
Modeling and Verification of Industrial Flash Memories

Sandip Ray1, Jayanta Bhadra2, Thomas Portlock2, Ronald Syzdek2

1Department of Computer Science, University of Texas at Austin, Austin, TX, USA.
2Freescale Semiconductor Inc., Austin, TX, USA.

1E-mail: sandip@cs.utexas.edu

Abstract—We present a method to abstract, formalize,
and verify industrial flash memory implementations. Flash
memories contain specialized transistors, e.g., floating gate
and split gate devices, which preclude the use of tradi-
tional switch-level abstractions for their verification. We
circumvent this problem through behavioral abstractions,
which allow formalization of the behaviors of the design
as interacting state machines. Behavioral abstractions are
agnostic to transistor type, making them suitable for for-
malizing flash memories. We have verified industrial flash
memory implementations based on both floating gate and
split gate technologies. Our work provides the first formal
functional verification results for industrial flash memories.

Keywords—equivalence checking, formal analysis, sim-
ulation, spice, theorem proving

I. Introduction

The goal of memory verification is to check that the tran-
sistor network implementing the memory corresponds to
the high-level view of a state machine that stores and re-
trieves data at addressed locations. Memories account for
more than half of a modern microprocessor design, both
in real estate and in transistor count. Furthermore, mod-
ern memory implementations are complex artifacts, with
subtle pipelining, power optimization, and area compres-
sion features. Consequently, the functional verification of
memory cores is a crucial component of the verification of
a microprocessor or SoC design.

Since transistors are inherently analog artifacts, compre-
hensive verification of a transistor network requires exten-
sive analog (spice) simulations. The size and complexity
of a memory core precludes analog simulation on the en-
tire core. Consequently, a memory verification tool flow
typically consists of two components. First, spice sim-
ulations performed at the level of a bitcell and associated
logic blocks, to check that the bitcell performs according to
specification. Such simulations are extensive and detailed,
covering various process corners and operating conditions,
but can only be carried out at the level of single bitcells.
Second, fast high-level or RTL simulations are performed to
check that the entire memory core operates correctly when
embedded within a larger SoC block. To facilitate this, the
implementation of the memory core itself is abstracted to
a RTL or a high-level (C/C++) model that represents its
interface to the surrounding block.

A consequence of this two-stage approach is a “verifica-
tion gap”: given that the individual bitcells operate cor-

rectly, how can we ensure that the network of bitcells im-
plements the abstraction representing its interface? For
SRAM memories, this gap is bridged by switch-level anal-
ysis [1] which abstracts the network as a graph of switches.
Unfortunately, switch-level analysis cannot be extended to
flash and non-volatile memories that depend on analog ef-
fects of transistors for proper functionality. Indeed, in
the industrial verification tool flow, there is currently no
way to compare a bitcell-level implementation of a non-
volatile memory with the high-level specification of its in-
terface. Consequently, incorrect composition of memory
bitcells with surrounding SoC logic can cause subtle design
errors which are difficult to detect or diagnose.

In previous work [2], [3], the idea of behavioral abstrac-
tion was proposed to ameliorate the above problem. The
idea is to abstract the behavior of the memory core as a
composition of interacting state machines; each individual
state machine component represents behaviors of bitcell-
level structures that are validated by spice. The approach
is agnostic to transistor type, making it suitable for non-
volatile memories, e.g., flash. Furthermore, the correspon-
dence with spice models facilitates corroboration of the
abstractions with readily available simulation data, and
identification of corner case bugs potentially missed dur-
ing analog simulation.

In this paper, we develop framework, based on behav-
ioral abstraction, to verify industrial flash memory designs.
We verify designs with both floating gate and split gate
technologies and for NOR and NAND configurations. Our
framework handles the intricacies of industrial designs, e.g.,
split gate represents the cutting edge in flash technology
and we verify a split gate design from a leading semicon-
ductor company. Our work thus provides a comprehen-
sive methodology to bridge the verification gap mentioned
above for non-volatile memories. Indeed, to the best of our
knowledge, our research provides the first results on formal
functional verification of industrial non-volatile memories.

The rest of the paper is organized as follows. Section 2
provides the necessary background, explaining the inade-
quacies of switch-level abstractions in modeling flash mem-
ories and describing the role of behavioral abstractions to
circumvent those deficiencies. Section 3 describes our be-
havioral models of flash memories. Section 4 discusses our
verification framework. Section 5 provides an estimate the
effort involved, both in the development of the framework
and in its subsequent application on concrete industrial de-
sign verification. We discuss related work in Section 6, and
conclude in Section 7. The paper is self-contained, but fa-
miliarity with flash designs will be helpful in appreciating



the discussions. The verification was done with the ACL2
theorem prover [4], an industrial-strength theorem prover
for a first-order logic of recursive functions. However, the
paper does not assume familiarity with ACL2; we eschew
ACL2’s Lisp syntax and use standard mathematical nota-
tions throughout the presentation.

II. Background

A. Deficiencies in Switch-level Models

Current industrial practice uses switch-level models to
verify memory designs. In particular, switch-level analyz-
ers such as anamos [5] and its variants [6], [7] represent
the state of the art in the abstraction of SRAM memo-
ries built with CMOS transistors. The key insight for such
models is that transistors can be effectively abstracted as
on-off switches from the perspective of their use in designs
(such as memories) that implement digital behavior. Con-
sequently, switch-level models abstract a transistor network
as a collection of nodes connected by transistor switches.
Each node has state 0, 1, or X; each switch has state
“open”, “closed”, or “indeterminate”; state transitions are
specified by switch equations. The models capture a num-
ber of transistor characteristics, e.g., bidirectionality, sig-
nal strengths, etc. Switch-level analyzers partition a net-
work into channel connected subcomponents and analyze
each component separately to construct switch equations.

Even for SRAM designs, analog effects ignored by switch-
level analyzers may have pronounced impact. For instance,
the transistor strength assignment procedure in anamos
produces significant mismatch with spice models for net-
works with closely matching but different strengths [8].
The traditional response to such discrepancies has been
to design more and more elaborate analyzers [6]; however,
this does not solve the fundamental problem of represent-
ing inherently analog behaviors with equations in a discrete
algebra.

The accuracy problem is prohibitive for non-volatile
memory designs because analog effects are not only present
but exploited for correct bitcell operations. Consider the a
flash bitcell that includes both CMOS and floating gate
(FG) transistors. It contains, in addition to conventional
drain (D), gate (G) and source (S) terminals, a floating
gate (F) — a polysilicon layer in the oxide between the
gate and the substrate that is disconnected from both S
and D (Fig. 1). By controlling the stored charge in the
capacitive coupling between G, F, and the substrate, the
threshold voltage Vth (the minimum voltage to turn on the
device) is regulated dynamically to design a bitcell with a
single FG transistor: a low threshold voltage (V L

th) repre-
sents logic 1 and high threshold voltage (V H

th ) represents
logic 0. However, the capacitive coupling breaks the view
of a transistor network as a graph of switches, precluding
switch-level analysis.

B. Behavioral Abstractions

The rationale for behavioral models is that custom mem-
ories are designed not as an ad hoc transistor network
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Fig. 1. (A) The structure of an FG Transistor. (B) Schematic used
to represent an FG transistor.

but by carefully interconnecting components (e.g., bit-
cells, sense amplifiers, etc.) with well-understood behav-
ior within the operation. range. In Motorola’s design
flow, components operate over a limited sequence of certi-
fied stimulus patterns, each of which is validated by spice
simulation across operating conditions [8]; any pattern not
validated is illegal. Thus, memory verification must ensure
that (1) each component performs within operating condi-
tions, and (2) assuming each component operates correctly,
their composition implements the high-level specification of
the memory core.

Behavioral abstractions formalize this insight. Instead
of viewing the memory as merely a graph of transistors, we
model the behavior of the individual components within
the operating constraints as specified by spice simulation.
Since operating constraints specify a partial behavior, the
models are constrained rather than total. More precisely,
the behavior of each component is formalized as a guarded
state machine, with guards specifying the operating con-
straints for each transition; if the guards are violated, the
behavior is unspecified. For instance, the behavior of a
bitcell under read operation is defined only when its envi-
ronment produces the stimuli sequence to select its word
line followed by appropriate gate voltage; nothing is known
when these conditions are violated. The behavior of the
memory core is formalized by an interactive composition
of state machines for the individual components.

The approach, albeit simple, provides several benefits.
First, it is agnostic to transistor type: the same approach
works for both SRAM and flash memories. Second, since
the formal constraints exactly correspond to conditions
used in spice simulations, models can be validated with
readily available spice data; thus, unlike switch-level ab-
stractions, our models preserve correspondence with ana-
log behavior while obviating the need to formalize low-level
analog effects (e.g., capacitive coupling). Third, since the
abstractions are state machines, traditional functional ver-
ification techniques can handle these models. Finally, non-
determinism in the formalization naturally captures effects
of unsuccessful electrical operations inherent in analog be-
havior.



III. Flash Formalization

A. Floating Gate Bitcells

In order to explain behavioral models of an FG bitcell,
we briefly summarize its operations. Cappelletti et al. [9]
provide a detailed treatment of FG operations. The three
main operations are read, program (writing 0), and erase
(writing 1). Note that the operations are inherently ana-
log. A low-level model (e.g., one derived from solid-state
physics) reflecting all facets of the behavior is intractable
for verification.

Read: For the selected bitcell, one applies a voltage v
(V L

th < v < V H
th ) at G which is driven by the selected word

line, while keeping other word lines at ground. If the cell
has logic 0, the transistor does not turn on and no current
flows to the associated sense amplifier; otherwise the bitcell
turns on and current is detected, reading a 1.
Program: The Channel Hot-Electron Injection procedure
injects negative charge into the FG, raising its Vth to V H

th .
Then there is a verification phase to ensure that Vth has
been appreciably raised; this is done by “reading” the cell
with a gate voltage v (> V H

th ). A result of 0 for the read in-
dicates successful programming; otherwise programming is
iterated until it succeeds or a specified number of attempts
have been made, signalling failure in the latter case.
Erase: Erasing is based on removal of stored charge by
Fowler-Nordheim tunneling. This involves (i) raising the
Vths of the bitcells in the sector to V H

th by programming,
(ii) charge removal to lower the Vth to V L

th, and finally,
(iii) normalization, which employs soft programming to in-
crease the Vth of the cells that have fallen below V L

th.

The description underlines the analog nature inherent in
flash operations. A low-level model (e.g., one derived from
solid-state physics) reflecting all facets of this behavior is
intractable for verification. Additional factors to account
for in abstracting flash memories include (i) multiple volt-
age levels, (ii) charge injection and removal, and (iii) com-
plex sense amplifier activity to compare various current
values.

Behavioral models formalize these operations by captur-
ing the effect of electrical operations while abstracting the
physical reasons. For instance, reading requires the fol-
lowing stimuli: (1) precharge (2) applying a voltage v,
(V L

th < v < V H
th ) at the gate G for the bitcell; each stimu-

lus must also permit appropriate setup time. Fig. 2 shows
a simple state machine for this sequence. The state ma-
chine is only partially specified, stipulating deterministic
behavior only under this stimuli sequence; the behavior is
unspecified otherwise. The output behavior for the state
machine is the “activation” of the sense amplifier, that is, a
current flow if and only if the bitcell has the value 1. Cor-
respondingly, the state machine for sense amplifier (not
shown) is enabled by the output transition of the bitcell
state machine (providing values for the bitlines bl and blb);
its output behavior updates the read buffer to produce the
value 1 if and only if a current has been detected on its
input.

pch ? tc=0

~pch ? −− pch ? tc=tc+D0 vg==0 ? tw=tw+D1

bl=data, blb=~data

~pch,T0<tc<T1 ? 

    tw=0

−− ? −− th
L   H

 thV   <vg< V   , T2<tw<T3 ? 

Fig. 2. A 3-state machine representing a simplified behavioral model
for bitcell read operation. The notation “x?y” for a transition in-
dicates that the transition has guard x produces a change of state
variable y. The notation “−−?y” represents that the transition is
always enabled; the notation “x?−−” represents that the transition
produces no change in any state variable. Here tc and tw are auxil-
iary state variables representing timing; D0, T0, T1, T2, and T3 are
parameters representing timing constraints (cf. Section 3-D). The
output behavior is given by the state variables changed in the output
transition (e.g., bl and blb).
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Fig. 3. (A) The structure of an SG Transistor. (B) Schematic used
to represent an SG transistor.

The state transitions for program and erase operations
are more involved, but similar in spirit. These operations
additionally require formalization of uncertainties. Recall
that programming might involve several unsuccessful iter-
ations of electron injection. To model this nondetermin-
ism, the behavioral model for program operation includes
an additional “oracle stimulus”, which determines if the
current iteration succeeds. If the oracle stipulates the it-
eration to be unsuccessful, then the model constrains the
threshold voltage Vth to be lower than V H

th ; the verification
phase detects this failure and iterates until programming is
successful or the iteration upper-bound is reached. Nonde-
terminism in the erase operation is modeled analogously.
Modeling nondeterminism with oracle is standard in formal
verification of reactive systems [10], [11]; since behavioral
models are formalized as state machines, we can apply the
same technique to memory modeling.

B. Split Gate Bitcells

Split gate or SG transistors (Fig. 3) represent the cut-
ting edge of the flash design technology [12]. The gate
(G) is “split” into control gate (Cg) and select gate (Sg).
This facilitates power reduction over FG bitcell as follows:
Channel-Hot Electron Injection in FG relies on electron
drift for charge injection; the additional control in SG pro-
vided by the split gate permits creation of an external elec-
tric field to force electron migration, increasing injection ef-
ficiency and lowering programming current. Furthermore,
the read voltage is lower.

SG operations are performed as follows. The bitcell is
initially in idle state, with Sg and S actively pulled low and
Cg driven to a bias voltage Vr required for reading.



Read: When the read address is available in the word
line, Sg is driven high and the bit line is biased to read
level. The sense amplifier compares the bitcell current Ic

under Vr against a known, generated reference current Ir

to determine the conduction state of the bitcell. If Ic > Ir

then the bitcell has value 1, otherwise it has value 0. The
bitcell is then returned to the idle state.

Program: Once the write address is available, Cg is driven
to program mode value Vp. Then Sg is driven high and the
bit line is selected. Depending on the data value, a program
current pulse Ip, provided by a data input buffer, is applied
to the bit line for microseconds. The current changes the
bias on the bit line, which is consequently actively pulled
low. Ip causes charge injection into the channel of the se-
lected bitcell, where it tunnels onto the floating gate. Once
programming is complete, the bias current is removed and
the bit line returns to the “pre-current” bias value. The
bitcell is then returned to an idle state, and a verification
is performed through a read operation to confirm whether
programming was successful. If the operation was unsuc-
cessful, the process is iterated until programming succeeds
or a specified upper bound is reached.

Erase: As with the FG bitcell, erasing an SG bitcell is
also a sector-based operation where the sector to be erased
is determined by the applied address. Once an address
is available, a voltage Ve (called the erase mode value), is
applied to the Cg of the bitcells in the selected sector for
a duration of milliseconds, keeping all the other terminals
low. Consequently, charge is removed from the floating
gate, turning the cells conductive. Once erase is complete,
Cg is pulled to Vr, ending the erase operation and returning
the cells to the idle state. The process is then followed by
a read to confirm that the erase operation was successful.
If the erase was unsuccessful, the process is iterated until
erase succeeds or a specified upper bound is reached.

Electrical justifications of SG operations are more com-
plex than FG, since they involve manipulating charge
through two independent terminals Cg and Sg. However,
the justifications are irrelevant for behavioral models, and
the effect of each operation can be formalized as a state
machine (albeit more elaborate than FG). Consider an it-
eration of the program operation representing successful
programming. The state machine for this iteration simply
specifies correct programming under the following sequence
of input stimuli: (1) driving of Cg to Vp, (2) driving of Sg

to high, (3) selection of the bit line, and (4) application of
current pulse Ip; the behavior is unspecified otherwise. As
with FG bitcell, uncertainty in program and erase opera-
tions is modeled by an oracle stimulus.

C. Modeling Full Memory Cores

A memory core is constructed by connecting individual
bitcell-level components in a specified configuration. Fig. 4
shows the interconnection for the NOR configuration. The
interconnection includes both analog and digital compo-
nents.
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Fig. 4. Implementation of a NOR Flash Configuration with FG
bitcells.

The behavior of an interconnection of state machines is
formalized as an interactive composition. Suppose the in-
terconnection specifies that the component C receives stim-
uli from E1, . . . Ek. Then the model of the interconnection
is the composition in which the output behaviors of models
of E1, . . . Ek are composed with the input behavior of C.

Interactive compositions are common in formal models of
sequential digital designs [13], [14], [15]; extending them to
memories requires state machine models of (1) analog com-
ponents, and (2) combinational digital components (e.g.,
decoder). Behavioral abstractions formalize analog com-
ponents; a state machine for a combinational digital com-
ponent is derived by augmenting its functional model with
timing constraints characterizing the delay units for the in-
put to propagate to output. Note that a formal model of
flash memory must include the timing constraints of digital
blocks, since correct bitcell functionality depends on these
components producing input stimuli within specified time
intervals. For instance, SG programming requires current
pulse Ip for charge injection; correct programming thus
depends on the data input buffer and associated logic to
guarantee adequate pulse duration.

The approach to modeling a flash core as an interactive
composition of state machines is completely general; once
the behaviors of the individual components are formalized,
construction of this model reduces to a mechanical process
of comprehending the interconnection, independent of the
behavioral characteristics of the components themselves.
Indeed, the models of memory cores that we analyze are
automatically generated by a tool, which takes (1) a pre-
computed library of state machines modeling individual
components, and (2) a formal description of interconnec-
tion. Consider the two flash configurations shown in Fig. 5.
In spite of the fact that the configurations are implemented
with different bitcell types, the same tool generates the
formal abstractions of both cores and the NOR flash in
Fig. 4. Since the configurations in Fig. 4 and 5(A) use the
same bitcell type, the tool uses the same library of behav-



wdi

wl 0

wl15

src

bl1

gsl

ssl

bl0

src

blbl

cg
sg

sg

src

cg
sg

src

(A) (B)

Fig. 5. (A) Implementation of a NAND Configuration with FG
bitcells. (B) Implementation of a NOR Configuration with SG bitcells

ioral components; only the description of interconnection
changes. Since the configuration of Fig. 5(B) uses of a
different bitcell type, the tool uses a different component
library.

D. Parameterization

We have developed a library of behavioral models for
flash components. Note however, that different flash im-
plementations (even with the same bitcell type and config-
uration) use different operating conditions. For instance, it
is common for implementations of the NOR configuration
in Fig. 5(B) to use different values of Ip, Vp, Ve, etc., to
optimize for different design metrics. To facilitate reuse of
verification collateral, our models are formalized as param-
eterized state machines with constrained predicates specify-
ing the operating conditions for different parameters. The
rationale is that the correctness (rather than efficiency) of
the design depends typically on the relation between pa-
rameters rather than the concrete values. For instance, one
(timing) constraint for the program operation of SG bitcell
is that the application duration of Ip must lie within the
application duration of high voltage at Sg; this is formal-
ized by modeling the two durations as constrained func-
tions specified to satisfy the interval containment require-
ment. The bitcell models are parameterized with respect
to (1) timing constraints, (2) transistor threshold voltage,
(3) bias current value, (4) operating voltage etc; at the
level of the entire memory, we parameterize the core size.
In addition to reuse of verification results, parameteriza-
tion facilitates focus on the design requirements that are
relevant to functional correctness while abstracting others.

IV. Verification

Given a state machine representing the behavior of a
memory core, the verification goal is to relate all its exe-
cutions with the high-level specification. The specification
is an abstract state machine derived from the interface of
the core used for functional verification of the surrounding
SoC blocks: it supports read, program, and erase, together
with core enable that controls operations on the entire core,
write protect that regulates programming bitcells, etc.

The key component of the verification is the notion of
correspondence used to relate the implementation and the
specification. Our notion is based on stuttering trace con-
tainment [16], [17] up to a refinement map. A refine-
ment map enables us to appropriately view implementation
states as specification states [18]: for memories, it projects
bitcell states in the behavioral model to an association list
that maps addresses to data values. We use stuttering to
formalize the fact that several transitions of the implemen-
tation may correspond to one transition of the specifica-
tion. The verification goal then is to prove the following
theorem.

Theorem 1: Let impl be the transition function1 for the
state machine representing the implementation of a flash
memory, and let spec be the state transition function for
the state state machine representing the interface of the
memory to the surrounding SoC block. Let rep be a refine-
ment map from the visible observations of the states of impl
to those of spec. Then for every execution of impl, there
exists an execution of spec that has the same observable
behavior (defined by rep) up to stuttering.

To establish Theorem 1, it is sufficient to exhibit func-
tions inv, commit, and pick, such that (i) inv is an im-
plementation invariant and (ii) the following formulas are
provable [2]:

1. ∀s, i : inv(s) ∧ ¬commit(s, i)⇒
rep(impl(s, i)) = rep(s)

2. ∀s, i : inv(s) ∧ commit(s, i)⇒
rep(impl(s, i)) = spec(rep(s), pick(s, i))

Fig. 6 pictorially depicts how the above conditions guaran-
tee execution correspondence specified by Theorem 1. Here
commit stipulates whether the specification matches an im-
plementation transition or stutters; pick provides the spec-
ification stimulus for a matching transition. The formulas
state that for each transition of the implementation, the
specification either has a matching transition or stutters.
Note that the notion of stuttering trace containment itself
is very general, and can be used to compare executions of
two reactive systems at different levels of abstraction. The
rules are adapted from Manolios’ rules for stuttering sim-
ulation [11] by restricting stuttering to be one-sided: the
restriction is viable since one step of the specification cor-
responds to several steps of the implementation, but not
vice versa. A key advantage of the rules is that they only
involve single steps of the two systems, thus obviating ex-
pensive fixed-point computations. Additionally, we verify
finiteness of stuttering by exhibiting a well-founded ranking
function that decreases along stuttering steps. This proof
is trivial since timing constraints upper-bound the comple-
tion of each operation by the number of delay units in one
cycle of the system clock(s) driving memory operations.

1As is conventional in ACL2, we model the state transition as a
function instead of a relation. Non-determinism is modeled as envi-
ronmental stimuli. Thus impl and spec are binary functions that take
a state and an environmental stimulus and produce the state after
one transition.



M0

M1

M2

M3

M4

S0

S1

S3

S4

rep(M0)

rep(M1)

rep(M2)

rep(M3)

rep(M4)

impl(M1,i1)

impl(M0,i0)

impl(M2,i2)

impl(M3,i3)

spec(s0,pick(M0,i0))

spec(s1,pick(M2,i2))

spec(s3,pick(M3,i3))

Fig. 6. Pictorial representation of conditions guaranteeing stutter-
ing trace containment. Here M0, M, . . . represent the states of the
implementation and S0, S1, . . . represent states of the specification.
The vertical arrows represent transitions of the corresponding state
machines and horizontal arrows represent the refinement map speci-
fied by the function rep. Here we assume ¬commit(M1, i1); thus, the
transition impl(M1, i1) represents a stuttering step.

A. Verifying Parameterized Models

Each flash implementation is a composition of a number
of parameterized state machines. Verification of arbitrary
parameterized state machines is intractable in general [19];
however, the special structure of behavioral models amelio-
rates verification complexity in the following manner. Ob-
serve that the following definitions of commit and pick work
for any memory configuration:
1. commit holds only for transitions that complete a spe-
cific operation (e.g., read, program, or erase).
2. pick selects the type of operation being completed and
the associated addresses for the operation.
Verification thus reduces to the definition and proof of the
invariant inv. To mechanize the latter process, recall that
by construction, a behavioral component operates correctly
under the operating conditions (guards) associated with its
transitions. Thus it is sufficient to prove as invariant the
requirement that each component always operates within
the constraints specified by its guard. More precisely, let
C1, . . . , Ck be the behavioral models for the individual com-
ponents, and let Gm(s) be the guard for model Cm in state
s, (1 ≤ m ≤ k). Then we define inv as follows.

inv(s) ,
∧k

m=1 Gm(s)

The predicate stipulates that each component always op-
erates within its operating condition. We decompose the
proof of invariance of inv into the following proof obligation
for each component m, (1 ≤ m ≤ k), which states that the
guards for the components at state s together guarantee
the guard for Cm one transition from s.

∀s, i : inv(s)⇒ Gm(impl(s, i))

Verification thus reduces to an assume-guarantee reason-
ing over components, i.e., proving that the guard for Cm is

TABLE I

Statistics on Parameterized Flash Verification

Flash type Components Lemmas needed Proof time (secs)
FG NOR 33 120 248.05
FG NAND 33 143 223.04
SG NOR 67 275 435.23

satisfied by the stimuli generated by the components sur-
rounding Cm. Note that the obligations together imply
that the following formula is a theorem, which justifies that
inv is an inductive invariant (i.e., holds along each transi-
tion of the implementation).2

∀s, i : inv(s)⇒ inv(impl(s, i))

B. Concretization

Given the generic proof of correctness of parameterized
configurations, verification of a flash implementation based
on these configurations reduces to mechanically instantiat-
ing the generic proof. In particular, it is sufficient to check
by execution that the concrete instance satisfies the param-
eterized constraints: no further reasoning is necessary. In
addition to facilitating reuse of verification collateral, the
generic model thus provides a “template” for flash imple-
mentations. Note that any implementation is functionally
correct as long as the constraints are satisfied. Thus the
designer can freely fine-tune the parameters for different de-
sign metrics within the bounds specified by the constraints
without affecting correctness. The approach can also iden-
tify subtle design errors that are difficult to detect by other
means (cf. Section 5).

V. Results

We created parameterized models of FG (NOR and
NAND) designs, and SG (NOR) designs, derived generic
proofs of correctness of each parameterized model using
the ACL2 theorem prover, and used these models to verify
a number of concrete flash implementations. Both generic
and concrete proofs were done on a workstation with 2GHz
Intel Pentium processor with 3GB of memory. The models
incorporate transistor-level complexities of industrial de-
signs, e.g., the SG designs are taken directly from an in-
dustrial flash implementation.

Table I gives the statistics of the verification effort for
parameterized models. For each flash type, we list the
number of behavioral components involved, the number of
lemmas needed to complete the proofs with ACL2, and
the time required by ACL2 to process the proof. The FG
NOR and NAND flash designs make use of the same set
of (33) behavioral models for the individual components,
although the interconnections (and hence the proofs) are
different. The number of lemmas include only those that

2Additionally we prove that inv is true for initial states. This is
trivial by execution.



had to be crafted for these verifications and do not in-
clude pre-existing ACL2 libraries. Most of the lemmas in-
volved arithmetic theorems to discharge specifying timing
constraints. Some of the lemmas designed during the ver-
ification of FG flash were reused for SG. Notice that the
proofs take only a few minutes to replay. This is in stark
contrast with traditional equivalence checking methods [5],
[7] that can take hours for verifying industrial memories.
The reason is that the models are parameterized, and the
verification makes use of deduction rather than state explo-
ration, ameliorating state explosion. However, a downside
of the deductive approach is that some of the lemmas can
take significant manual effort to craft. On the other hand,
the effort is amortized by reuse of the proof over a number
of concrete verification runs, as explained below.

Table II gives the verification statistics for the concrete
flash implementations verified. All the times reported are
in seconds. For each memory size we verified three different
implementations. For each implementation, verification in-
volves functional instantiation of the generic proof above;
this entails checking that the concrete values of the design
parameters satisfy all the constraints in the corresponding
generic models. The number of constraints, and hence the
verification time, increases with memory size. However,
Table II indicates that the increase is linear. Note that in
contrast, model checking time for traditional SRAM mem-
ories typically increases exponentially with memory size.
Verification times for SG implementations are higher than
FG implementations because of the more complex bitcell
structure in SG, which induces more complex constraints.
However, the verification times are still small compared
to typical equivalence checking times for standard mem-
ory verification, e.g., the verification of a 2MB SG memory
completes in less than 35 minutes. This is possible since the
generic proof discharges the verification of the parameter-
ized implementation once and for all, reducing the verifica-
tion of concrete implementation to the much more tractable
problem of checking constraints on concrete parameters.
Note that the the instantiation can be non-trivial since the
constraints include arbitrary first-order predicates over the
design states. However, as mentioned in Section 4-B, no
deduction (and hence manual effort) is necessary; the in-
stantiated constraints can be discharged by execution.

One key strength of our approach is the ability to iden-
tify subtle design errors that are difficult to detect by other
means. As an example, we inserted a bug in an SG design,
where the magnitude of the current Ip provided by the data
input buffer was insufficient for effective charge injection.
The bug was immediately detected while attempting to in-
stantiate the generic SG proof with this design: the input
constraints on bitcell operation were not satisfied by the
stimulus from the data input buffer. Note that the bug is
at the interface of two components. Since spice simula-
tion targets individual components, such bugs typically go
undetected [7], [8].

VI. Related Work

Despite its importance, we are aware of no effort other
than ours on formal functional verification of flash mem-
ories. Formalization of transistor circuits has chiefly fo-
cused on developing switch-level analyzers such as sls [20],
mossim-ii [1], and anamos [5]. This enabled verification
of regular CMOS-based digital circuits [5], [7].

Our approach is inspired by work on abstracting SRAM
memories through parameterized regular expressions [8];
this work suggested the key insight of formalizing a memory
as a composition of well-defined components rather than an
arbitrary graph of transistors. However, the regular expres-
sions did not correspond directly to spice simulation; it is
also tricky to write succinct regular expressions for flash de-
signs. Modeling components as partial state machines with
expressive constraints overcomes both these deficiencies.

There has been recent interest in formal verification of
analog designs [21], although we are not aware of any ap-
proach at abstracting analog circuits through parameter-
ized behavioral models. There has been recent applications
of equivalence checking on analog designs by digitization of
infinite analog state space [22], [23], [24], and model check-
ing by extending temporal logic to capture analog proper-
ties [25], [26]. Finally, the prosyd (prosyd.org) project
provides an assertion-based run-time monitoring tool sup-
porting STL or PSL properties in analog circuits. This tool
has been applied on simulation traces from a flash mem-
ory [27].

VII. Conclusion and Future Work

We have presented a framework for formal verification of
flash memories. Our fundamental insight is that although
the electrical characteristics of FG and SG transistors are
complex, their behavior within the operating conditions
and can be effectively formalized as state machines. Conse-
quently, instead of abstracting a memory as a graph of tran-
sistors, as done by traditional switch-level analysis, we fo-
cus on formalizing the behavior of well-defined design com-
ponents within their operating conditions. This permits us
to circumvent the complex problem of effectively abstract-
ing inherently analog characteristics with equations in a
discrete algebra. To our knowledge, our approach provides
the first platform for formal verification of industrial flash
designs. A key feature of our approach is the parameter-
ization of the state machines and operating constraints;
this permits our formalization to target the design facets
that are actually relevant to functional correctness, and
also facilitates reuse of verification collateral over a range
of concrete implementations. Furthermore, since memory
components are modeled as state machines, traditional sim-
ulation and verification tool flows can be easily adapted to
handle these models. Thus, functional verification of digi-
tal components can be hierarchically composed with flash
models for full SoC verification. Finally, the direct cor-
respondence between components used for analog simula-
tion and the behavioral models facilitates corroboration of
models with readily available spice simulation data. Note,



TABLE II

Verification Statistics for Concrete Flash Designs

128K 256K 512K 1M 2M
FG NOR 67.16 75.04 73.56 120.54 123.41 131.24 200.31 209.32 260.32 382.32 412.34 435.51 576.19 588.45 600.17
FG NAND 64.32 69.17 81.23 145.43 151.28 160.22 202.19 231.18 232.41 345.53 372.21 386.19 548.28 534.25 580.29
SG NOR 145.31 156.42 163.41 312.23 327.15 348.39 663.24 679.26 682.11 1129.15 1157.08 1192.43 1823.17 1912.06 1924.18

however, that the approach can only be applied to designs
constructed by interconnection of components with well-
defined behavioral characteristics; in particular, we cannot
abstract an arbitrary transistor netlist.

In future work, we plan to extend the approach to ver-
ification of multi-level flash, as well as other non-volatile
memories such as MRAM and FeRAM [12]. Since behav-
ioral models are agnostic to transistor type, such extension
merely requires developing bitcell-level behavioral models
of these structures. We are also contemplating the use of
learning techniques to synthesize such behavioral models
from spice simulation data. There has been progress on
learning techniques to estimate state machines [28], which
may be applied for such synthesis.
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