
Protocol-Guided Analysis of Post-silicon Traces Under Limited Observability

Hao Zheng1, Yuting Cao1, Sandip Ray2, Jin Yang2

1Dept. of Computer Science and Eng., University of South Florida, Tampa, Fl 33620. USA.
2Strategic CAD Labs, Intel Corporation, Hillsboro, OR 97124. USA.

Abstract—We consider the problem of reconstructing system-
level behavior of an SoC design from a partially observed
signal trace. Solving this problem is a critical activity in post-
silicon validation, and currently depends primarily on human
creativity and insights. In this paper, we provide an algorithm
to automatically infer system-level transactions from incomplete,
ambiguous, and noisy trace data. We demonstrate the approach
on a multicore virtual platoform developed within the GEM5
environment.

I. INTRODUCTION

Post-silicon validation makes use of pre-production silicon
integrated circuit (IC) to ensure that the fabricated system
works as desired under actual operating conditions with real
software. Since the silicon executes at target clock speed,
post-silicon executions are billions of times faster than RTL
simulations, and even provide speed-up of several orders
of magnitude over other pre-silicon platforms (e.g., FPGA,
system-level emulation, etc.). This makes it possible to explore
deep design states which cannot be exercised in pre-silicon,
and identify errors missed during pre-silicon validation and
debug. Post-silicon validation is a critical component of the
design validation life-cycle for modern microprocessors and
SoC designs. Unfortunately, it is also a highly complex com-
ponent, performed under aggressive schedules and accounting
for more than 50% of the overall design validation cost [1].
Consequently, it is crucial to develop techniques for stream-
lining and automating post-silicon validation activities.

A key component of post-silicon validation of SoC designs
is to correlate traces from silicon execution with the intended
system-level transactions. An SoC design is typically com-
posed of a large number of pre-designed hardware or software
blocks (often referred to as “intellectual properties” or “IPs”)
that coordinate through complex protocols to implement the
system-level behavior. Any execution trace of the system
involves a large number of interleaved instances of these
protocols. For example, consider a smartphone executing a
usage scenario where the end-user browses the Web while
listening to music and sending and receiving occasional text
messages. Typical post-silicon validation use-cases involve
exercising such scenarios. An execution trace would involve
activities from the CPU, audio controller, display controller,
wireless radio antenna, etc., reflecting the interleaved ex-
ecution of several communication protocols. On the other
hand, due to observability limitations, only a small number
of participating signals can be actually traced during silicon
execution. Furthermore, due to electrical perturbations, silicon
data can be noisy, lossy, and ambiguous. Consequently, it is

non-trivial to identify all participating protocols and pinpoint
the interleaving that results in an observed trace.

In this paper, we consider the problem of reconstructing
protocol-level behavior from silicon traces in SoC designs.
Given a collection of system-level communication protocols
and a trace of (partially observed) hardware signals, our
approach infers, with a certain measure of confidence, the
protocol instances (and their interleavings) being exercised by
the trace. The approach is based on a formalization of system-
level transactions via labeled Petri-Nets, which are capable of
describing sequencing, concurrency, and choices over system
events. We develop algorithms to infer system-level transac-
tions from traces with missing, noisy, and ambiguous signal
values. We demonstrate our approach on a multicore virtual
platform constructed within the GEM5 environment [2].

II. BACKGROUND

A. SoC Protocols and Post-silicon Trace Analysis

An SoC design involves integration of a number of IPs that
communicate through complex protocols. Such system-level
protocols are typically specified in architecture documents as
message flow diagrams. For this paper, we use the words
“protocol” and “flow” interchangeably. Fig 1(a) shows one
diagram for a protocol to authenticate and load a firmware
during system boot for firmware upgrade. During valida-
tion, the system under debug (SUD) exercises some complex
system-level use-case which involves interleaved execution
of possibly a large number of such flows. A trace of a
small number of hardware signals is then shipped off-chip
analysis. The off-chip analysis includes two broad phases:
(1) trace abstraction, and (2) trace interpretation. Trace ab-
straction maps the hardware trace into higher-level architec-
tural constructs, e.g., messages, operations, etc.: a message
such as Authorization request may be implemented
in hardware through a Boolean or temporal combination of
specific hardware signals in the NoC fabric between Device
and CE, e.g., as a sequence containing a header, a specific
value of a sequence of data words, etc. We will refer to such
architectural constructs as protocol events or flow events. Note
that due to limited observability, it may not be possible to map
a given set of (observed) hardware signals uniquely to a flow
event. Finally, the trace may be a result from several instances
of the same protocol executing concurrently, e.g., a firmware
authentication protocol may be invoked when another instance
of the protocol has not completed.

Trace interpretation entails mapping flow events created
during trace abstraction to system-level protocols in order



Fig. 8. A combination of Fa and Ful with the counterexample
(1, 2, 3, 4, 5, 2′, 3, 1̄, 4, 6, 5, 7, 8) that requires CE to execute out-of-order.

Fig. 9. A protocol for Device that executes from local memory LM . Attack:
(1, 2, 3, 2, 3, 4, 5, 6, 4, 8, 2̄′, 3̄, 6, 9).

connect tasks of the same agent. The English text in tasks
is pseudocode; let us assume that it can be readily expressed
as code that takes the form of a conditional assignment: if
a condition (boolean expression) is true then a sequence of
assignments is to be executed. We will refer to variables
occuring in task conditions and assignments as !ow variables.
Let us assume that initial values of all !ow variables are given
as part of the de"nition of F , that every !ow variable may
belong to a unique agent, and that the reset task for any speci"c
agent assigns variables that belong to it to their initial values.

We assume that dynamic access control can be expressed
by means of !ow variables. Abstracting the exact mechanism,
let us just postulate that for every agent A and every !ow

variable x there exist predicates “A can read x” and “A can
write x” written in terms of !ow variables.

Tasks of a !ow can be partitioned into control !ow graphs
(cfg). By de"nition, two tasks are in the same cfg iff they can
be connected by a path of control edges only. Clearly, each cfg
belongs to a unique agent. For simplicity, let us assume that
(1) every cfg has at most one task with an incoming message
(cfg’s start task); (2) every cfg executes deterministically; and
(3) there is exactly one !ow start task that has no incoming
edges.

For example, in the !ow Faul, we see nine tasks distributed
over the three agents, two control edges, and six messages. The
!ow variables are SM , IM , active , and lock IM . Tasks 1 and
2 form one cfg; tasks 7 and 8 form another; all other tasks are
one-vertex cfgs.

B. The system described by a !ow

Given a !ow F , let us now describe how to generate from
it a transition system S. We will de"ne S in a standard fashion
by (1) a set of state variables; (2) initial conditions; and (3)
transition rules in the guard-action format, where the guard
is a boolean expression over state variables and the action
is an assignment to state variables. The system S executes
non-deterministically starting from initial states. A transition
s → s′ is possible iff there exists a transition rule whose guard
is true in s and whose action when applied to s produces s′.

By de"nition, the state variables of S are all the !ow
variables, together with

- a sequence Q of messages, each paired with its status,
which can take three values: f , t, e

- a subset L of the set of all control edges of F

The sequence (“queue”) Q represents messages currently
“in-!ight” and the status values f , t, e stand for “in fabric”, “at
target” (received by target agent), and “enabled” (executable by
target agent). The set L represents the current set of program
locations or control points in the usual sense.

By de"nition, initial conditions are: L is the empty set; Q
is the empty sequence; every !ow variable has its initial value.

Stipulating that agents execute tasks atomically, we gener-
ate a transition rule τ of S for every task t of F . Recall that t
is of the form “if c then a”, where c is boolean expression
and a is a sequence of assignments. The access condition of t
is by de"nition the conjunction of predicates “A can read x”
and “A can write y”, where A is the agent that contains t; the
conjunction is taken over all variables x that need to be read
in order to do the assignemts a, and for all variables y that
need to be written in a.

We de"ne the guard of τ to be the condition c conjuncted
with the access condition of t and further conjuncted with a
disjunction of trigger conditions

- e ∈ L

- Q contains message m with status e

2014 IEEE International Symposium on Hardware-Oriented Security and Trust (HOST) 73

p1

t1 : 〈Driver : Device : Load fw〉

p2

t2 : 〈Device : CE : Auth req〉

p3

t3 : 〈CE : Device : Auth resp〉p4 p5

t4 : 〈Device : Driver : Report〉 t5 : 〈Device : CE : Ack〉

p6 p7

(a) (b)

Fig. 1. (a) A graphical representation of a SoC firmware load protocol [3]. (b) LPN formalization. Each event has a form of 〈src, dest, cmd〉 where cmd is
a command sent from a source component src to a destination component dest. The solid black places without outgoing edges are terminals, which indicate
termination of protocols represented by the LPNs.

to identify the set of protocol instances (and interleavings)
responsible for creating the observed behavior. The trace
may identify a problem in the protocols themselves, e.g. an
interleaving of some protocol executions may lead to an
unexpected message being sent or cause the system to crash.
More commonly, one finds a bug in the implementation of
the protocol, i.e., a trace inconsistent with any possible inter-
leaving of the protocol executions. Identifying these problems
involves significant human expertise, and can often take days
to weeks of effort.

B. Labeled Petri-Nets

Labeled Petri-nets (LPN) is a formalization of state transi-
tion systems that is capable of describing sequencing, concur-
rency, and choices. Fig. 1(b) illustrates how to use LPN to for-
malize protocols. Formally, an LPN is a tuple (P, T, s0, E, L)
where P is a finite set of places, T is a finite set of transitions,
init is the set of initially marked places, also referred to as
the initial marking, E is a finite set of events, and L : T → E
is a labeling function that maps each transition t ∈ T to an
event e ∈ E. For each transition t ∈ T , its preset, denoted as
•t ⊆ P , is the set of places connected to t, and its postset,
denoted as t• ⊆ P , is the set of places that t is connected
to. A marking s ⊆ P of a LPN is a subset of places marked
with tokens, and it is also referred to as a state of a LPN. The
initial marking init is also the initial state of the LPN.

III. FLOW-DIRECTED TRACE INTERPRETATION

In this section we formalize the trace interpretation problem
in terms of labeled Petri-nets, and discuss our algorithms to
address the problem. For pedagogical reasons, here we assume
full observability of all hardware signals involved in the flow
events. In the next section we will extend the approach to
partial observability.

Notations and formalization. The set of system flows is a
collection ~F of LPNs. A flow execution scenario is defined as a
set {(Fi,j , si,j)} where Fi,j is the jth instance of flow Fi ∈ ~F ,

and si,j is a state of Fi,j . A flow execution scenario indicates
the set of protocols and the number of instances of a particular
protocol are activated and their corresponding current states.
Since we assume full observability, we view an observed trace
ρ = e1e2 . . . en as a sequence of events. Given an observed
trace ρ, the goal of trace interpretation is to construct a set of
candidate flow execution scenarios whose execution can create
the sequence of events in ρ. We call such execution scenarios
compliant with ρ. Let accept(Fi,j , si,j , e) be a function that
determines if event e can be emitted by Fi,j in state si,j .
Formally, accept(Fi,j , si,j , e) returns (Fi,j , s

′
i,j) where s′i,j =

(si,j − •t) ∪ t• if there exists a transition t in Fi such that
L(t) = e and •t ⊆ si,j . It returns ∅ otherwise.

Given an observed trace ρ and the set ~F of LPNs, Algo-
rithm 1 provides a basic procedure for computing a set of
compliant flow execution scenarios. The algorithm operates
by keeping track (in variable Scen) of a set of candidate flow
execution scenarios compliant with each prefix of ρ. At each
iteration, for each event eh in the observed trace, we update
Scen by either extending a member of scen or initiating a
new protocol instance for each scen ∈ Scen with respect
to eh in every possible way. If eh cannot be emitted by any
existing or new flow instances, then we report that the trace
is inconsistent, i.e., there is no possible interleaving of
the protocol instances from ~F that is compliant with ρ.

To illustrate the basic idea, consider the system flow in
Fig. 1(b), which we will call F1. Suppose that the following
flow trace is abstracted from an observed signal trace.

t1 t2 t1 t2 t3 t3 t4 t5 t5 t4 . . .

Here transition names in the LPN are used to represent the
flow events in the trace. The first four events results in the
following flow execution scenario

{(F1,1, {p3}), (F1,2, {p3})}.
For the first event t3, it results in two execution scenarios



Algorithm 1: CHECK-COMPLIANCE(~F , ρ)

Create an empty scenario scen
Scen = {scen}
foreach h, 1 ≤ h ≤ n do

found ← true

Scen′ = ∅
foreach scen ∈ Scen do

foreach (Fi,j , si,j) ∈ scen1 do
if accept(Fi,j , si,j , eh) = (Fi,j , s

′
i,j) then

Let scen′ be a copy of scen
scen ′ ← (scen ′ − (Fi,j , si,j))∪ (Fi,j , s

′
i,j)

Scen ′ ← scen ′ ∪ Scen ′

found ← false

foreach Fi ∈ ~F do
create a new instance Fi,j+1

if accept(Fi,j+1, init i,j+1, eh) =
(Fi,j+1, s

′
i,j+1) then

Let scen′ be a copy of scen
scen ′ ← scen ′ ∪ (Fi,j+1, s

′
i,j+1)

Scen ′ ← scen ′ ∪ Scen ′

found ← false

if found == true then
return Inconsistent

Scen = Scen′

return Scen

below depending on which flow instance emits t3.

{(F1,1, {p4}), (F1,2, {p3})}
{(F1,1, {p3}), (F1,2, {p4})}.

After handing the next event t3, the above two execution
scenarios are reduced to the one as shown below.

{(F1,1, {p4}), (F1,2, {p4})}.
Using Algorithm 1 to handle the remaining four events, the
following execution scenario is derived.

{(F1,1, {p5, p6}), (F1,2, {p5, p6})}

IV. TRACE ANALYSIS WITH PARTIAL OBSERVABILITY

In general, a signal trace of partial observability corresponds
a set of traces of flow events due to the ambiguous interpre-
tation of signal events. In the following, we discuss two cases
for trace abstraction on partial observability: mapping a single
signal event to a flow event or mapping a sequence of signal
events to a flow event. A signal event is defined as a state on
or an assignment to a set of signals.

Hereafter, the term flow traces is used to refer to traces of
flow events. Consider the following example for the first case.
Suppose that there are three flow events: e1, e2, and e3, which
are implemented in hardware by the signal events shown in
the list below. We use Boolean expressions to represent signal

events for the discussion.

e1 : abc
e2 : ābc
e3 : ab̄c

Suppose that only signals b and c are observable, and we obtain
the following trace:

bc bc b̄c

During trace abstraction, the first two signal events bc can be
mapped to {e1, e2} since a is not observable, and the last one
b′c is mapped to {e3}. Therefore, this signal trace is abstracted
to four flow traces, {e1, e2} × {e1, e2} × {e3}.

Next, we consider the case where a flow event is mapped
from a sequence of signal events. Now suppose that two other
flow events are implemented by sequences of signal events as
defined in the list below.

e4 : abc ābc
e5 : abc abc abc ābc

Given an observed trace of the same observability shown
below

bc bc bc bc,

it is abstracted to the following flow traces.

e4e4, e4 , e4 , e4, e5

where denotes signal events that are not mapped to any
flow events. Note that the above abstraction leads to three
distinct flow traces as the middle three correspond to the same
flow trace.

It is clear from above that a partial trace is viewed as a set
of flow traces, and Algorithm 1 can be suitably extended to
work with flow traces to obtain the set of candidate flows.
However, applicability of the algorithm in practice can be
gated because the number of potential flow execution scenar-
ios generated under partial observability may be enormous.
Note that this is not a limitation of the algorithm; if the
observability of critical events is poor there simply are too
many flow execution scenarios compliant with the observed
trace. Nevertheless, we need to address the issue to make
trace interpretation (whether automatic or not) practicable.
There are two potential approaches: (1) better selection of
post-silicon trace observability, and (2) use of system insights
during validation. Trace signal selection itself is an important
and orthogonal topic [4], [5], and a detailed discussion of it is
out of scope of this paper. However, we briefly describe how
the debuggers’ insights of a system’s architecture can help to
address the complexity issue in the trace interpretation.

A. Interactive Trace Interpretation

Post-silicon validation is performed by debuggers with deep
knowledge about the system’s architecture and microarchitec-
ture, and the test environment. Two key insights are (1) the
maximal number of instances of a flow activated in the test en-
vironment, and (2) the mutual relationship between two flows.
For example, the test environment may not permit multiple



Fig. 2. SoC platform structure.

instances of firmware authentication to operate concurrently,
or a flow involving audio and Web browsing to initiate until
the flows participating in boot are completed. Our framework
permits incorporating such insights as constraints in trace
analysis; flow execution scenarios that violate these constraints
are ignored. These insights can lead to two advantages. First,
they help to reduce the potentially large number of partial
scenarios generated during the trace interpretation step, thus
making the analysis more efficient. Second, they permit the
debugger to quickly filter out uninteresting combinations of
flows and focus on interesting interleavings.

This approach can be flexible in that it allows a debugger to
analyze the observed traces in a trial-and-error manner if the
precise knowledge of the system (micro-)architecture is hard
to come by. For instance, the debugger might initially make a
very restricted assumption on how the SUD executes a flow
specification, and these assumptions can potentially lead to an
empty set of flow execution scenarios. Depending on which
of these assumptions triggered during the trace interpretation
step, the debugger can study these assumptions more carefully,
and relax some or all of them for the next run of analysis. This
iteration can be repeated as many times as necessary until
some results deemed meaningful are produced.

V. CASE STUDY

To determine the efficiency of the trace analysis method
for a realistic example, a transaction level model of a SoC
is constructed within the GEM5 environment [2]. This SoC
model, as shown in Fig. 2, consists of two ARM Cortex-
A9 cores, each of which contains two separate 16KB data
and instruction caches. The caches are connected to a 1GB
memory through a memory bus model. Components com-
municate with each other by sending and receiving various
request and response messages. In order to observe and trace
communications occurring inside this model during execution,
monitors are attached to links connecting the components.

TABLE I
RUNTIME RESULTS OF TRACE ANALYSIS. TIME IS IN SECONDS AND

MEMORY USAGE IS IN MB.

F-Obs.
P-Obs.

No Amb.
P-Obs.
Amb. 1

P-Obs.
Amb. 2

Time 3 2.78 896 < 1
Mem 12 10 420 9

These monitors record the messages flowing through the links
they are attached to, and store them into output trace files.

For this model, we consider the flow specifications de-
scribing the cache coherence protocols supported in GEM5
that is used to build the model in Fig 2. The GEM5 cache
coherence protocols can be found at [6]. These flow specifica-
tions describe data/instruction read operations and data write
operations initiated from CPUs. Three such flows describe the
cache coherent protocols for each CPU. Since there are two
CPUs, there are six flows in the model.

We wrote two simple concurrent programs, one for each
CPU, to exercise the flows. They read numbers from a file,
perform some operations on these numbers, and store the
results back to the file. How GEM5 supports shared memory
multi-threaded program execution is unclear. Therefore, no
data are shared in both caches in this test. Furthermore, GEM5
does not support true concurrency. When there are two pro-
grams running on the CPUs, GEM5 alternates the executions
between the two CPUs. To simulate asynchronous concurrency
with the interleaving semantics, those two simple programs
are instrumented with pseudo-blocking commands, one placed
before each statement. A pseudo blocking command includes
a random number generator that returns either 0 or 1 and a
loop that only exits when the returned random number is 0.

After this model is executed with the simple concurrent
programs, the trace analysis is applied to traces with different
observabilities collected from this model. The runtime results
are shown in Table I. The first column shows the results from
analyzing the trace with the full observability, while the next
three show the result from analyzing traces with different
partial observability assumptions.

In the first experiment, full observability is assumed. After
the SoC model finishes executing the program, there are totally
343581 messages collected in the trace file. Not all of the
messages are relevant to the flow specification as many are
used by GEM5 to initialize its simulation environment. After
removing those irrelevant messages, the number of messages
in the trace file is to reduced to 121138.

The time taken to remove the irrelevant messages from the
trace is negligible. The total runtime and the peak memory
taken by the trace analysis algorithm on the reduced trace are
3 seconds and 12MB, respectively. Only one flow execution
scenario is extracted, and Table II shows the number of flow
instances contained in that scenario for the six flows describing
cache coherent operations initiated from both CPUs.

In the second experiment, partial observability is taken



TABLE II
THE NUMBER OF FLOW INSTANCES DERIVED BY THE TRACE ANALYSIS

WITH THE FULL OBSERVABILITY.

Flows #Instances
CPU1 Data Read 17582
CPU1 Instruction Read 4002
CPU1 Write 3370
CPU2 Data Read 17386
CPU2 Instruction Read 3955
CPU2 Write 3308

TABLE III
THE NUMBER OF FLOW INSTANCES DERIVED BY THE TRACE ANALYSIS

WITH CERTAIN MONITORS DISABLED.

Flows #Instances
CPU1 Data Read 829
CPU1 Instruction Read 169
CPU1 Write 82
CPU2 Data Read 803
CPU2 Instruction Read 190
CPU2 Write 83

into account with the four monitors attached to the links
between two CPUs and their caches are disabled. Then,
the trace is generated by the remaining five monitors from
the SoC model executing the same program. The new trace
contains 15089 messages. Similarly, only one flow execution
scenario is extracted, and the numbers of the flow instances
contained in that execution scenario are shown in Table III.
From these results, the numbers of the flow instances are
dropped significantly compared to the results extracted from
the trace with the full observability as shown in Table II. This
difference is due to that some communications occurred in
the system when executing the program involve the CPUs
and their corresponding caches only, and the traffic on the
links between the CPUs and their corresponding caches is not
observable. Therefore, the instances of the flow specifications
characterizing these communications do not exist in the trace.
In other words, all extracted flow instances in Table III
characterize the communications that pass through the memory
bus in the system model. The runtime and memory usage as
shown in the third column in Table I are similar to those for
analyzing the trace of the full observability.

In the third experiment, further partial observability is taken
into consideration. In this experiment, only the five links
involving the memory bus are still considered. However, an
assumption is made that all events passing the same link
are not distinguishable due to the limited observability. The
monitors are modified such that whenever an event is captured
on one of the links, it dumps a set of events passing through
the same link into the trace file. Therefore, each line of the
trace file corresponds to a set of events. After applying the
trace analysis to this trace, a total of 13944 flow execution

scenarios are extracted. This large number, compared to the
results from the first two experiments, is due to the ambiguous
interpretation of the events with limited observability.

The whole experiment takes about 15 minutes and 420 MB
to finish as shown in column 4 in Table I, significantly higher
than the numbers for analyzing traces where there is no
ambiguity in the observed events. This is due to the fact that a
trace of ambiguous events is in fact a set of traces of original
events, which lead to large numbers of execution scenarios
either during or at the end of the analysis. In this experiment,
the peak number of execution scenarios during the analysis
process is 70384, many of which are invalid and removed
eventually. However, controlling the number of intermediate
execution scenarios during the trace analysis is critical in order
for the analysis to be tractable. Here, insights from validators
could help, but are not used in this experiment.

As shown above, the ambiguous interpretation of events
can lead to large numbers of intermediate and final execution
scenarios, which not only make the trace analysis more
time consuming but also make it difficult to gain insightful
understanding from the derived execution scenarios. Careful
selection of what to observe may have big impact on results
from the trace analysis. In this last experiment, we relax the
assumption made in the previous experiment such that the
events passing each link are partitioned into two groups, one
for read operations and one for write operations. Similar to
the assumption made in the previous experiment, events in
the same group are assumed to be non-distinguishable. The
monitors are modified accordingly such that they output all
events in the same group into the trace file if an event from that
group is captured. After the trace analysis on this new partially
observed trace is finished, only one execution scenario is
derived where the distribution of the numbers of flow instances
is the same as those shown in Table III. The peak number of
execution scenarios encountered during the trace analysis is 4.
The total runtime and memory usage are negligible as shown
in the last column in Table I. Compared to the results from the
previous experiment, the precision and the performance of the
trace analysis are improved dramatically as a result of careful
selection of observable events.

VI. RELATED WORK

Our work is closely related to communication-centric and
transaction based debug. An early pioneering work is de-
scribed in [7], which advocates the focus on observing ac-
tivities on the interconnect network among IP blocks, and
mapping these activities to transactions for better correlation
between computations and communications. Therefore, the
communication transactions, as a result of software execution,
provide an interface between computation and communication,
and facilitate system-level debug. This work is extended in [8],
[9]. However, this line of work is focused on the network-on-
chip (NoC) architecture for interconnect using the run/stop
debug control method.

A similar transaction-based debug approach is presented
in [10]. Furthermore, it proposes an automated extraction of



state machines at transaction level from high level design
models. From an observed failure trace, it performs back-
tracking on this transaction level state machine to derive a set
of transaction traces that lead to the observed failure state.
In the subsequent step, bounded model checking with the
constraints on the internal variables is used to refine the set
of transaction traces to remove the infeasible traces. This ap-
proach requires user inputs to identify impossible transaction
sequences, and may not find the states causing the failure if the
transaction traces leading to the observed failure state is long.
Backtracking from the observed failure state requires pre-
image computation, which can be computationally expensive.
A transaction-based online debug approach is proposed in [11]
to address these issues. This approach utilizes a transaction
debug pattern specification language [12] to define properties
that transactions should meet. These transaction properties are
checked at runtime by programming debug units in the on-chip
debug infrastructure, and the system can be stopped shortly
after a violation is detected for any one of those properties.
In this sense, it can be viewed as the hardware assertion
approaches in [13] elevated to the transaction level.

In [14], a coherent workflow is described where the result
from the pre-silicon validation stage can be carried over to
the post-silicon stage to improve efficiency and productivity of
post-silicon debug. This workflow is centered on a repository
of system events and simple transactions defined by architects
and IP designers. It spans across a wide spectrum of the
post-silicon validation including DFx instrumentation, test
generation, coverage, and debug. The DFx instruments are
automatically inserted into the design RTL code driven by
the defined transactions. This instrumentation is optimized for
making a large set of events and transactions observable. Test
generation is also optimized to generate only the necessary but
sufficient tests to allow all defined transactions to be exercised.
Moreover, coverage for post-silicon validation is now defined
at the abstract level of events and transactions rather than
the raw signals, and thus can be evaluated more efficiently.
In [15], a model at an even higher-level of abstraction, flows, is
proposed. Flows are used to specify more sophisticated cross-
IP transactions such as power management, security, etc, and
to facilitate reuse of the efforts of the architectural analysis to
check HW/SW implementations.

VII. CONCLUSION

This paper presents a method for post-silicon validation by
interpreting observed raw signal traces at the level of system
flow specifications. The derived flow execution scenarios pro-
vide more structured information on system operations, which
is more understandable to system validators. This information
can help to locate design defects more easily, and also provides
a measurement of validation coverage.

Due to partial observability, this approach may derive a large
number of different flow execution scenarios for a given signal
trace. Insights from system validators can help to eliminate
some false scenarios due to the partial observability. An
interesting future direction is formalization of the validators’

insights using temporal logic on flows so that the validators
can express their intents more precisely and concisely.

The trace analysis approach presented in this paper needs
to be iterated with different observations selected in different
iterations in order to eliminate the false scenarios and to root
cause system failures as quickly as possible. The observation
selection and stitching signal traces of different observations
together for the above goal will also be pursued in the future.

REFERENCES

[1] P. Patra, “On the cusp of a validation wall,” IEEE Des. Test, vol. 24,
no. 2, pp. 193–196, Mar. 2007.

[2] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5 simulator,”
SIGARCH Comput. Archit. News, vol. 39, no. 2, pp. 1–7, Aug. 2011.

[3] S. Krstic, J. Yang, D. Palmer, R. Osborne, and E. Talmor, “Security of
soc firmware load protocols,” in Hardware-Oriented Security and Trust
(HOST), 2014 IEEE International Symposium on, May 2014, pp. 70–75.

[4] H. F. Ko and N. Nicolici, “Algorithms for state restoration and trace-
signal selection for data acquisition in silicon debug,” Computer-Aided
Design of Integrated Circuits and Systems, IEEE Transactions on,
vol. 28, no. 2, pp. 285 –297, feb. 2009.

[5] K. Basu and P. Mishra, “Efficient trace signal selection for post silicon
validation and debug,” in VLSI Design (VLSI Design), 2011 24th
International Conference on, jan. 2011, pp. 352 –357.

[6] “The gem5 simulator: A modular platform
for computer-system architecture research,”
http://www.gem5.org/docs/html/gem5MemorySystem.html.

[7] K. Goossens, B. Vermeulen, R. v. Steeden, and M. Bennebroek,
“Transaction-based communication-centric debug,” in Proceedings of the
First International Symposium on Networks-on-Chip, ser. NOCS ’07.
Washington, DC, USA: IEEE Computer Society, 2007, pp. 95–106.

[8] B. Vermeulen and K. Goossens, “A network-on-chip monitoring infras-
tructure for communication-centric debug of embedded multi-processor
socs,” in VLSI Design, Automation and Test, 2009. VLSI-DAT ’09.
International Symposium on, ser. VLSI-DAT ’09, 2009, pp. 183–186.

[9] K. Goossens, B. Vermeulen, and A. B. Nejad, “A high-level debug
environment for communication-centric debug,” in Proceedings of the
Conference on Design, Automation and Test in Europe, ser. DATE ’09.
3001 Leuven, Belgium, Belgium: European Design and Automation
Association, 2009, pp. 202–207.

[10] A. M. Gharehbaghi and M. Fujita, “Transaction-based post-silicon debug
of many-core system-on-chips,” in ISQED, 2012, pp. 702–708.

[11] M. Dehbashi and G. Fey, “Transaction-based online debug for noc-
based multiprocessor socs,” in Proceedings of the 2014 22Nd Euromicro
International Conference on Parallel, Distributed, and Network-Based
Processing, ser. PDP ’14. Washington, DC, USA: IEEE Computer
Society, 2014, pp. 400–404.

[12] A. M. Gharehbaghi and M. Fujita, “Transaction-based debugging of
system-on-chips with patterns,” in Proceedings of the 2009 IEEE Inter-
national Conference on Computer Design, ser. ICCD’09. Piscataway,
NJ, USA: IEEE Press, 2009, pp. 186–192.

[13] M. Boule, J.-S. Chenard, and Z. Zilic, “Assertion checkers in verifi-
cation, silicon debug and in-field diagnosis,” in Proceedings of the 8th
International Symposium on Quality Electronic Design, ser. ISQED ’07.
Washington, DC, USA: IEEE Computer Society, 2007, pp. 613–620.

[14] E. Singerman, Y. Abarbanel, and S. Baartmans, “Transaction based pre-
to-post silicon validation,” in Proceedings of the 48th Design Automation
Conference, ser. DAC ’11. New York, NY, USA: ACM, 2011, pp. 564–
568.

[15] Y. Abarbanel, E. Singerman, and M. Y. Vardi, “Validation of soc
firmware-hardware flows: Challenges and solution directions,” in Pro-
ceedings of the The 51st Annual Design Automation Conference on
Design Automation Conference, ser. DAC ’14. New York, NY, USA:
ACM, 2014, pp. 2:1–2:4.


