 :1
50

:1
11

:1 1:
1
1:

10
1:

50

0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
liz

e
d

p
e
rf

o
rm

a
n
c
e

PE ratio

 GDM

 DOM

 Total

SN AN

R
es

50

R
es

15
2

VG
G
16

0.0

0.5

1.0

N
o

rm
a

liz
e

d

P
e

rf
o

rm
a

n
c
e

 Dandelion ScaleDeep

Authorized licensed use limited to: University of Florida. Downloaded on December 05,2021 at 03:03:55 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2021.3132170,
IEEE Transactions on Computers

10 IEEE TRANSACTIONS ON COMPUTERS, TC-2021-08-0442

stationary dataflow. It can produce 4×4 outputs in each
computation round which is suitable for 256×256 outputs
and processes the weights in one kernel by loading them
in each clock cycle to handle different kernel size. (3)
Dandelion ‘s PE combination and partition reduce the
runtime of convolutional computation. In DOM, the
SqueezeNet only computes with smaller kernels and thus
can benefit from the dataflow of ScaleDeep. The baseline
architecture has limitation on the bandwidth of weights
and performs the worst when computing 1×1 kernel in
4×4 PE channels. To summarize, although ScaleDeep per-
forms better than Dandelion in DOM, our design has
strength on the overall running time, thanks to the ad-
vantages on GDM, which occupies the dominant part of
computation.

Figure 12 measures the overall performance difference
when we change the scarcity of dataset. In Section 6.1, we
discuss the influence of dataset scarcity on the training
accuracy. Now, the scarcity can also affect the hardware
performance since it changes the ratio of computation
time in two modes. As the scarcity level becomes higher,
GDM computation tends to dominate the latency. There-
fore, the disadvantage of inter-network training along
with the advantage of our acceleration becomes more
substantial. With additional computation, ScaleDeep be-
comes 5.75 times slower, and Dandelion reduces at least
40% of the gap with accuracy improvement according to
the data scarcity level.

As is defined in Section 4.3, the multi-network
mapping method enables the deployment of any two
networks on our architecture. Figure 13 validates the PE
allocations formula. We set several kinds of PE ratio to
search for the best allocation strategy. When the number
of GAN PE channels is equal to the DNN PE channels
(1:1), the computing resources are the same, but DNN still
dominate the computation. In this situation, the DNN has
to wait until GAN completes its work which reduces the
performance or process next image which requires fur-
ther scheduling and control, to be discussed in future
work. When the ratio between GAN and DNN channels
increases, the idleness is relieved until the point 11:1, the
most efficient ratio obtained through the formula in Sec-
tion 4.3. At this point, GAN and DNN work at the same
pace which reduces data movement and achieves the best
performance. Then, the ratio keeps increasing until all the
PE channels are allocated to GAN. In this case, the GAN
works first by itself and generates all the images and
stores them back to off-chip, followed by the training of

DNN. Although there is a sudden rise in the performance,
it brings extra latency and energy to access the off-chip
memory. If the ratio becomes smaller, the performance
becomes worse, and GAN need to wait for DNN. The
generated image either waits on-chip wasting time and
storage or goes back to off-chip causing extra data move-
ment and energy consumption. Finally, the extreme small
ratio means that there is no GAN in Dandelion. Dandelion
becomes the training of baseline SqueezeNet with unusa-
ble accuracy under scarce dataset as shown in Table 1.

Because of the computation varience of network, we
evaluate the performance improvement with different
networks on Dandelion in Figure 14, using the mapping
method in 4.3. We keep the the sample rate to be 10% and
the training epoch is 10. VGG16 gains the best utilization
resulting from its unchanged 3×3 kernels. The total
speedup suffers from the increasement of computation
ratio. In addition, different network architectures are
corresponding to various training epochs. With the
epochs increasing, images generated in the first epoch
take smaller ratio in total training images and the benefit
of data reuse decrease slowly. However, networks which
requires more training epochs are designed for abundant
datasets and face less scarcity problems.

Table2 elaborates the energy breakdown in Dandelion.
Note that, the energy consumed by BRAM during GDM
takes the dominant position due to frequent on-chip data
movement. To clearly explain the power condition, we
utilize the data from the first epoch, and the entire power
performs much better for the whole training process.

Figure 15 indicates Dandelion’s performance when
equipped with batch-partitioning (BP) and mode-
partitioning (MP) on 3D architecture. As is shown, even
though it cannot benefit the inference latency, batch-
partitioning performs 2 times better than TETRIS and
wastes less cross-vault access energy, resulting from the
fully parallelism. However, batch partition may suffer
from the synchronization problem brought by the imbal-
ance between different processing speed of scarce data
and abundant data to be addressed by dynamic batch size
and larger vault number. Mode-partitioning utilize dy-
namic bypass buffer to reduce memory access times and
latency, achieving higher energy efficiency in GDM while
it acts worse in DOM. Moreover, it processes 26% faster
than TETRIS and survives from the synchronization prob-
lem becoming more practical than batch partitioning.

6.3 System Evaluation Results

Combining the function and architecture results, in Fig-
ure 16 we compare the performance and energy efficiency

TABLE 2
ENERGY BREAKDOWN

PE(DOM) 6.24%

PE(GDM-DNN) 2.50%

PE(GDM-GAN) 19.85%

BRAM(DOM) 18.34%

BRAM(GDM-DNN) 26.29%

BRAM(GDM-GAN) 18.96%

Attribute Control 1.31%

Adder Tree 5%

Other 1%

Fig. 15. Performance on 3D architecture.

Overall GDM DOM
0.0

0.5

1.0

1.5

2.0

N
o
rm

a
liz

e
d

P
e
rf

o
rm

a
n
c
e

 TETRIS BP-Dandelion MP-Dandelion

N
o
rm

a
liz

e
d

E
n

e
rg

y
 E

ff
.

 energy

 efficiency

Authorized licensed use limited to: University of Florida. Downloaded on December 05,2021 at 03:03:55 UTC from IEEE Xplore. Restrictions apply.

Figure is replaced with a table to make it clear.

0018-9340 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2021.3132170,
IEEE Transactions on Computers

CHEN ET AL.: DANDELION: BOOSTING DNN USABILITY UNDER DATASET SCARCITY 11

between different architectures (2D) to reach the same
accuracy on Covid-19 dataset. As shown, without data
augmentation, it takes 625x more time to get the usable
accuracy and the energy efficiency is even lower because
of the high power of the medical X-ray device. Although
the data collection may be pipelined, there will be
considerable latency for data collection and training. With
data augmentation, the time gap is reduced to 0.3x which
is still unignorable.

Figure 17 shows how the cumulative cases and econo-
my condition are influenced by quarantine policy and
COVID-19 detection. Data from WHO [21] is utilized to
build the extended SEIR (Susceptible-Exposed-Infectious-
Recovered) compartmental mathematical model which
indicates how the early detection and response could
have rescued lives. To evaluate the real condition from
reported case, we adjust the parameters of SEIR model,
namely the initial cases and the transmission rate in each
stage. According to Wikipedia [22], the U.S. government
recommended to keep social distance on 03/16/2020 while
most states placed stay-at-home order around 03/19/2020.
Therefore, the impact of quarantine on epidemic control
appears about 20 days later, obtained from two times of
the incubation period. Assume that the government de-
cides to begin quarantine based on the number of detect-
ed cases, or the severity of COVID-19. If our early detec-
tion were available to use, the quarantine would have
been assigned previously on 02/26/2020 (yellow line),
which would result in a case number of 770k by Nov 20,
representing 0.6% of reported cases. Based on the SEIR
model and the report from Whitehouse [7], we further
evaluate the average economy impact of COVID-19. The
economy effect shown by purple stack indicate that alt-
hough the on-time quarantine results in early economy
decrease and longer period, the range and degree of the
negative impact is lower. 20% of the economy loss can be
avoided.

7 RELATEN WORK

Some image processing methods are used to get simply
changed picture [2][23]. But the neural network is hard to
learn brand new information from them. Augmenter[24]
combines different image processing methods in a ran-
dom order to generate new images. Generative adversari-
al network (GAN) has also emerged as a promising tech-
nique to generate new images. Some researchers random-
ly combine two images of dataset in a special manner to
produce new samples [23]. CovidGAN[25] uses
ACGAN[26] to enrich the CXR dataset for CNN training.
DAGAN [27] generates images in the same class with
different looks. Synthetic images are fed to SimGAN[28]
and realism is added to refined outputs. PGGAN[29][30]
improves generator and discriminator progressively to
get high-resolution images. BAGAN[31] converts images
to latent vector as the input data for pre-initialized GAN
to get better performance. These methods are constrained
by the limited information of the scarce dataset. In con-
trast, Dandelion can enrich the scarce dataset to enable
better analysis using information from abundant dataset.
CycleGAN[32] learns to translate characteristics into an-
other domain with unpaired data which gets rid of the
dependency on dataset. In low-shot learning area, an hal-
lucinator[12] is proposed to change animals’ pose and
surroundings, which is a three-layer MLP. However, with
the ability of changing one characteristic at a time, Cy-
cleGAN and hallucinator provide relatively less aug-
mented data.

Besides of function challenges, neural networks suffer
from the large computation, memory, and energy con-
sumption. Most of the accelerators are designed for the
inference phase as this is more time sensitive. PREMA[33]
designed for multi-task DNN inference concentrates the
preemption mechanisms on TPU, which could be applied
to our work with some adjustment. The evolve-
ment of neural network’s function urges people to devel-
op training accelerators. Eager pruning [34] reduces com-
putation of the scarce weights in training to save time.
GANAX[35] and [36] avoid zero computation by two dif-
ferent methods. These are orthogonal to our design which
also benefit the GAN computation of Dandelion. Scale-
Deep [9] designs specific architecture for different func-
tion unit and use diagonal dataflow to speed up training
which improves the performance of single neural net-
work training. TPU [37] proposes special matrix pro-
cessing unit to be suitable for convolution, designed for
general computation. Multi-network accelerators like [38]

Fig. 16. Performance and Energy Efficiency with the

same accuracy.

Fig. 17. Real world benefits of Dandelion.

0.0000

0.0003
0.10

0.15

0.6
0.8
1.0

TESLA
 V

10
0

Sca
le
D
ee

p

Bas
el
in
e

D
an

de
lio

n
0.0

8.0x10-4

1.6x10-3
0.6

0.8

1.0

N
o
rm

a
liz

e
d
 E

n
e
rg

y
 E

ff
i.

N
o
rm

a
liz

e
d
 P

e
rf

o
rm

a
n
c
e

 No Augmentation With Augmentation

 Energy Efficiency

Ja
n

20

Feb
 2

0

M
ar

 2
0

A
pr

 2
0

M
ay

 2
0

Ju
n

20

Ju
l 2

0

A
ug

 2
0

S
ep

 2
0

O
ct
 2

0

N
ov

 2
0

0K
30K
60K
90K

3000K
6000K
9000K

12000K
15000K
18000K

4/19
2.26

C
u

m
u

la
ti
v
e

 C
a

s
e

s

 Reported Cases

 Evaluated Cases

 Cases with Early Qurantine

 Protected Cases

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o
rm

a
liz

e
d
 C

o
n
d
it
io

n

 Economy Difference

Between Quarantine Strategy

Authorized licensed use limited to: University of Florida. Downloaded on December 05,2021 at 03:03:55 UTC from IEEE Xplore. Restrictions apply.

Fig.16 is separated into two sub figures.

The advantages of Dandelion are added here.

Detailed literature reviews of existing architectures are added here.

0018-9340 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2021.3132170,
IEEE Transactions on Computers

12 IEEE TRANSACTIONS ON COMPUTERS, TC-2021-08-0442

are proposed to support efficient cloud computing which
processes various requests from clients and focus on sup-
porting large number of different networks as well. None
of them exploit the opportunity of processing the same
dataset with selected two neural networks.

8 CONCLUSIONS

In this paper, we build a function-architecture co-design
to address the problem of data scarcity in DNN training
and extend it to 3D area. Urged by DNN’s demand of la-
beled images, we explore the opportunities on connecting
GAN to DNN to boost DNN usability. We also propose
the first dual-network accelerator aiming at speeding up
inter-network computation. The results indicate that our
design improves up to 37.5% training accuracy with 30%
performance improvement, 40% reduction of latency
overhead and 26.3% overall performance on 3D architec-
ture. In the future, we will explore the opportunities
when connecting various types of neural networks.

REFERENCES

[1] “Autopilot AI | Tesla.” https://www.tesla.com/autopilotAI

(accessed Sep. 17, 2020).

[2] A. A. A. Setio et al., “Pulmonary Nodule Detection in CT

Images: False Positive Reduction Using Multi-View

Convolutional Networks,” IEEE Trans. Med. Imaging, vol.

35, no. 5, pp. 1160–1169, May 2016, doi:

10.1109/TMI.2016.2536809.

[3] K. Tan, “Application of neural networks to UNIX computer

security,” in IEEE International Conference on Neural Networks

- Conference Proceedings, 1995, vol. 1, pp. 476–481, doi:

10.1109/icnn.1995.488223.

[4] M. Ghiassi, D. Lio, and B. Moon, “Pre-production

forecasting of movie revenues with a dynamic artificial

neural network,” Expert Syst. Appl., vol. 42, no. 6, pp. 3176–

3193, Apr. 2015, doi: 10.1016/j.eswa.2014.11.022.

[5] S. Ouellet, “Real-time emotion recognition for gaming

using deep convolutional network features,” Aug. 2014.

[6] T. Ozturk, M. Talo, E. A. Yildirim, U. B. Baloglu, O.

Yildirim, and U. Rajendra Acharya, “Automated Detection

of COVID-19 Cases Using Deep Neural Networks with X-

ray Images,” Comput. Biol. Med., vol. 121, p. 103792, Jun.

2020, doi: 10.1016/j.compbiomed.2020.103792.

[7] “The Council of Economic Advisers,” 2020.

[8] Y. Choi, M. Choi, M. Kim, J.-W. Ha, S. Kim, and J. Choo,

“StarGAN: Unified Generative Adversarial Networks for

Multi-domain Image-to-Image Translation,” in 2018

IEEE/CVF Conference on Computer Vision and Pattern

Recognition, Jun. 2018, pp. 8789–8797, doi:

10.1109/CVPR.2018.00916.

[9] S. Venkataramani et al., “Scaledeep: A Scalable Compute

Architecture for Learning and Evaluating Deep Networks,”

in Proceedings - International Symposium on Computer

Architecture, Jun. 2017, vol. Part F1286, pp. 13–26, doi:

10.1145/3079856.3080244.

[10] Y. H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An

Energy-Efficient Reconfigurable Accelerator for Deep

Convolutional Neural Networks,” IEEE J. Solid-State

Circuits, vol. 52, no. 1, pp. 127–138, Jan. 2017, doi:

10.1109/JSSC.2016.2616357.

[11] L. Lai, N. Suda, and V. Chandra, “CMSIS-NN: Efficient

Neural Network Kernels for Arm Cortex-M CPUs,” Jan.

2018.

[12] M. Gao, J. Pu, X. Yang, M. Horowitz, and C. Kozyrakis,

“TETRIS: Scalable and efficient neural network acceleration

with 3D memory,” ACM SIGPLAN Not., vol. 52, no. 4, pp.

751–764, Apr. 2017, doi: 10.1145/3037697.3037702.

[13] Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep Learning Face

Attributes in the Wild,” in Proceedings of the IEEE

International Conference on Computer Vision (ICCV), 2015, pp.

3730–3738.

[14] N. Kumar, A. C. Berg, P. N. Belhumeur, and S. K. Nayar,

“Attribute and simile classifiers for face verification,” in

Proceedings of the IEEE International Conference on Computer

Vision, 2009, pp. 365–372, doi: 10.1109/ICCV.2009.5459250.

[15] A. Bustos, A. Pertusa, J.-M. Salinas, and M. de la Iglesia-

Vayá, “PadChest: A large chest x-ray image dataset with

multi-label annotated reports,” Med. Image Anal., vol. 66, p.

101797, Dec. 2020, doi: 10.1016/j.media.2020.101797.

[16] J. P. Cohen, P. Morrison, and L. Dao, “COVID-19 Image

Data Collection,” arXiv, Mar. 2020.

[17] N. Binkert et al., “The gem5 simulator,” ACM SIGARCH

Comput. Archit. News, vol. 39, no. 2, pp. 1–7, May 2011, doi:

10.1145/2024716.2024718.

[18] D. Kim, J. Kung, S. Chai, S. Yalamanchili, and S.

Mukhopadhyay, “Neurocube,” ACM SIGARCH Comput.

Archit. News, vol. 44, no. 3, pp. 380–392, Oct. 2016, doi:

10.1145/3007787.3001178.

[19] V. M. Corman et al., “Detection of 2019 novel coronavirus

(2019-nCoV) by real-time RT-PCR,” Eurosurveillance, vol. 25,

no. 3, p. 2000045, Jan. 2020, doi: 10.2807/1560-

7917.ES.2020.25.3.2000045.

[20] “CityMD | CityMD.” https://www.citymd.com/news/covid-

19-testing-update (accessed Apr. 16, 2021).

[21] World Health Organization, “United States of America:

WHO Coronavirus Disease (COVID-19) Dashboard | WHO

Coronavirus Disease (COVID-19) Dashboard,” WHO

Coronavirus Disease (COVID-19) Dashboard, 2020.

https://covid19.who.int/region/amro/country/us (accessed

Nov. 23, 2020).

[22] “Timeline of the COVID-19 pandemic in the United States -

Wikipedia.”

https://en.wikipedia.org/wiki/Timeline_of_the_COVID-

19_pandemic_in_the_United_States#cite_note-509 (accessed

Nov. 24, 2020).

[23] H. Inoue, “Data Augmentation by Pairing Samples for

Images Classification,” Jan. 2018.

[24] M. D. Bloice, C. Stocker, and A. Holzinger, “Augmentor: An

Image Augmentation Library for Machine Learning,” arXiv,

Aug. 2017.

[25] A. Waheed, M. Goyal, D. Gupta, A. Khanna, F. Al-Turjman,

and P. R. Pinheiro, “CovidGAN: Data Augmentation Using

Auxiliary Classifier GAN for Improved Covid-19

Detection,” IEEE Access, vol. 8, pp. 91916–91923, 2020, doi:

10.1109/ACCESS.2020.2994762.

Authorized licensed use limited to: University of Florida. Downloaded on December 05,2021 at 03:03:55 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2021.3132170,
IEEE Transactions on Computers

CHEN ET AL.: DANDELION: BOOSTING DNN USABILITY UNDER DATASET SCARCITY 13

[26] A. Odena, C. Olah, and J. Shlens, “Conditional Image

Synthesis with Auxiliary Classifier GANs,” in Proceedings of

Machine Learning Research(PMLR), Jul. 2017, pp. 2642–2651.

[27] J. Deng, W. Dong, R. Socher, L.-J. Li, Kai Li, and Li Fei-Fei,

“ImageNet: A large-scale hierarchical image database,” in

2009 IEEE Conference on Computer Vision and Pattern

Recognition, Jun. 2009, pp. 248–255, doi:

10.1109/CVPR.2009.5206848.

[28] A. Shrivastava, T. Pfister, O. Tuzel, J. Susskind, W. Wang,

and R. Webb, “Learning from Simulated and Unsupervised

Images through Adversarial Training,” in 2017 IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), Jul. 2017, vol. 2017-Janua, pp. 2242–2251, doi:

10.1109/CVPR.2017.241.

[29] T. Karras, T. Aila, S. Laine, and J. Lehtinen,

“ProgressiveGAN,” 6th Int. Conf. Learn. Represent. ICLR

2018 - Conf. Track Proc., pp. 1–26, Oct. 2018.

[30] C. Bowles et al., “GAN Augmentation: Augmenting

Training Data using Generative Adversarial Networks,”

arXiv, Oct. 2018.

[31] G. Mariani, F. Scheidegger, R. Istrate, C. Bekas, and C.

Malossi, “BAGAN: Data Augmentation with Balancing

GAN,” Mar. 2018.

[32] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired

Image-to-Image Translation Using Cycle-Consistent

Adversarial Networks,” in 2017 IEEE International

Conference on Computer Vision (ICCV), Oct. 2017, vol. 2017-

Octob, pp. 2242–2251, doi: 10.1109/ICCV.2017.244.

[33] Y. Choi and M. Rhu, “PREMA: A predictive multi-task

scheduling algorithm for preemptible neural processing

units,” in Proceedings - 2020 IEEE International Symposium on

High Performance Computer Architecture, HPCA 2020, Feb.

2020, pp. 220–233, doi: 10.1109/HPCA47549.2020.00027.

[34] J. Zhang, X. Chen, M. Song, and T. Li, “Eager pruning,” in

Proceedings of the 46th International Symposium on Computer

Architecture, Jun. 2019, pp. 292–303, doi:

10.1145/3307650.3322263.

[35] A. Yazdanbakhsh, K. Samadi, N. S. Kim, and H.

Esmaeilzadeh, “GANAX: A unified MIMD-SIMD

acceleration for generative adversarial networks,” in

Proceedings - International Symposium on Computer

Architecture, Jul. 2018, pp. 650–661, doi:

10.1109/ISCA.2018.00060.

[36] M. Song, J. Zhang, H. Chen, and T. Li, “Towards Efficient

Microarchitectural Design for Accelerating Unsupervised

GAN-Based Deep Learning,” in Proceedings - International

Symposium on High-Performance Computer Architecture, Mar.

2018, vol. 2018-February, pp. 66–77, doi:

10.1109/HPCA.2018.00016.

[37] N. P. Jouppi et al., “In-Datacenter Performance Analysis of a

Tensor Processing Unit,” in Proceedings - International

Symposium on Computer Architecture, Jun. 2017, vol. Part

F1286, pp. 1–12, doi: 10.1145/3079856.3080246.

[38] E. Baek, D. Kwon, and J. Kim, “A Multi-Neural Network

Acceleration Architecture,” in Proceedings - International

Symposium on Computer Architecture, May 2020, vol. 2020-

May, pp. 940–963, doi: 10.1109/ISCA45697.2020.00081.

Xiangru Chen received the B.S. degree in
Electronic Information Engineering from
Shandong University in 2016 and M.S. de-
gree in Electrical and Computer Engineering
from University of Florida in 2018. He is
currently pursuing a Ph.D. degree in the
Department of Electrical and Computer En-
gineering, University of Florida. His research
focuses on the architecture support for ML
applications.

Jiaqi Zhang received the B.S. degree in
Communication Engineering from Beijing
Jiaotong University in 2016. She is currently a
Ph.D. candidate in the Department of Electri-
cal and Computer Engineering, University of
Florida. Her research interests lie in software
and hardware acceleration of emerging algo-
rithms and applications including machine
learning and IoT.

Sandip Ray is an Endowed IoT Term Pro-
fessor at the Department of Electrical and
Computer Engineering, University of Florida.
His research involves developing correct,
dependable, secure, and trustworthy com-
puting through cooperation of specification,
synthesis, architecture and validation tech-
nologies. He focuses on next generation
computing applications, including IoT, au-
tonomous automotive systems, etc. Before
joining University of Florida, he was a Senior
Principal Engineer at NXP Semiconductors,

where he led the R&D on security architecture and validation of
hardware platforms for automotive and IoT applications. Prior to that,
he was a Research Scientist at Intel Strategic CAD Labs, where he
led research on validation technologies for security and functional
correctness of SoC designs. Dr. Ray is the author of three books and
over 90 publications in international journals and conferences. He
has a Ph.D. from University of Texas at Austin and is a Senior Mem-
ber of IEEE.

Authorized licensed use limited to: University of Florida. Downloaded on December 05,2021 at 03:03:55 UTC from IEEE Xplore. Restrictions apply.

