
IEEE TRANSACTIONS ON COMPUTERS 1

AINNS: All-Inclusive Neural Network
Scheduling via Accelerator Formalization

Jiaqi Zhang, Student Member, IEEE, Xiangru Chen, Student Member, IEEE, and Sandip Ray,

Senior Member, IEEE

Abstract— Driven by the rapid development of accelerators and diverse efficiency requirements of the naturally heterogeneous

neural network computation, recent years have seen increased heterogeneity in neural network accelerator systems in terms of

network structures, accelerator dataflows and implementations. However, existing research fails to schedule and map the

heterogeneous neural networks on heterogeneous accelerators efficiently. They rely on clumpy exhaustive search or

complicated ad hoc mapping approaches due to the semantic gap between the networks and accelerators. This paper proposes

a systematic method to transform various accelerators into standard parameterized containers of the neural network loops,

which builds a direct connection between the computation and the underlying hardware resources. This enables us to match the

neural networks with accelerators based on their essential characteristics (e.g., reuse opportunities and bandwidth

requirements) without diving into the detailed architectures. To this end, we propose AINNS, an all-inclusive neural network

scheduler, that automatically schedules and maps the NN computation on heterogeneous accelerators with just one universal

algorithm. Our experimental results show the proposed AINNS not only performs well in the traditional neural network

acceleration but also improves the system throughput and energy efficiency by 1.8x and 1.7x respectively in the most

challenging heterogeneous acceleration system.

Index Terms— Neural network, accelerator formalization, heterogeneity, scheduling.

—————————— ◆ ——————————

1 INTRODUCTION

The revival of neural networks (NN) has led to an explo-
sion of deep NN models, which are trained and deployed
for diverse tasks. Along with large-scale NNs, the past few
years also witnessed a burst of efforts in the acceleration of
these both computation- and memory-intensive work-
loads. The massive and ever-emerging NN models and ac-
celerators aim to realize a myriad of intelligent agents in
our daily life. Recently, we have equipped IoT devices with
artificial intelligence and entered the era of Artificial Intel-
ligence of Things (AIoT) [1].

In a world with everything intelligent and connected, it
is ideal if we could uniformly and efficiently manage them.
One salient challenge to this is the heterogeneity in both
NN workloads and accelerators. As shown on the left side
of Fig. 1, traditional frameworks view NNs as graphs of
different kinds of layers and the underlying hardware ac-
celerators also vary in dataflow and implementation. There
are existing works [2][3] that efficiently address the chal-
lenges in heterogeneity in the neural networks by intro-
ducing certain intermediate representations. Several recent
works [4][5] are also proposed to take the difference in the
performance of the accelerators into consideration. How-
ever, there still lacks a systematic solution to the problem.

The key obstacle is the semantic gap among the work-
loads and accelerators, which is twofold. Since there is not
a standard to regularize the accelerators, the scheduler
does not understand the difference between different

accelerators. Neither does it understand the correspond-
ence between the NN computation and accelerators. This
impedes an effortless universal algorithm to schedule and
map the tasks among the heterogeneous accelerator clus-
ter. Ad hoc dataflow customization in each accelerator is
required and scheduling needs to rely on tremendous de-
sign space search [6]. Unfortunately, as more AI tasks are
executed ubiquitously, there will be more dynamic and
complicated acceleration requests. The static optimizations
can no longer meet our demands. In this work, we address
the need for an all-inclusive systematic approach to accel-
erating heterogeneous NNs on a cluster of heterogeneous
accelerators, which works in real time.

Inspired by previous work [3] that generalized NN com-
putation into standard operations, we propose to further
formalize the NN accelerators as shown in Fig. 2. Com-
pared with other models [7][8] that manually specify the
dataflows, our formalization model focuses on the intrinsic
data reuse functions of the accelerators. It eliminates not
only the semantic gap between different accelerators but

xxxx-xxxx/0x/$xx.00 © 200x IEEE Published by the IEEE Computer Society

Network training/inference ResNet/MobileNet/C3D...

Framework Caffe/Tensorflow/Keras/Pytorch/mxnet/MatConvNet...

Convolution/BatchNorm/ReLU/LRN/FCN/Pooling...

matrix/vector
Intermediate

representation

Layer

ad hoc mapping, searchSchedule

GCONV [3]

AINNS (Section 5)
Hardware

achitecture
weight/output stationary... acc formalization (Section 3)

Substrate ASIC/FPGA/GPU/CPU/Chiplet...

Fig. 1. Neural network acceleration stack before (left) and after (right)

our work.

————————————————

• Jiaqi Zhang, Xiangru Chen, and Sandip Ray are with the Department of
Electrical and Computer Engineering, University of Florida, Gainesville,
FL 32611. E-mail: jiaqizhang, cxr1994816@ufl.edu, and san-
dip@ece.ufl.edu.

mailto:cxr1994816@ufl.edu

2 IEEE TRANSACTIONS ON COMPUTERS

also the one between NN workloads and the accelerators.
The formalization works like a virtualization layer above
the hardware layer as shown on the right side of Fig. 1.
With the formalization of the NNs and the accelerators, the
specific disparity of NN computation and accelerator im-
plementations turns transparent to the scheduler, so it can
rely on basic NN mapping and scheduling principles that
are invariable despite of the heterogeneity. This allows the
scheduler to focus more on the essential characteristics of
the workloads and the hardware with less effort. Specifi-
cally, we can view various NN computation as standard
nested loops of four parameters in several dimensions as
in [3] and accelerators with diverse dataflows and imple-
mentations as parameterized containers of these NN loops.

Based on this, we implement an all-inclusive neural net-
work scheduler (AINNS). The proposed AINNS is all-in-
clusive in two aspects: (1) It can cover workloads and ac-
celerators with all levels of heterogeneity; (2) it integrates
all the functions required in scheduling, including the local
mapping and task dispatching that takes the computation
partitioning and accelerator sharing into consideration.

In summary, this paper makes the following contribu-
tions:

(1) To motivate our work, we propose a taxology to de-
fine the level of heterogeneity of neural network work-
loads and accelerators.

(2) Our main contribution lies in the proposal of a sys-
tematic method to eliminate the semantic gap between the
heterogeneous neural networks and accelerators by for-
malization.

(3) Our formalization method brings opportunities to
schedule the neural network acceleration systems of any
level of heterogeneity with one universal solution. To this
end, we propose AINNS, an all-inclusive neural network
scheduler.

(4) The experiments show that AINNS is both effective
and efficient in scheduling benchmarks with all levels of
heterogeneity. Notably in the case studies, AINNS reduces
the energy consumption by 43% with the same usable
user’s satisfaction in the datacenter and improves the
throughput by 1.8x while guaranteeing the real-time re-
quirement in a smart plug-in hybrid electric vehicle.

The rest of the paper is organized as follows. Section 2
provides background on heterogeneity in NN acceleration
and NN computation formalization. Section 3 introduces
our proposed formalization model for the NN accelerators.
Section 4 elaborates the basic principles for universal NN
mapping and dispatching based on the formalization
model. Section 5 proposes an AINNS architecture, which

is evaluated in Section 6. Sections 7 and 8 discusses the re-
lated works and concludes the paper respectively.

2 BACKGROUND AND MOTIVATION

2.1 Heterogeneity in Both NNs and Accelerators

Based on real-world applications, the NN-accelerator
plane can be divided into heterogeneity plane regions
(HPR) [1,1] to [4,4], as shown in Fig. 3, where both NNs
and accelerators manifest four levels of heterogeneity: (1)
Single: only one accelerator/NN is deployed; (2) homoge-
neous: an accelerator or NN is duplicated and the system
has homogeneous accelerator array or workloads; (3)
semi-heterogeneous: the accelerators or the NNs adopt
similar structure but different configurations, e.g., TPU v2
and TPU v3 or ResNe34 and ResNet50; (4) heterogeneous:
all the accelerators or NNs in the system can be different in
their structures, dataflows or configurations. In AIoT, we
expect the following trends.

First, the NN workloads are increasingly heterogeneous.
Obviously, the power of a single fixed neural network
(HPR[x,1] and [x,2]) is limited. Recent works [9] proposed
multi-task neural networks where different numbers of
layers are involved to perform different tasks. Here, the
NNs share similar functional layers but have different net-
work architectures (HPR[x,3]). The trendy automated ma-
chine learning that searches for the optimal NN based on
permutation of a group of basic blocks [10] also falls into
this region. Furthermore, it is common that an intelligent
system relies on cooperation of several heterogeneous NN
models (HPR[x,4]). For example, the robots leverage sev-
eral CNNs and MLPs to recognize the shape, color and tex-
ture of the object and another CNN to predict the grasp
gesture [11]. In addition, large-scale data centers are
flooded by AI workloads including various NN tasks, e.g.,
computer vision, recommendation systems, and neural
machine translation, etc. [12].

Second, the NN accelerators are also increasingly heter-
ogeneous. Given the outstanding efficiency of customized
accelerators, they are a competent solution in both mobile
ends [13] and the data centers of IT giants [14]. In this big-
data era, except for certain static low-power edge nodes,

Input
pool

Global
buffer

Local
store

Global
buffer

DRAM

Accelerators with various
dataflows and memory structures

Standard containers
of NN operations

Original NN with
various layers

Standard
operations

Local
store

(b)(a)
PE mem

PE mem

PE mem

Fig. 2. (a) Neural network formalization (GCONV [3]). (b) Accelerator
formalization.

Fig. 3. Neural network-accelerator heterogeneity plane. Blue: early

works; green: scaled-up systems; orange: compilers; purple: recent

works; red: only AINNS.

ZHANG ET AL.: AINNS: ALL-INCLUSIVE NEURAL NETWORK SCHEDULING VIA ACCELERATOR FORMALIZATION 3

the throughput of a single standalone NN chip (HPR[1,x])
is far below demand. Therefore, accelerators are usually
deployed in arrays. The real-world accelerator arrays are
rarely homogeneous (HPR[2,x]). For example, the rapid
upgrading has left considerable out-of-date yet still func-
tioning devices. This leads to accelerators with similar ar-
chitecture but different configurations (HPR[3,x]) as in
Google’s cloud [15] where both TPU v2 and v3 are availa-
ble. Besides, to cater to NN workloads with different char-
acteristics, accelerators with a wide range of architectures
and dataflows are deployed [6]. In traditional intelligent
applications, these accelerators are responsible for inde-
pendent pre-defined tasks. However, in AIoT, it is una-
voidable that they need to work as a heterogeneous cluster
(HPR[4,x]) to provide service to dynamic tasks [16].

Another trend in AIoT is that all levels of heterogeneity
can exist in the same system. First, a hierarchical manage-
ment is expected in an AIoT system. More heterogeneity
can be observed by the scheduler in a higher level. For ex-
ample, a simple gesture recognition camera is less hetero-
geneous than a smart classroom system in terms of both
the NN tasks and accelerator architectures [1]. Second, con-
sidering there are tasks arriving on the fly and users with
high mobility [17], the workloads in the queue and availa-
ble accelerators in the array are dynamic, featuring chang-
ing heterogeneity over time and location. The connected
self-driving car is one of the most typical examples [18].

This increasing heterogeneity in both NN workloads
and accelerators poses great challenges to the schedulers.
Fig. 3 marks the HPRs covered by previous works (the de-
tails will be discussed in Section 7). Unfortunately, none of
them can efficiently perform scheduling in all the regions,
especially the most challenging all-heterogeneous case.
Therefore, an approach to designing effective all-inclusive
neural network schedulers is in demand.

2.2 Formalized NN Computation Model

As shown in Fig. 1, AINNS relies on a model that stand-
ardizes the NN computation. Among the previous works,
we choose the GCONV model [3], which generalizes vari-
ous NN computation into general convolution operations,
for several reasons: (1) GCONV can model all kinds of NN
layers, including convolution and non-convolution in both
inference and training; (2) GCONV operation preserves the
convolution computation pattern and reuse opportunities,
which can be exploited by the accelerators for improved
efficiency; (3) GCONV model is scalable and semantically
symmetric in all the dimensions, so that we can easily build
a dimension-independent connection between the compu-
tation and our proposed accelerator model, as will be

elaborated in Section 4.
The key idea of GCONV is to view the operation of a

certain layer on the input data in each dimension as gen-
eral convolution. A 1-D GCONV operation is described as
a nest of four loops as listed in Fig. 4, i.e., g for groups of
inputs, op for groups of kernels, ks for kernel size and opc
for output size. This 1-D GCONV can be scaled up to mul-
tiple dimensions to represent various computation in NNs,
even for traditionally non-convolution layers. Several rep-
resentative examples are given in Table 1.

There are parallel and convolution reuses in each di-
mension of GCONV. Specifically, the inputs and kernel pa-
rameters are reused by computation in loops op and opc re-
spectively and the outputs are reused through reduction in
ks (parallel reuse). In addition, the computation of neigh-
boring outputs share the inputs overlapped (when ks > s
and opc > 1) in the convolution windows (convolution re-
use). Most efficient NN accelerators are designed to max-
imize these reuses.

3 FORMALIZATION OF NN ACCELERATORS

As discussed in Section 1, AINNS can adopt a uniform
scheduling algorithm only when the gap between the NNs
and accelerators is eliminated. Therefore, formalization of
the accelerators is also required besides the NN formaliza-
tion introduced in Section 2.2. An accelerator is composed
of the computation (i.e., PE array) and memory resources.

3.1 PE Array Model

The main computation component in the NN accelerator is
a group of processing elements (PEs) performing the basic
element-wise arithmetic (e.g., MAC) on the inputs in par-
allel by unrolling the NN nested loop. To reduce data
movement, PEs are arranged into multiple dimensions and
exquisite interconnections among them are introduced to
exploit the data reuse opportunities. With little to no dif-
ference in the implementation of individual PEs, the inter-
connections distinguish different accelerators and play an
important role in determining the performance and energy
efficiency of the accelerators on a certain network. There-
fore, to model the PE array is indeed to abstract the inter-
connections for data reuse.

Challenge: Traditionally, the accelerators are dataflow-
defined, which means the interconnections between PEs

for g.i in range(N[dim][g]):
 for op.i in range(N[dim][op]):
 for opc.i in range(N[dim][opc]):
 for ks.i in range(N[dim][ks]):
 O[g.i][op.i][opc.i] += I[g.i][opc.i+ks.i] × K[g.i][op.i][ks.i]

Fig. 4. 1-D GCONV model which can be scaled up to multiple dimen-

sions. N[dim][param]: the value of the parameter in the dimension. O:

output; I: input, K: kernel parameter.

TABLE 1
EXAMPLES OF FOUR LOOPS OF GCONV MODEL

Example Dim Param

kernel size in convolution/pooling layer H/W ks

output size in convolution/pooling layer H/W opc

output feature map in convolution layer C op

input feature map in convolution layer C ks

batch size in convolution layer B opc

batch size in batch normalization layer B ks

channel range in local response normalization layer C ks

output size in normalization/dropout layer H/W g

W: width, H: height, C: channel, B: batch. This table only lists the most rep-

resentative examples to help understand the loops. GCONV can model a wide

range of NN computation as in [3].

4 IEEE TRANSACTIONS ON COMPUTERS

only serve certain dataflows. They can be recognized as no-
local-reuse, input-, weight-, output-stationary, a group-
wise variation [19] or a combination of them [20] in classic
taxonomy. We will see that this classification is not precise
in the discussion of Table 2. Recent works [7][8] interpret
the accelerator dataflows as a constraint on the loop block-
ing, i.e., how the loops in Fig. 4 are ordered and unrolled
in different spatial (PE) and temporal (memory) dimen-
sions of an accelerator. For example, the row-stationary da-
taflow of Eyeriss [19] is represented as S_C | Q_K | R_C_P
(𝑘𝑠𝐻_𝑘𝑠𝐶 | 𝑜𝑝𝑐𝐻_𝑜𝑝𝐶 | 𝑘𝑠𝑊_𝑘𝑠𝐶_𝑜𝑝𝑐𝑊 in the GCONV model)
in row (spatial) | column (spatial) | scratchpad (temporal)
in [8]. This representation is precise but still not efficient in
real-time all-inclusive scheduling. It requires manual spec-
ification of the loop order, which is burdensome and in-
flexible, especially when there are various NN computa-
tion suitable for different dataflows. Moreover, since this
representation reveals little about the objective structure of
the accelerators, it is hard for the scheduler to align heter-
ogeneous accelerators or to implement a universal algo-
rithm to schedule and map the NN tasks. The scheduler
can only exhaustively search the design space pruned by
these constraints.

Proposed model: Our proposed model describes the ac-
celerators in a function-defined way. Instead of binding the
accelerator with a fixed dataflow, we focus on the intrinsic
functions of the interconnections. We enumerate the possi-
ble primitives for spatial and temporal data reuses dis-
cussed in Section 2.2 in a systematic manner. Table 2 lists
the data reuse functions and corresponding accelerators
that adopt each function.

First, the temporal reuse of all the data (both parallel and
convolution reuse) can be intrinsically realized by keeping
the data stationary in memory without any special hard-
ware function. For output parallel reuse that requires re-
duction, it can also be performed in a stationary manner,
i.e., read-reduce-write using the reduction function within
the PE. Therefore, the temporal data reuse functions are

not explicitly modeled. Note that the xx-stationary
dataflow defination does not hold because it only defines
the innermost temporal unrolling.

Another function not explicitly modeled is the spatial
parallel reuse of inputs and kernel parameters. It is real-
ized by broadcast (Fig. 5(a)) through the data bus, which is
commonly used in modern accelerators. However, a reduc-
tion function (e.g., the adder tree in Fig. 5(b)) over a certain
dimension of PEs needs to be clearly defined to dictate if
the output parallel reuse can be exploited.

The convolution reuse is an interplay between the input,
output, and kernel data. As shown in Fig. 6, the overlap-
ping of convolutional windows provides reuse opportuni-
ties for the inputs, kernels, or outputs when the other two
types of data are unrolled. Note that since not all the inputs
are utilized for the computation of all the outputs (e.g., I0,
I1, I3, I4), the unrolling of inputs (Fig. 6(b) and (c)) always
results in ineffectual computation, which is extremely se-
vere in the weight update phase during training [21].
Therefore, we focus on the unrolling of kernels and out-
puts with convolution reuse of inputs (Fig. 6(d)). To exploit
the convolution reuse, both the kernels and outputs can be
either spatially or temporally unrolled. When they are un-
rolled in different spatial dimensions, the inputs can be re-
used by diagonal broadcasting (Fig. 5(c)). And when one
of them are unrolled temporally, the reuse of inputs should
be implemented by shift function (Fig. 5(d)), where the in-
puts are shared by different PEs in different cycles via for-
warding. Note that the systolic array [25] also adopts data
forwarding interconnections between the PEs. However,
they in essence exploit the parallel reuses (i.e., broadcast or
reduction) with lower bandwidth demands.

With data reuse functions defined, the PE array is de-
scribed by a vector

[PE size, reduction, diagonal, shift]
in each spatial dimension in our model, which clarifies PE
array size besides the three reuse functions. In NN acceler-
ators, the interconnections can be fixed or reconfigurable
[6]. For example, although [21] provides an adder tree that
connects all the PEs, reduction can be optionally performed,
as long as the number of outputs does not exceed the band-
width. Therefore, we explicitly indicate if the functions are
not-available (N), allowed (A) or mandatory (M) in each
PE dimension. Table 3 lists the PE array models of four rep-
resentative accelerators.

3.2 Memory Model

The storage resources of the accelerators appear in various
forms including the operand registers for each PE, the

PE0

PE1

PE2

+
+

Tree
Adder

PE00

PE10

PE20

PE01

PE11

PE21

PE02

PE12

PE22

B
U

S

PE0

PE1

PE2

reg

reg

reg

cycle1

cycle2

PE0

PE1

PE2

B
U

S

(b) (c) (d)(a)

Fig. 5. Spatial reuse functions: (a) broadcast; (b) reduction; (c) diago-

nal; (d) shift.

TABLE 2
DATA REUSE FUNCTIONS

Reuse
Type

Reused
Data

Unrolled
Loop

Unroll
Dimension Function Examples

parallel

input

kernel

op

opc

spatial broadcast almost all

temporal stationary all

output ks
spatial reduction [21][22]

temporal stationary all

convo-

lution
input ks opc

spatial diagonal [19][23]*

temporal stationary all

spat+temp shift [21][24]

The functions in italic are explicitly modeled in our formalization. *[23] di-

agonally collects outputs.

O0 O1 O2

K0

K1

K2

I0 I1 I2

I2 I3

I4

I1

I2 I3

(b) (c) (d)

I0 I1 I2

O0

O1

O2

K0 K1 K2

K0 K1

K0

I0 I1 I2

K0

K1

K2

O0 O1 O2

O0 O1

O0

O0

O1

O2

K0

K1

K2

I1

I0

I2

I3

I4 (a)

Fig. 6. Convolution reuse patterns for each type of data. (a) is an ex-

ample of convolution. Each box on the inputs is the convolution win-

dow of each output. (b) to (d) indicate the convolution reuse (red line)

of each type of data (round) when unrolling the other two (square).

ZHANG ET AL.: AINNS: ALL-INCLUSIVE NEURAL NETWORK SCHEDULING VIA ACCELERATOR FORMALIZATION 5

register arrays shared by multiple PEs, the on-chip SRAMs,
the off-chip DRAMs, etc. Regardless of the specific imple-
mentation, our formalization models a hierarchical and in-
clusive memory abstraction. There are three kinds of data,
inputs, kernel parameters and outputs (partial results) in
the memory system. Therefore, there are three sets of pa-
rameters for each level of memory. We model each level of
memory for each kind of data as

[capacity, bandwidth, associativity bits, communication cost]
as shown in Table 4. For simplicity, we assume all the ac-
celerators implement 8-bit data as in [25].

For the capacity and bandwidth, minus values represent
sharing between different kinds of data. For instance, -2 in
the global buffer of TPU means the outputs share the
memory capacity with the inputs. The associativity bits in-
dicate if all the PEs in a certain dimension share the
memory capacity and bandwidth. Usually, the local stor-
age is exclusive and global buffers are shared by all. One
exception is Eager Pruning which divides the PEs into sub-
systems and the input pool and global buffers are only
shared within each subsystem (PE dimension 1). The asso-
ciation bit can also be utilized to model the mandatory
broadcasting by forcing the PEs to share only one data. For
example, the input is broadcast to 𝑇𝑚 PEs (PE dimension 2)
in NLR. Note that the capacity and bandwidth pertain to
each associated memory.

The last parameter is the communication energy cost be-
tween the memory and its higher level or the PEs for the
local operand registers. In this work, we generate the en-
ergy consumption using the CACTI [26] simulation for
RAMs and Synopsys Design Compiler for registers based
on the capacity and bandwidth assuming the accelerators
are implemented in the same process technology. The costs
are normalized to that of a single register shifting. In gen-
eral practice, the costs can be evaluated or estimated using
off-the-shelf models according to the specific implementa-
tion and technology.

This model flexibly applies to different memory hierar-
chies. For instance, some accelerators feed the PEs directly
from the global buffers [25] and others may adopt more
complicated hierarchical on-chip memory system [21],
needless to say the various off-chip storage. Although Ta-
ble 4 only lists the formalized model for local storage and
global buffer, we model the entire memory hierarchy of
each accelerator in the experiments.

3.3 Inter-Accelerator Connection

In accelerator arrays, it is common to distribute the

computation among accelerators to improve performance.
Therefore, when scaling into multi-accelerator systems, we
model the connection between the accelerators. In spite of
the various connection technologies, e.g., buses, networks,
or interposers, we focus on the communication costs and
bandwidths between each pair of accelerators, which are
modeled in a connection matrix.

4 PRINCIPLES FOR AINNS

At the system level, the total throughput and energy effi-
ciency are determined by not only how the NN tasks are
distributed among the accelerators (dispatching) but also
how the NN computation is executed on a certain acceler-
ator (mapping). Our accelerator formalization model pro-
posed in Section 3 provides an interface to construct prin-
ciples for NN dispatching and mapping that are invariable
regardless of the heterogeneity. On one hand, the formali-
zation model eliminates the disparity between accelerators
with various architectures and dataflows, so that they can
be compared explicitly. On the other hand, the accelerator
formalization model is also consistent with the GCONV
model. This enables a concise and universal connection be-
tween NNs and the underlying accelerators. Intuitively, we
view the NN computation as entities with parameterized
shapes in multiple dimensions and the accelerators as
multi-dimension containers with shapes defined under the
same standard to accommodate them.

4.1 Mapping Principle

As mentioned in Section 3.1, mapping of an NN is de-
scribed by loop blocking. Normally, the accelerator
possesses two or more spatial dimensions as in Table 3. The
memory manifests multiple levels but the temporal
dimension is unified because it is hierarchical as shown in
Fig. 7. When putting NNs into accelerators, each spatial
dimension is filled independently.

In AINNS, neural network mapping shows great rotata-
bility. Specifically, the GCONV model is semantically sym-
metric in all dimensions. The accelerator formalization
model also defines each dimension individually. Therefore,

TABLE 3
PE ARRAY MODEL EXAMPLES

Accelerator Dimension PE Array Model

Eyeriss [19]
1 (row) [12, A, A, N]

2 (column) [14, N, A, N]

NLR [22]
1 (𝑇𝑛) [7, M, N, N]

2 (𝑇𝑚) [64, N, N, N]

Eager Pruning

[21]

1 (PE array) [512, A, N, A]

2 (subsystem) [4, A, N, N]

TPU [25]
1 (row) [256, N, N, N]

2 (column) [256, M, N, N]

Each dimension is [PE size, reduction, diagonal, shift].

TABLE 4
MEMORY MODEL EXAMPLES

Accelerator Data Local Storage Global Buffer

Eyeriss
K [224, 1, F, F, 10] [4096, 4, T, T, 130]

I [12, 1, F, F, 6] [51200, 1, T, T, 30]

O [24, 1, F, F, 6] [-2, 4, T, T, 90]

NLR
K [1, 1, F, F, 1] [786432, 7, T, T, 290]

I [1, 1, F, T, 1] [-3, -3, T, T, 290]

O [1, 1, T, F, 1] [393216, 64, T, T, 90]

Eager Prun-

ing

K [1, 1, F, F, 1] [786432, 32, T, F, 130]

I [64, 512, T, F, 6] [786432, 32, T, F, 130]

O [32, 32, T, F, 1] [786432, 32, T, F, 190]

TPU
K [1, 1, F, F, 1] [2097152, 45, T, T, 90]

I [1, 1, T, F, 1] [12582912, 256, T, T, 60]

O [1, 1, F, F, 1] [-2, 256, T, T, 90]

Each level of memory has [capacity (B), bandwidth to higher-level memory

(B/cycle), associativity in PE dim1, associativity in PE dim2, normalized

communication cost to higher-level memory (/B)] for input, output or ker-

nel. F: false, T: true.

6 IEEE TRANSACTIONS ON COMPUTERS

there is no fixed matching between the dimensions of NN
computation and the accelerator. The parameter of any di-
mension of NN can be unrolled in any dimension of the
accelerator with no enforced order. Thanks to this feature,
the following principles apply to universal NN accelera-
tion.

To closely pack the NN computation into the accelerator
and thus optimize the performance and energy efficiency,
the scheduler should improve the utilization of both
computation and memory resources. There are two major
goals: (1) increase the computation performed in parallel
by maximizing the loops unrolled spatially; (2) reduce ac-
cesses to the costly low-level memory by maximizing the
data reuse and the loops unrolled temporally in the block-
ing of high-level memory.

Loop blocking is constrained by the accelerator
hardware structure. The data reuse functions in the
accelerator PE array model determines whether a
parameter can be unrolled in a certain dimension of the
accelerator according to Table 2. If the parameter is allowed
or mandatory, the key limitation for the unrolling is the
resource requirement, i.e., how many resources are
occupied when a certain parameter is unrolled.

Here, we mainly consider the PE size and memory
capacity. The temporal unrolling is constrained by the
memory capacity and the spatial unrolling is constrained
by both the PE size and the maximal data in that
dimension, which is dictated by the available operator
registers, i.e., the lowest-level memory. As shown in the
“used” box in Fig. 7, when nothing is unrolled (unrolling
factor is 1), only one PE and the storage for one data of each
type are required. For each unrolling, the resource
requirements expand with the unrolling factor differently
based on the exact parameter. The occupation of PEs is
simply the same as the unrolled loop points because each
point corresponds to a MAC computation. For capacity
requirement of the memory including the maximal data in
PE array, each unrolling occupies the memory for all three
kinds of data unless there is a data reuse opportunity. The
blank cells in Fig. 7 indicate the parallel reuse and +I1/I2
entries indicate the convolution reuse which is smaller
than ×uf only when the unrolling factors of both opc and ks
are above 1. Note that the resource requirments are
multiplied on blockings of different parameters (e.g., ks, op)

and DNN dimensions (e.g., C, H, W). The temporal
unrolling may span multiple memory levels for different
data types. For example, the unrolled op loop in Fig. 4 can
keep the input stationary in local scratchpad but fectch the
kernel from the global buffer.

Despite bandwidth’s impact on the data loading time, it
does not constrain the mapping of the network. Therefore,
we only increase the data reuse in all the spatial
dimensions to reduce the bandwidth requirement.

4.2 Dispatching Principle

Though we can increase the utilization of an accelerator by
optimizing the loop blocking of the neural network, the
upper bound is limited. For example, as mentioned in Sec-
tion 4.1, the hardware structure of accelerator determines
which NN parameters can be unrolled to exploit certain
data reuse opportunities. However, if the NN computation
does not exhibit sufficient reuse opportunities, the utiliza-
tion will be low. On the other hand, if the abundant reuse
opportunities of an NN cannot be exploited by the acceler-
ator, unnecessary data movement will still be involved.
Therefore, high utilization of the entire system relies on
smart matching of the NN tasks and accelerators.

In AINNS, since the NN computation and accelerator
structures are modeled consistently, we can introduce com-
parable feature pairs, as listed in Table 5, to help the sched-
uler efficiently match them. The shape features indicate
how the NN would fit into the accelerator. They can con-
strain the utilization of the accelerator resources. The size
features measure the total required and available resources
of an NN and an accelerator, which determine the perfor-
mance when the shape features match. These features cap-
ture the intrinsic characteristics of any neural network and
accelerator. They can be leveraged to perform dispatching
based on various algorithms.

5 AN AINNS ARCHITECTURE

With the formalization model and scheduling principles
proposed in Sections 3 and 4, we can design various

K I O
memory

L0

K I O
max data

PE

available
resources

used

× uf × uf × ufunroll g:

× uf × ufunroll op:

+ I1 × ufunroll opc:

× uf + I2unroll ks:

× uf × uf × uf
× uf × uf

+ I1 × uf
× uf + I2

× uf
× uf
× uf
× uf

Temporal Unrolling Spatial Unrolling

I1=(uf-1)×g×opc

I2=(uf-1)×g×ks

PE=g×op×opc×ks

K=g×op×ks

I=g×(ks+(opc-1))

O=g×op×opc

Resource
requirement

equations

L1

Fig. 7. Resource requirement in temporal and spatial unrolling in one

dimension. uf: unrolling factor. L0/L1: high/low memory level.

TABLE 5
DEFINITION OF SIZE AND SHAPE FEATURES

Type
Feature

Description
Accelerator Network

size

npe = ∏ped

pe_size

ncomp = ∏opd

(ks×opc×op×g)

total PEs and total

computation

nmemk/i/o = ∑meml

(mem_size/cost)

ndatak/i/o = ∏opd

required data

memory weighted by

the costs and total data

shape

pbrk/i/o =

npe/bwk/i/o

cdrk/i/o = ncomp/

ndatak/i/o

PE/bandwidth ratio

and computation/data

ratio

cpr = (∏conv-ped

pe_size)/npe

ccr = (∏conv-opd

(ks×opc))/ncomp

convolution (diagonal,

shift) PE ratio and con-

volution computation

ratio
rpr = (∏red-ped

pe_size)/npe

rcr = (∏opd ks)/

ncomp

reduction functioned

PE ratio and reduction

computation ratio

ped/opd (conv/red- ped/opd): PE/NN dimension (with convolution/reduc-

tion); meml: memory level. The required data can be derived from Fig. 7.

ZHANG ET AL.: AINNS: ALL-INCLUSIVE NEURAL NETWORK SCHEDULING VIA ACCELERATOR FORMALIZATION 7

efficient scheduling and optimization algorithms in the
heterogeneous NN acceleration system. In this section, we
present the AINNS that we implemented as an illustrative
demonstration of the viability of the model.

Fig. 8 shows an overview of our AINNS system. AINNS
is equipped with a task dispatcher and a local mapper. It
takes a series of NNs (converted to GCONV Chains as in
[3]) as input workloads. The task dispatcher (TD) sched-
ules the NNs in the queue one by one by finding the most
matched accelerator in terms of the required and available
resources to guarantee high utilization. Then local mapper
(LM) determines the exact mapping of each network on the
corresponding accelerator, i.e., to find the spatial and tem-
poral unrolling plans with the best performance and en-
ergy efficiency. Both TD and LM work in real time.

5.1 Logical Formalized Accelerator (LF-acc)

In a multi-accelerator-multi-NN system, an accelerator can
be shared by more than one networks and a network can
be distributed among accelerators [5][27]. In both cases, we
focus on the logical accelerator that each NN runs on. This
section introduces the logical formalized accelerators (LF-
acc) so that the multi-tenant execution and network
partitioning can be implicitly supported in AINNS.

Fig. 9 shows three types of LF-accs in AINNS. First, a set
of homogeneous accelerators with uniform connections is
viewed as an LF-acc with one more spatial dimension (Fig.
9(a)). All levels of memory in the accelerators are not
associated in the new dimension. However, a virtual
memory associated in all the spatial dimensions is added
to the memory hierarchy to model the inter-accelerator
connection. Its capacity is the sum of the lowest-level
memory of all the accelerators while its bandwidth and
cost are the communication bandwidth and cost between
the accelerators. Fig. 9(b) illustrates when an NN is
distributed to heterogeneous accelerators. In this case, the
LF-acc is asymmetric with a different configuration for
each physical accelerator and a virtual shared memory that
models the communication information is also added. In
this work, we only consider up to two heterogeneous

physical accelerators in a LF-acc since this provides
sufficient system utilization improvement in our
experiments. When an NN cannot exploit all the the PEs
and memory resources, the physical accelerator is
partitioned into LF-accs to process more tasks as shown in
Fig. 9(c). In AINNS, different types of LF-accs can be
combined. For example, LF-acc in Fig. 9(a) and LF-acc2 in
Fig. 9(c) can be scheduled as a LF-acc with heterogeneous
physical accelerators as in Fig. 9(b).

5.2 Local Mapper (LM)

When a network is assigned to an LF-acc, LM schedules
how the loops of the NN are unrolled and executed in the
LF-acc. Instead of recognizing the dataflow and perform-
ing the specific mapping for each accelerator, our LM
adopts just one uniform mapping algorithm for all the
workloads and accelerators. The critical insight is to fill the
most exclusive functions in the LF-acc with the corre-
sponding NN loops first in case they will be left idle.

Fig. 10 shows the main steps of LM. Step 1 and Step 2
first spatially map NN dimensions with convolution reuse
or output parallel reuse to the spatial dimensions with di-
agonal, shift or reduction functions. The mandatory func-
tions are filled first to avoid underutilization. Then in Step
3, if there is still NN dimension with convolution reuse not
mapped to any LF-acc function, the ks and opc of that di-
mension are both unrolled temporally for stationary reuse.
In Step 4, the op and opc loops are unrolled to fill the spare
spatial dimensions. And in Step 5, the op, opc and ks loops
are unrolled temporally within the hierarchy of memory to
reuse the data stationarily.

Note that LM is applicable to both homogeneous and
heterogeneous LF-accs. The unrolling factor of each loop is
determined by the required resources, e.g., PE size and
memory capacity, as discussed in Section 4. For the map-
pings in each step, there is no required order for the dimen-
sions or parameters to be unrolled. Our experiments show
the mapping order affects the average latency and data
movement by less than 5%.

5.3 Task Dispatcher (TD)

Since most of the neural networks arrive on the fly, TD is

virtual shared mem

exclusive mem exclusive mem

exclusive mem

......

Accelerator array

LF-acc

exclusive mem

......

Accelerator array

LF-acc

mem

mem mem

LF-acc1 LF-acc2

(a) (c)(b)

Accelerator

exclusive mem

exclusive memexclusive mem

virtual shared mem

Fig. 9. Three types of logical formalized accelerators (LF-acc): (a) ho-

mogeneous accelerators; (b) heterogeneous accelerators; (c) accel-

erator partitioning.

Convolution reuse: ks > s, opc > 1

ks, opc -> memory

Step 3

Input parallel reuse: op > 1

op -> spatial

Kernel parallel reuse: opc > 1

opc -> spatial

Step 4

Input parallel reuse: op > 1

op -> memory

Kernel parallel reuse: opc > 1

opc -> memory

Output parallel reuse: ks > 1

ks -> memory

Step 5

Output parallel reuse: ks > 1

ks -> reduction==M/A

Step 2

Convolution reuse: ks > s, opc > 1

ks, opc -> diagonal==M/A
ks or opc -> shift==M/A

Step 1

Fig. 10. Local mapping steps. g is unrolled only when there is no other

parameter. The algorithm is applicable to both homogeneous and het-

erogeneous LF-accs.

ACC1

ACC2

ACC3

M
U

Xtask 1

task 2

Feature-
matching
algorithm

timeline

Local
mapper

Task dispatcher
(TD)

(LM)

Fig. 8. AINNS system overview.

8 IEEE TRANSACTIONS ON COMPUTERS

designed to schedule them at run time heuristically. Algo-
rithm 1 lists the algorithm of TD:

Home designation: The scheduler assigns a home accel-
erator to each task. It keeps a list of available home accel-
erators ordered by npe or nmem based on whether the pol-
icy is throughput or energy optimized. When a new task
arrives, the scheduler iterates until an accelerator that
matches the shape of NN within a threshold is located and
assigned to the task (lines 3 to 6). If no matching accelerator
is found, the scheduler simply assigns the first accelerator
in the list to the task (lines 7 and 8).

NN partitioning: The tasks are distributed when there
are idle accelerators. This is materialized by adding idle ac-
celerators to the LF-acc of the tasks. The available_LF-accs
list records the idle accelerators or LF-accs that are not in
the LF-acc of any task. Starting from the home accelerator
(line 9), each running task can add idle accelerators or LF-
accs to its own LF-acc. The maximal number of accelerators
that can be added by each task is determined by the real-
time task arriving rate in the system (line 12). When adding
LF-accs, the shape matching should also be checked. Espe-
cially, to avoid overwhelming interconnection communica-
tion, we check the memory-related features of the newly
formed LF-acc and abandon if the overhead is too large
(lines 14 and 15). When an accelerator is assigned to a new
task as home, it should be deducted from the LF-accs of all
(line 10).

Accelerator partitioning: After changing LF-acc, LM is
performed to map the NN to its LF-acc. If it cannot exploit
the entire LF-acc, the unused portion will be set idle and
added to the available_LF-accs list (lines 16 and 17).

Preemption: Preemption is performed in a non-inter-
ruptible way in our scheduler to avoid starvation of the
low-priority tasks. Specifically, the new tasks can preempt
the resources of tasks with lower priority but the home ac-
celerators cannot be preempted.

6 EVALUATION

6.1 Methodologies

In the following sections, the mapping and diapatching
functions of AINNS are evaluated independently first.
Then we evaluate the overall AINNS system in two case
studies where the accelerators and NN workloads are both
heterogeneous to show its performance in the AIoT appli-
cations.

We derive the experimental results by an in-house sim-
ulator. Specifically, the simulator generates the computa-
tion and data loading cycles as well as data movement in
each memory level. The model is in accordance with those
used in previous works [3][8][19]. The inter-accelerator
connection latency and data movement model is consistent
with [5]. Then the system computation and data movement
energy are calculated based on the power estimation ob-
tained by RTL synthesis in Synopsys Design Compiler and
memory simulation in CACTI [26]. The scheduling time
and energy are derived directly from the processors we run.

We compare the LM and TD of AINNS with different
baselines respectively.

Local mapping baselines: LM is compared against two
baselines:

Manual dataflow (MD): The scheduler follows the man-
ually optimized dataflow as discussed in Section 3.1 to
map the NN on the accelerator. The dataflow of each accel-
erator is listed in Table 6.

Mapping search (MS): The loop order and unrolling fac-
tors are randomly chosen. The optimal plan is selected
based on the evaluation results. MST refers to the results of

Fig. 12. Data movement energy of single DNNs, normalized to MD.

Fig. 11. Speedup of single DNNs, normalized to MD.

——————————————————————————————
Algorithm 1: Algorithm for feature-matching dispatching. It is
called when a new task arrives or a task commits.
——————————————————————————————
1: for task in scheduling_queue:

2: if available_home_accelerators not empty:

3: for acc in available_home_accelerators:

4: if task.cdr > acc.pbr × matching_threshold and task.ccr
> acc.cbr × matching_threshold and task.rcr > acc.rpr × match-
ing_threshold:

5: home_acc ← acc

6: break

7: if not home_acc:

8: home_acc ← available_home_accelerators[0]

9: task.LF-acc ← home_acc

10: deduct home_acc from all LF-acc

11: for task in running_tasks:

12: while len(task.LF-acc) < partition_rate × len(available_LF-
accs)

13: task.LF-acc.add from available_LF-accs

14: if task.LF-acc.pbr > unusable_threshold or task.LF-acc.

nmem < unusable_threshold:

15: task.LF-acc.deduct (added_portion)

16: task.LF-acc.deduct (unused_portion)

17: available_LF-accs.add (unused_portion)
——————————————————————————————

TABLE 6
MANUAL DATAFLOWS OF ACCELERATORS

Accelerator
Loop order

PE Dim1 PE Dim2 Temporal

Eyeriss 𝑘𝑠𝐻_𝑘𝑠𝐶 𝑜𝑝𝑐𝐻_𝑜𝑝𝐶 𝑘𝑠𝑊_𝑘𝑠𝐶_𝑜𝑝𝑐𝑊 …

NLR 𝑘𝑠𝐶 𝑜𝑝𝐶 𝑘𝑠𝑊_𝑘𝑠𝐻 …

TPU 𝑜𝑝𝐶 𝑘𝑠𝐶_𝑘𝑠𝑊_𝑘𝑠𝐻 𝑜𝑝𝑐𝐵_𝑜𝑝𝑐𝑊_𝑜𝑝𝑐𝐻 …

Eager Pruning 𝑘𝑠𝑊_𝑘𝑠𝐻_𝑜𝑝𝐶 𝑘𝑠𝐶 𝑜𝑝𝑐𝑊_𝑜𝑝𝑐𝐻 …

Eyeriss NLR TPU Eager Pruning
0

1

2

3

4

5
1
/E

n
e
rg

y

 MD MST MSC AINNS

 AN R50 Caps SSD

Eyeriss NLR TPU Eager Pruning
0

1

2

3

4

5

S
p

e
e

d
u

p

 MD MST MSC AINNS

 AN R50 Caps SSD

ZHANG ET AL.: AINNS: ALL-INCLUSIVE NEURAL NETWORK SCHEDULING VIA ACCELERATOR FORMALIZATION 9

MS within the same time as AINNS and MSC refers to the
results of MS until convergence.

Task dispatching baselines: For TD, there are two naïve
baselines and two mainstream scheduling schemes:

Round-robin (RR): Each NN task is assigned to the next
available accelerator and no partitioning is performed.

All-partition (AP): The tasks are processed in sequence.
When each task is being processed, its LF-acc is all the ac-
celerators in the system.

Size only (SO) [4][5]: The scheduler only takes the size
features (i.e., PE size and memory capacity) of the acceler-
ators into consideration but not the shape features.

Dispatching search (DS) [6]: The scheduler randomly
searches for the optimal dispatching plans within the de-
sign space. DST and DSC refer to the results within the
same time as AINNS and until convergence respectively.

6.2 Mapping Results

We compare the mapping results of four networks, i.e.,
AlexNet (AN) [28], ResNet50 (R50) [29], CapsuleNet (Caps)
[30], SSD-MobileNet (SSD) [31], on the four accelerators in
Table 3. Fig. 11 shows the speedup results of three mappers
and Fig. 12 shows the total data movement energy con-
sumption. AINNS gains 2.3x speedup and 1.9x energy re-
duction on average over MD. Compared with the opti-
mum-guaranteed MSC, AINNS achieves 87% (up to 99%)
and 78% (up to 94%) of its speedup and data movement
energy efficiency. Note that MSC takes more than 1000x
longer than AINNS to converge to the optimal results.
Within the same scheduling time, MST only generates 6%
and 2% speedup and data movement energy efficiency.
MD also requires heavy human labor to optimize the data-
flow for each accelerator while AINNS can generate effec-
tive mapping for any NN on any accelerator in real time.

6.3 Dispatching Results

To demonstrate that AINNS is all-inclusive, we evaluate
the dispatcher in all the 16 regions of the NN-accelerator
heterogeneity plane shown in Fig. 3. In the single accelera-
tor/NN HPRs, only 1 accelerator is chosen from Eyeriss
[19], Eager Pruning [21], NLR [22], TPU v2 [25] or TPU v3

[15] and only 1 NN is chosen from LeNet [32], AlexNet [28],
GoogLeNet [33], ResNet34, ResNet50, ResNet101 [29],
DenseNet [34] or CapsuleNet [30]. In the other cases, 10 ac-
celerators and 50 networks are randomly chosen following
the heterogeneity requirements. Arrival of the tasks fol-
lows continuous uniform distribution. To isolate the per-
formance of the dispatcher, we apply AINNS mapping to
all the dispatchers.

We compare AINNS with the baselines in terms of aver-
age latency for quality of service, maximal slowdown (ac-
tual latency/ideal latency of a task) for fairness, total data
movement cost for energy efficiency in Fig. 13 to 15. The
results in single/homogeneous HPRs are averaged on all
the NNs/accelerators and the results in (semi-) heterogene-
ous HPRs are averaged on 5 different benchmark configu-
rations. SO has the same scheduling results as AINNS in
HPRs[1,1] to [3,4] because there is no shape difference in
the accelerators. Therefore, AINNS is only compared with
RR, AP and DSC in these regions. In HPRs[4,1] to [4,4],
since SO and DSC perform the best among the baselines,
we omit the others. Table 7 compares the total time to per-
form scheduling in all the HPRs for once.

Based on the results in Fig. 13 to 15 and Table 7, the per-
formance of AINNS is comparable to DSC, which can be
viewed as an optimal ground-truth scheduler, with signif-
icantly reduced compiling time (by 23x). For the real time
schedulers, AP and RR have similar results as AINNS
when the system has single accelerator or neural network.
However, if the accelerator array and NN workloads are
more complicated, AP and RR fail to render competitive
speedup. AP suffers form the worst speedup, slowdown
and data movement due to low utilization and high com-
munication. Note that RR has the least data movement
since it avoids any inter-accelerator communication but
this is accompanied by worse speedup and slowdown be-
cause the NN computation cannot be distributed and ac-
celerators with the most resources are not always busy. SO
always assigns accelerators with the most resources to the
workloads, so its scheduling results can be even better than
AINNS in HPRs[4,1] to [4,3]. However, it is less compara-
ble to AINNS in HPR[4,4]. This most challenging region
requires accurate matching of the neural networks and the
accelerators. The significant speedup (2.7x) and data
movement reduction (69%) in this region prove the effec-
tiveness of the shape matching mechanism in AINNS.

TABLE 7
TOTAL SCHEDULING TIME

Scheduler RR AP SO AINNS DSC

Time (min) 2 2 6 8 185

Fig. 15. Data movement ratio when the system is energy-optimized.

Fig. 14. Maximal slowdown ratio when the system is throughput-opti-

mized.

Fig. 13. Average latency speedup when the system is throughput-op-

timized.

[1
,1

]

[1
,2

]

[1
,3

]

[1
,4

]

[2
,1

]

[2
,2

]

[2
,3

]

[2
,4

]

[3
,1

]

[3
,2

]

[3
,3

]

[3
,4

]0.0

0.5

1.0

1.5

D
a
ta

 M
o
v
e
m

e
n
t

R
a
ti
o

 AINNS/RR AINNS/AP AINNS/DSC

[4
,1

]

[4
,2

]

[4
,3

]

[4
,4

]

 AINNS/SO

[1
,1

]

[1
,2

]

[1
,3

]

[1
,4

]

[2
,1

]

[2
,2

]

[2
,3

]

[2
,4

]

[3
,1

]

[3
,2

]

[3
,3

]

[3
,4

]0.0

0.5

1.0

1.5

M
a

x
im

a
l
S

lo
w

d
o

w
n

R
a

ti
o

 AINNS/RR AINNS/AP AINNS/DSC

[4
,1

]

[4
,2

]

[4
,3

]

[4
,4

]

 AINNS/SO

[1
,1

]

[1
,2

]

[1
,3

]

[1
,4

]

[2
,1

]

[2
,2

]

[2
,3

]

[2
,4

]

[3
,1

]

[3
,2

]

[3
,3

]

[3
,4

]0

2

4

A
v
e
ra

g
e
 L

a
te

n
c
y

S
p
e
e
d
u
p

 AINNS/RR AINNS/AP AINNS/DSC

[4
,1

]

[4
,2

]

[4
,3

]

[4
,4

]

 AINNS/SO

10 IEEE TRANSACTIONS ON COMPUTERS

In the following, we will evaluate the entire AINNS sys-
tem in two case studies where the accelerators and NN
workloads are both heterogeneous to show its potential ap-
plication in the future AIoT environment.

6.4 Case Study 1: Data Center

The first case study simulates the workloads in the data
center. The NN tasks are randomly chosen from MLPerf
[35] (an industry-wide standard machine learning bench-
mark including ResNet50, MobileNet, SSD-ResNet34,
SSD- MobileNet and GNMT) and configured as training
(low priority), batch inference (medium priority) or real-
time inference (batch size is 1, high priority). And their ar-
rival follows the Poisson’s distribution.

Since both the quality of service and the service pro-
vider’s profit should be optimized in the data center [36],
we evaluate the user’s satisfaction with the NN tasks and
the total energy consumption of the system. The user’s sat-
isfaction with the latency is calculated based on the model
proposed in [37]. Concretely, the satisfaction is scored 1 or
0 if the latency is within an imperceptible latency threshold
or beyond an unusable latency threshold. And the satisfac-
tion degrades linearly with the response time between the
two thresholds. In the evaluation, we set 1 second and 6
seconds per input for the imperceptible and unusable
thresholds respectively for inference [38]. For the training
tasks, the imperceptible latency threshold is set to 7 days
for the heavy neural networks (i.e., ResNet50, SSD-Res-
Net34 and GNMT) and 2 days for the light neural networks
(i.e., MobileNet and SSD-MobileNet) [28]. The unusable
threshold for training is 15 days.

For comprehensiveness, we evaluate the overall perfor-
mance of the scheduler considering both the mapper and
dispatcher. Specifically, RR, AP and SO rely on MD mapper
while DS is based on the MS mapper. The scheduler com-
piling time and energy consumption are counted into the
results. They are derived from the power and compiling
latency of the schedulers on an Intel Core i7 CPU.

We first study the average user’s satisfaction as the sys-
tem energy grows. Better schedulers can achieve same
user’s satisfaction with less energy because they have a bet-
ter utilization of the accelerators and thus less accelerators
should be employed. AINNS is evaluated with a heteroge-
neous accelerator array where all types of accelerators
mentioned in Section 6.3 are available. RR is evaluated as a
naïve baseline with a homogeneous TPU v2 array. SO is
evaluated with a semi-homogeneous accelerator array
with two generations of TPUs as a state-of-the-art

scheduler. We change the numbers of the accelerators, test
the energy and user satisfaction of each sample configura-
tion and plot the upper envelopes of the samples in Fig. 16.
As shown, with a more flexible accelerator choice in heter-
ogeneous arrays, AINNS achieves 0.5, 0.8 and 1 user’s sat-
isfaction with 30%, 43% and 5% less energy consumption
compared with state-of-the-art.

We then compare the performance of all the schedulers
under the heterogeneous configuration where AINNS
achieves 0.8 user’s satisfaction in Fig. 17. With its effective-
ness and efficiency in scheduling, AINNS improves the av-
erage latency, downtime, makespan and energy efficiency
of almost all the baselines. Exhaustive search fails to pro-
vide efficient real-time scheduling as DSC suffers from ex-
tremely long downtime while DST provides the worst la-
tency among all the baselines.

6.5 Case Study 2: Smart Electric Vehicle

The second case study lies in a smart plug-in hybrid elec-
tric vehicle that integrates energy management, traffic sign
recognition and driver stress detection. Before the voyage,
the energy management is performed by a three-layer
feed-forward neural network for driving mode prediction,
a two-layer RNN to estimate the co-state of the energy
scheduling principles and a radical basis function neural
network to predict the future velocity based on the past ve-
hicle speed [39]. During driving, the traffic sign recogni-
tion is realized by a multi-task CNN, where a fast binary
classification result can be obtained after the first convolu-
tion layer and the real classification is provided after the
third layer [9]. Another neural network with two hidden
layers is also embedded in the system to detect the stress
level of the driver using the physiological signals [40]. In
the system, the energy management is first performed as a
real-time inference. The traffic sign recognition is per-
formed as a batch inference with hard deadline whenever
the regions of interests are proposed, which is modeled as
a uniformly distributed arriving task in our evaluation.
The real classification after the binary classification is per-
formed as a new task and 70% of the real classification can
be skipped due to a negative binary classification. The
driver stress detection is set as an inference that is per-
formed every second with medium priority. The system
also trains the models of stress detection in the case of false
positive and energy management if the mode or velocity
change during driving. The training tasks are set as low
priority.

Traditionally, the neural network workloads at the edge
and mobile ends adopt fixed schedule of an accelerator

Fig. 17. Comparison of different schedulers in the datacenter.

Fig. 16. Average user’s satisfaction as the total energy consump-

tion grows.

A
IN

N
S

R
R

A
P

D
S

T
D

S
C

S
O

0

5

10

15

20

N
o
rm

a
liz

e
d
 A

v
e
ra

g
e
 L

a
te

n
c
y

(a) A
IN

N
S

R
R

A
P

D
S

T
D

S
C

S
O

0

5

10

15

20

25

N
o
rm

a
liz

e
d
 A

v
e
ra

g
e

 D
o
w

n
ti
m

e

(b) A
IN

N
S

R
R

A
P

D
S

T
D

S
C

S
O

0

5

10

15

20

N
o

rm
a

liz
e

d
 A

v
e

ra
g

e
 M

a
k
e

s
p

a
n

(c) A
IN

N
S

R
R

A
P

D
S

T
D

S
C

S
O

0

5

10

15

N
o
rm

a
liz

e
d
 S

y
s
te

m
 E

n
e
rg

y

(d)

0 100 200 300 400 500
0.0

0.2

0.4

0.6

0.8

1.0

A
v
e
ra

g
e
 U

s
e
r'
s
 S

a
ti
s
fa

c
ti
o
n

Energy (kWh)

 RR SO AINNS AINNS

ZHANG ET AL.: AINNS: ALL-INCLUSIVE NEURAL NETWORK SCHEDULING VIA ACCELERATOR FORMALIZATION 11

array [6] or preemption of a single accelerator [41]. How-
ever, since the neural networks are not running continu-
ously but arrive randomly on the fly, the fixed allocation of
the accelerators and the preemption may result in un-
derutilization of the resources. In this case study, we com-
pare the total throughput of our proposed AINNS with the
fixed allocation (FIX) and preemption (PRE) mechanisms
under the same computation resources.

In AINNS and FIX, assume there is an NLR and two
Eyeriss chips for the neural network computation in the
system. FIX in essence leverages DSC and MSC to deter-
mine the optimal schedules of all the possible tasks in
ahead while AINNS schedules the workloads in real time.
Here, to ensure that the most significant work, i.e., traffic
sign recognition, can be completed within the hard dead-
line (i.e., 0.5 seconds [42]), FIX allocates sufficient resources
to it and AINNS modifies its policy to allow traffic sign
recognition to preempt all the other workloads. PRE is sim-
ilar to AP by allocating all the resources to only one work-
load simultaneously while also allowing the most signifi-
cant work to preempt. For best results, we configure the
accelerator in PRE as a TPU with 28×28 PE array. In this
case study, the scheduling is performed on an Arm Cortex-
A78AE CPU.

Fig. 18 shows the average system throughput and sys-
tem energy consumption of AINNS, PRE and FIX during a
30-minute voyage. Although AINNS consumes 36% more
energy than PRE due to the scheduling overhead and more
work performed, its average power (i.e., 9.1W) is still ac-
ceptable in a smart car system [43], let alone that it im-
proves the throughput by 1.8x. Specifically, as shown in Ta-
ble 8, AINNS performs 823 more driver stress detections,
15 and 7 more iterations of training for stress detection and
energy management prediction, which improves the accu-
racies of the models by 2% and 1% respectively.

7 RELATED WORK

To cater to the heterogeneity requirement in the neural

network applications, the computer architecture commu-
nity has seen a trend that the accelerators and schedulers
are more inclusive. During the early years, most works only
focus on the acceleration of a single network on a fixed-size
PE array. Located in HPR[1,1], these accelerators mainly
explore the local dataflow to maximize the performance
and energy efficiency of a single chip.

The “accelerator wall” and the limited parallelism in a
network then motivated several studies to scale up the sys-
tem. [44] splits the computation of each layer and assign
the portions to different accelerators while [23] deploys
different layers to different accelerators and process the in-
puts in a pipeline. The other studies propose to accommo-
date several networks in one architecture at the same time
to increase the utilization [27]. However, these works only
manage accelerators with the same structure and handle
the co-execution of NNs of the same type because the mul-
tiple tenants share the same dataflow (up to HPR[2,3]).

There are also mature data center machine learning
compilers [45] that translate any given NN into standard
intermediate representation and automatically map it to
the underlying hardware. They can cover any heterogene-
ous workloads but are still not able to grasp the heteroge-
neity in the accelerators (up to HPR[2,4]). To this end, sev-
eral works are recently proposed to schedule and map the
networks in heterogeneous acelerator arrays. [4][5] are
proposed to dictate the partitioning of neural network lay-
ers and the scheduling of the networks on the accelerators
based on the performance or throughput of each pair of ac-
celerator and workload. Unfortunately, without a formal
approach to recognition of different accelerator architec-
tures and the corresponding dataflows, it is difficult for
them to accurately estimate the performance and through-
puts, so they only make it to HPR[3,4]. [6] searches for the
optimal templates and resource allocations for each accel-
erator as well as the mapping of each network. It takes het-
erogeneity in both NN and accelerator into consideration
but is impossible to perform in real time. Table 9 compares
the functions of the representative related works and the
baselines that they resemble the most.

8 CONCLUSION

This paper aims to address the increasing heterogeneity in
both neural network computation and accelerators. We

TABLE 8
COMPUTATION DURING 30-MINUTE VOYAGE

Scheduler TS SD SD-T SD-A EM-T EM-A

AINNS 66 1765 35 5% 13 3%

PRE 66 942 9 1% 3 0%

FIX 66 725 20 3% 6 2%

TS: traffic sign recognition; SD: stress detection; EM: energy management

prediction; -T: training; -A: accuracy improvement by training.

Fig. 18. Comparison of different schedulers in the smart plug-in hy-

brid electric vehicle.

TABLE 9
COMPARISON OF REALTED WORKS

Scheduler
Heterogeneity Real-

time

Dis-

patch
Map Baseline

NN Accelerator

AINNS √ √ √ √ √

Gavel [4] √ ○ √ √ - SO

TVM [45] √ - - - √ MSC

PREMA [41] √ - √ √ - AP

AccPar [5] - ○ - √ - SO, AP

Herald [6] √ ○ - √ √ DSC, MSC

MT [27] √ - - √ √

Interstellar [7] - √ - - √ MD, MSC

√: supports the corresponding function; ○: only supports the semi-heteroge-

neous accelerators/NNs; -: not supported.

P
R

E

F
IX

A
IN

N
S

0.0

0.2

0.4

0.6

0.8

1.0

(a)

N
o
rm

a
liz

e
d
 T

h
ro

u
g
h

p
u
t

P
R

E

F
IX

A
IN

N
S

0.0

0.2

0.4

0.6

0.8

1.0

(b)

U
ti
liz

a
ti
o

n

P
R

E

F
IX

A
IN

N
S

0.0

0.2

0.4

0.6

0.8

1.0

(c)

N
o

rm
a

liz
e

d
 E

n
e

rg
y Scheduling

 Busy

 Idle

12 IEEE TRANSACTIONS ON COMPUTERS

first build a model to formalize various NN computation
and accelerators so that the NNs are transformed into a se-
ries of entities with parameterized shapes in multiple di-
mensions and the accelerators are described as multi-di-
mension containers with shapes defined under the same
standard to accommodate them. This allows us to turn the
complicated and ad hoc scheduling in the heterogeneous
environment into a straightforward shape matching and
accelerator filling algorithm. We exploit this opportunity
to propose an all-inclusive neural network scheduler
(AINNS) which effortlessly and universally dispatches
and maps the neural network tasks in the accelerator array
with any level of heterogeneity. Its simplicity and effective-
ness allow AINNS to perform better than state-of-the-art
approaches that either utilize exhaustive search or perform
scheduling with no awareness of the heterogeneity in the
architectures.

ACKNOWLEDGMENT

We appreciate the Department of Electrical and Computer

Engineering, University of Florida and the Margaret A.

Ross Fellowship for their support.

REFERENCES

[1] J. Zhang and D. Tao, “Empowering Things with Intelligence: A
Survey of the Progress, Challenges, and Opportunities in Artificial

Intelligence of Things,” IEEE Internet Things J., 2020.

[2] S. Liu et al., “Cambricon: An Instruction Set Architecture for
Neural Networks,” in Proceedings of the 43rd International

Symposium on Computer Architecture (ISCA), 2016, pp. 393–405.

[3] J. Zhang, X. Chen, and S. Ray, “GCONV Chain: Optimizing the
Whole-life Cost in End-to-end CNN Acceleration,” IEEE Trans.

Comput., 2021.

[4] D. Narayanan, K. Santhanam, A. Phanishayee, F. Kazhamiaka, and
M. Zaharia, “Heterogeneity-Aware Cluster Scheduling Policies for

Deep Learning Workloads,” in USENIX, 2020, pp. 481–498.

[5] L. Song, F. Chen, Y. Zhuo, X. Qian, H. Li, and Y. Chen, “AccPar:
Tensor Partitioning for Heterogeneous Deep Learning

Accelerators,” in Proceedings of International Symposium on

High-Performance Computer Architecture (HPCA), 2020, pp.
342–355.

[6] H. Kwon, L. Lai, M. Pellauer, T. Krishna, Y. H. Chen, and V.

Chandra, “Heterogeneous Dataflow Accelerators for Multi-DNN
Workloads,” in Proceedings of International Symposium on High-

Performance Computer Architecture (HPCA), 2021, vol. 2021-

Febru, pp. 71–83.
[7] X. Yang et al., “Interstellar: Using Halide’s Scheduling Language

to Analyze DNN Accelerators,” in Proceedings of the International

Conference on Architectural Support for Programming Languages

and Operating Systems (ASPLOS), 2020, pp. 369–383.

[8] A. Parashar et al., “Timeloop: A Systematic Approach to DNN
Accelerator Evaluation,” in Proceedings of the International

Symposium on Performance Analysis of Systems and Software

(ISPASS), 2019.
[9] H. Luo, Y. Yang, B. Tong, F. Wu, and B. Fan, “Traffic Sign

Recognition Using a Multi-Task Convolutional Neural Network,”

IEEE Trans. Intell. Transp. Syst., vol. 19, no. 4, pp. 1100–1111,
Apr. 2018.

[10] T. Elsken, J. H. Metzen, and F. Hutter, “Neural Architecture

Search: A Survey,” J. Mach. Learn. Res., vol. 20, pp. 1–21, 2019.
[11] H. Li, J. Li, and X. Han, “Robot Vision Model Based on Multi-

Neural Network Fusion,” in Proceedings of 2019 IEEE 3rd

Information Technology, Networking, Electronic and Automation
Control Conference, ITNEC 2019, 2019, pp. 2571–2577.

[12] M. Tremblay, M. S. Gupta, C. Y. Google, M. N. Facebook, G.

Diamos, and B. A. Iyer, “Panel-The Impact of AI Workloads on

Datacenter Compute and Memory Samsung @ The Heart of Your

Data.” [Online]. Available: https://code.fb.com/ai-

research/scaling-neural-machine-translation-to-bigger-data-sets-
with-faster-training-and-inference. [Accessed: 18-Nov-2020].

[13] A. Prakash, N. Ramakrishnan, K. Garg, and T. Srikanthan,

“Accelerating Computer Vision Algorithms on Heterogeneous
Edge Computing Platforms,” in IEEE Workshop on Signal

Processing Systems (SiPS), 2020, vol. 2020-October.

[14] “Heterogeneous Computing as a Next- Generation Architecture for
Scaling Data Centers: Trends, Opportunities, Solutions | by

Artavazd Khachatryan | Grovf | Medium.” [Online]. Available:

https://medium.com/grovf/heterogeneous-computing-as-a-next-
generation-architecture-for-scaling-data-centers-trends-

ae5c5f5725f9. [Accessed: 18-Nov-2020].
[15] “System Architecture | Cloud TPU | Google Cloud.” [Online].

Available: https://cloud.google.com/tpu/docs/system-architecture.

[Accessed: 18-Nov-2020].
[16] “Connecting the Dots: AI at the Edge :: Omdia.” [Online].

Available: https://omdia.tech.informa.com/campaign/connecting-

the-dots-ai-at-the-edge#Form. [Accessed: 27-Sep-2021].
[17] S. Wang, J. Xu, N. Zhang, and Y. Liu, “A Survey on Service

Migration in Mobile Edge Computing,” IEEE Access, vol. 6, pp.

23511–23528, Apr. 2018.
[18] L. Pacheco, H. Oliveira, D. Rosario, E. Cerqueira, L. Villas, and T.

Braun, “Service Migration for Connected Autonomous Vehicles,”

in Proceedings - IEEE Symposium on Computers and
Communications, 2020, vol. 2020-July.

[19] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An

Energy-Efficient Reconfigurable Accelerator for Deep
Convolutional Neural Networks,” IEEE SOLID-STATE

CIRCUITS, vol. 1, 2016.

[20] W. Lu, G. Yan, J. Li, S. Gong, Y. Han, and X. Li, “FlexFlow: A
Flexible Dataflow Accelerator Architecture for Convolutional

Neural Networks,” in Proceedings of the International Symposium

on High-Performance Computer Architecture (HPCA), 2017, pp.
553–564.

[21] J. Zhang, X. Chen, M. Song, and T. Li, “Eager Pruning: Algorithm

and Architecture Support for Fast Training of Deep Neural
Networks,” in Proceedings of the 46th International Symposium on

Computer Architecture (ISCA), 2019, pp. 292–303.

[22] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong,
“Optimizing FPGA-based Accelerator Design for Deep

Convolutional Neural Networks,” in Proceedings of the 2015

ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays (FPGA), 2015, pp. 161–170.

[23] S. Venkataramani et al., “Scaledeep: A Scalable Compute

Architecture for Learning and Evaluating Deep Networks,” in
Proceedings of the International Symposium on Computer

Architecture (ISCA), 2017, vol. Part F1286, pp. 13–26.

[24] Z. Du et al., “ShiDianNao: Shifting Vision Processing Closer to the
Sensor,” in Proceedings of the 42nd Annual International

Symposium on Computer Architecture (ISCA), 2015.

[25] N. P. Jouppi et al., “In-Datacenter Performance Analysis of a
Tensor Processing Unit,” in Proceedings of the International

Symposium on Computer Architecture (ISCA), 2017, pp. 1–12.

[26] “CACTI 6.0: A Tool to Model Large Caches.” [Online]. Available:
https://www.hpl.hp.com/techreports/2009/HPL-2009-85.html.

[Accessed: 14-Mar-2021].

[27] E. Baek, D. Kwon, and J. Kim, “A Multi-Neural Network
Acceleration Architecture,” in Proceedings of International

Symposium on Computer Architecture (ISCA), 2020, pp. 940–963.

[28] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet
Classification with Deep Convolutional Neural Networks,”

Commun. ACM, vol. 60, no. 6, pp. 84–90, Jun. 2017.

[29] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for
Image Recognition,” in Proceedings of the Conference on

Computer Vision and Pattern Recognition (CVPR), 2016, pp. 770–
778.

[30] S. Sabour, N. Frosst, and G. E. Hinton, “Dynamic Routing Between

Capsules,” Adv. Neural Inf. Process. Syst., vol. 2017-Decem, pp.
3857–3867, Oct. 2017.

[31] W. Liu et al., “SSD: Single Shot MultiBox Detector,” in

Proceedings of the European Conference on Computer Vision
(ECCV), 2016, vol. 9905 LNCS, pp. 21–37.

[32] Y. LeCun et al., “Handwritten digit recognition: applications of

neural network chips and automatic learning,” Commun. Mag.,
1989.

ZHANG ET AL.: AINNS: ALL-INCLUSIVE NEURAL NETWORK SCHEDULING VIA ACCELERATOR FORMALIZATION 13

[33] C. Szegedy et al., “Going Deeper with Convolutions,” in
Proceedings of the IEEE Computer Society Conference on

Computer Vision and Pattern Recognition, 2015, vol. 07-12-June,

pp. 1–9.
[34] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger,

“Densely Connected Convolutional Networks,” in Proceedings of

the 30th Conference on Computer Vision and Pattern Recognition
(CVPR), 2017, vol. 2017-Janua, pp. 2261–2269.

[35] V. J. Reddi et al., “MLPerf Inference Benchmark,” in Proceedings

- International Symposium on Computer Architecture, 2020, vol.
2020-May, pp. 446–459.

[36] S. Jang, T. Y. Kim, J. Kim, and J. Lee, “The Study of Genetic
Algorithm-based Task Scheduling for Cloud Computing,”

undefined, 2012.

[37] M. Song, Y. Hu, H. Chen, and T. Li, “Towards Pervasive and User
Satisfactory CNN across GPU Microarchitectures,” in 2017 IEEE

International Symposium on High Performance Computer

Architecture (HPCA), 2017, pp. 1–12.
[38] “Best Server and Application Response Time Monitoring Tools +

Guide - DNSstuff.” [Online]. Available:

https://www.dnsstuff.com/response-time-monitoring. [Accessed:
21-Nov-2020].

[39] Y. Wu, Y. Zhang, G. Li, J. Shen, Z. Chen, and Y. Liu, “A Predictive

Energy Management Strategy for Multi-Mode Plug-In Hybrid
Electric Vehicles Based on Multi Neural Networks,” Energy, vol.

208, p. 118366, Oct. 2020.

[40] A. Saeed and S. Trajanovski, “Personalized Driver Stress Detection
with Multi-task Neural Networks using Physiological Signals,” in

arXiv:1711.06116, 2017.

[41] Y. Choi and M. Rhu, “PREMA: A Predictive Multi-Task
Scheduling Algorithm for Preemptible Neural Processing Units,”

in Proceedings - 2020 IEEE International Symposium on High

Performance Computer Architecture, HPCA 2020, 2020, pp. 220–
233.

[42] J. Khoury, K. Amine, and R. A. Saad, “An Initial Investigation of

the Effects of a Fully Automated Vehicle Fleet on Geometric
Design,” J. Adv. Transp., vol. 2019, 2019.

[43] “Self-Driving Cars and Power Consumption — New Chip Designs

| by Nitin Vaish | Medium.” [Online]. Available:
https://nitinvaish.medium.com/self-driving-cars-and-power-

consumption-new-chip-designs-4c723659f8cd. [Accessed: 22-

Nov-2020].
[44] L. Song, J. Mao, Y. Zhuo, X. Qian, H. Li, and Y. Chen, “HyPar:

Towards hybrid parallelism for deep learning accelerator array,” in

Proceedings of International Symposium on High-Performance
Computer Architecture (HPCA), 2019, pp. 56–68.

[45] T. Chen et al., “TVM: An Automated End-to-End Optimizing

Compiler for Deep Learning,” in Proceedings of the 13th USENIX
Symposium on Operating Systems Design and Implementation,

2018, pp. 578–594.

Jiaqi Zhang received the B.S. degree in
Communication Engineering from Beijing
Jiaotong University in 2016. She is currently
a Ph.D. candidate in the Department of Elec-
trical and Computer Engineering, University
of Florida. Her research interests lie in soft-
ware and hardware acceleration of emerging
algorithms and applications including ma-
chine learning and IoT.

Xiangru Chen received the B.S. degree in
Electronic Information Engineering from
Shandong University in 2016 and M.S. de-
gree in Electrical and Computer Engineering
from University of Florida in 2018. He is cur-
rently pursuing a Ph.D. degree in the Depart-
ment of Electrical and Computer Engineer-
ing, University of Florida. His research fo-
cuses on the architecture support for ML ap-
plications.

Sandip Ray is an Endowed IoT Term Pro-
fessor at the Department of Electrical and
Computer Engineering, University of Florida.
His research involves developing correct,
dependable, secure, and trustworthy compu-
ting through cooperation of specification,
synthesis, architecture and validation tech-
nologies. He focuses on next generation
computing applications, including IoT, auton-
omous automotive systems, etc. Before join-
ing University of Florida, he was a Senior
Principal Engineer at NXP Semiconductors,

where he led the R&D on security architecture and validation of
hardware platforms for automotive and IoT applications. Prior to that,
he was a Research Scientist at Intel Strategic CAD Labs, where he
led research on validation technologies for security and functional
correctness of SoC designs. Dr. Ray is the author of three books and
over 90 publications in international journals and conferences. He
has a Ph.D. from University of Texas at Austin and is a Senior Mem-
ber of IEEE.

