
Post-Silicon System-on-Chip Integration Debug

Yuting Cao, Hao Zheng
CSE, U of South Florida, Tampa, FL

{cao2, haozheng}@mail.usf.edu

Sandip Ray
ECE, U of Florida, Gainesville, FL

sandip@ece.u .edu

ABSTRACT
Reconstruction of how components communicate with each
other during system execution is crucial for debugging system-
on-chip designs. However, limited observability is the ma-
jor obstacle to the efficient and accurate reconstruction in
the post-silicon validation stage. This paper addresses that
problem by proposing several communication event selec-
tion methods guided by system-level communication proto-
cols. Such methods are optimized for on-chip communica-
tion event tracing infrastructure to enhance observability.
The effectiveness of these methods are demonstrated with
experiments on a non-trivial multicore SoC prototype. The
results show that with the proposed method, more com-
prehensive information on system internal execution can be
inferred from traces under limited observability.

1. INTRODUCTION
A modern System-on-Chip (SoC) design is typically con-

structed by composing a large number of pre-designed“intel-
lectual properties”or“IPs” that coordinate through complex
protocols to implement system-level behavior.Over the last
decade, the number and heterogeneity of IPs integrated in
an SoC design have continued to grow, and the trend is to-
wards an even sharper growth gradient as we develop sophis-
ticated systems targeting complex applications like automo-
tives and Internet-of-Things. Unsurprisingly, this has led to
an increasing count of design bugs [1, 2]. These systems are
often deployed in critical applications, bugs discovered after
their deployment in field can be extremely expensive, result-
ing in catastrophic loss of company revenues, compromise of
personal and national security, and even human life.

Post-silicon debug is a critical component of the validation
of modern microprocessors and SoC designs. It is performed
on silicon implementation, to make sure that the finished
system works as intended under actual operating conditions.
Unfortunately, it is also highly complex, performed under
aggressive schedules and accounting for more than 50% of
the overall design validation cost [2]. A major challenge in
post-silicon debug is the severely limited observability where
only a small number of debug interface signals are available
to observe a vast space of internal executions of SoC designs.

In this paper, we consider post-silicon integration debug of
SoC designs, which concerns debugging anomalies in execu-
tions of communication protocols among various IPs. Execu-
tions in modern SoC designs entail significant interleavings
of a large number of such protocols, and errors can occur
because of a subtle race condition in a specific interleav-
ing which is difficult to exercise or repeat [3]. Furthermore,

while individual IPs are often reused across products, their
specific integration, — and consequently, the protocols in-
volved in their communications —, is unique to each individ-
ual SoC. This results in unique bugs arising in the commu-
nication component of each SoC, which are hard to isolate,
replay, triage, and root-cause. The situation is particularly
exacerbated by the fact that due to partial observability
only a small set of events in the participating protocols can
be actually observed in each execution, making it harder to
pinpoint the exact interleaving involved in the execution.

In order to address the above challenge, this paper presents
a number of communication event selection methods aiming
to increase coverage metrics that are relevant to various de-
bug objectives. These methods are optimized for an on-chip
communication event tracing infrastructure that can be typ-
ically found in modern SoC designs. The main contribu-
tions of this paper include the following.

• This work considers enhancing observability with respect
to an on-chip real-time tracing infrastructure instead of
trace buffers. Using trace buffers can only offer a lim-
ited window of observability while the real-time tracing
provides more comprehensive observability over the en-
tire course of system execution, which is indispensable for
SoC integration debug.

• New coverage metrics are proposed for evaluating rele-
vance and comprehensiveness of information captured on
observed traces with respect to system-level communica-
tion protocols. The traditional metric, state restoration
ratio (SRR), is not applicable for SoC integration debug.

• Communication event selection methods are driven by
the proposed coverage metrics optimized for the real-time
tracing infrastructure so that observed traces only capture
the most relevant communication events under limited ob-
servability.

2. BACKGROUND
In architectural documents, system-level protocols are of-

ten represented as message flows, therefore they are referred
to as system flows in this paper.

Definition 2.1. A system flow is defined as a tuple
F = (P, T,E, L) where P is a finite set of places, T is a
finite set of transitions, E is a finite set of events, and
L : T → E is a labeling function that maps each transition
t ∈ T to an event e ∈ E.

An SoC typically implements several flows denoted as ~F . In
this paper, Fi ∈ ~F denotes one such flow. In a system flow,

A Communication-Centric Observability Selection for

978-1-7281-0392-1/19/$31.00 ©2019 IEEE 278 20th Int'l Symposium on Quality Electronic Design

Authorized licensed use limited to: University of Florida. Downloaded on January 23,2021 at 05:04:31 UTC from IEEE Xplore. Restrictions apply.

an event is a tuple (src, dest, cmd) where cmd is a command
sent from a source component src to a destination compo-
nent dest. An event is generated when block src communi-
cates with block dest. An example CPU write flow is shown
in Figure 1.

For each transition t ∈ T , its preset, denoted as •t ⊆ P ,
is the set of places connected to t, and its postset, denoted
as t• ⊆ P , is the set of places that t is connected to. A
state s ⊆ P of a flow is a subset of places marked with
tokens. There are two special states associated with each
flow; s0 ⊆ P is the set of initially marked states, also referred
to as the initial state, and the end state s⊥ ⊆ P is the
set of end states not going to any transitions. Each flow
is associated with one start and several end events. An
event e ∈ E is a start event if e = L(t) and •t ⊆ s0. An
event e ∈ E is an end event if e = L(t) and t• ⊆ s⊥.
In Figure 1, s0 = {p1}, and s⊥ = {p9}, its start event
is (CPU_X:Cache_X:wr_req), and its end event is the one
labeled for transitions t8, t9 and t10. The occurrence of a
start event indicates the beginning of a flow execution, while
the occurrence of an end event indicates the complete of a
flow execution.

A transition t can be fired in a state s if •t ⊆ s. Firing t
causes the labeled event to be emitted, and leads to a new
state s′ = (s− •t) ∪ t•. Therefore, executing a flow induces
a sequence of events. Execution of a flow completes if its s⊥
is reached.

Definition 2.2. An instance of a flow Fi ∈ ~F is Fi,j

where j denotes the instance index. Similarly, every element
of Fi,j is an instance of the corresponding element in Fi.

During an execution of a SoC design, instances of the
set of flows ~F that it implements are executed. Suppose
that the set of flow instances executed is {Fi,j | Fi ∈ ~F}.
The following definition relates flow executions with event
sequences.

Definition 2.3. Given a SoC design that implements a
set of flows ~F , an execution on its instances {Fi,j | Fi ∈ ~F}
yields a trace ρ such that

ρ = {e0e1 . . . en | ei ∈
⋃
Ei,j}

where Ei,j is the set of events of flow instance Fi,j.

From a trace, an execution of flow instances can be inferred
by following the transition firing semantics of system flows
defined above.

3. COMMUNICATION TRACING
System execution typically involves a number of flow in-

stances executed concurrently. In order to reconstruct flow
executions off-chip, communication events involved in flow
executions must be collected and off-loaded. Modern SoC
designs are typically instrumented with extensive dfx cir-
cuitry for various debug functions. This section describes
an on-chip infrastructure for real-time tracing of communi-
cation events during system execution. The architecture of
this infrastructure is shown in Figure 2.

3.1 Communication Tracing Module (CTM)
The communication tracing module consists of communi-

cation monitors and an off-load unit. Communication moni-

p1

t1 : (CPU X : Cache X : wr req)

p2

t2 : (Cache X : Cache X′ : snp wr req)p3

t3 : (Cache X′ : Cache X : snp wr resp)

p4

t4 : (Cache X : Bus : wr req) p5

t5 : (Bus : Mem : rd req)p6

t6 : (Mem : Bus : rd resp) p7

t7 : (Bus : Cache X : wr resp)p8

t8 : (Cache X : CPU X : wr resp)

t9 : (Cache X : CPU X : wr resp)

t10 : (Cache X : CPU X : wr resp)

p9

Figure 1: Graphical representation of a CPU write flow.

IP IP IP

Core

I$ D$ M
o

n
it

o
r

Core

I$ D$ M
o

n
it

o
r

Core

I$ D$ M
o

n
it

o
r

Monitor Monitor Monitor

System Agent

Ev
en

t
Q

u
e

u
e

Ev
en

t
Q

u
eu

e

Ev
en

t
Q

u
e

u
e

Ev
en

t
Q

u
e

u
e

Ev
en

t
Q

u
e

u
e

Ev
en

t
Q

u
e

u
e

Priority Output
Controller

Debug Bus

Trace
Output

Figure 2: Architecture of the Communication Tracing Mod-
ule (CTM) for SoC integration debug.

tors are attached to communication links of interest. A mon-
itor observes signal events transferred on a link, and gener-
ates a communication event if a pattern on the observed sig-
nal events is recognized. A signal event is an assignment to
a set of design signals. A flow event is an abstract construct
used in flow specifications, and is typically implemented by a
sequence of signal events. Communication events generated
by monitors can be viewed as encodings of flow events in a
SoC design. An important function of a monitor is to com-
press a sequence of signal events across a potentially large
number of cycles into a single cycle communication event,
which is beneficial to reduce the bandwidth demand on the
trace interface. Once a communication event is detected,
a monitor can selectively encode information that is useful
for the off-chip analysis including operation commands, ad-
dresses, etc.

Communication events from monitors can be stored in the
on-chip trace buffers, and off-loaded at the end of system ex-
ecution. However, the on-chip trace buffers can only store
a limited number of events due to their limited capacities.
On the other hand, our communication tracing infrastruc-
ture includes an event off-load unit that can off-load events
via trace ports on-the-fly, thus enabling system internal ex-
ecutions over an much extended period to be observed for

Authorized licensed use limited to: University of Florida. Downloaded on January 23,2021 at 05:04:31 UTC from IEEE Xplore. Restrictions apply.

off-chip analysis.
Since communcation events from monitors are typically

distributed over time relatively sparsely, the off-load unit
interleaves events, and off-loads them via the shared trace
ports in a time-multiplexing manner. An issue with the in-
terleaved approach is that the rate of events detected by
monitors can exceed the peak bandwidth of the trace ports.
In that case, certain events have to be dropped. The inabil-
ity to off-load all events occurred during an execution can
be viewed as another form of limited observability. In order
to reduce the number of events that have to be discarded,
output of each monitor is connected a queue that buffers
events waiting for off-load. On every cycle, events from all
monitors are stored into the corresponding queues. An out-
put controller scans all event queues, and off-loads buffered
events one at a time.

3.2 Limited Observability
As indicated in the previous section, limited bandwidth

of trace ports may cause some communication events not
to be observed. The frequency of event dropping is roughly
affected by the gap between the rate of events generated by
all monitors and the bandwidth of trace ports. The factors
affecting the rate of communication event generation include
the design micro-architecture, test programs used during de-
bug, and the number of flows and flow events selected for
observation. One simple technique to reduce the frequency
of event dropping is large buffers for events waiting for out-
put, but it leads to a large area overhead.

An important observation exploited in this paper is that
some events are more important for understanding flow ex-
ecutions than others. If the less important events are not
observed, then the whole trace port bandwidth can be ded-
icated to observing the more important events. Further-
more, not observing certain events may eliminate the need
of observing certain communication links altogether. In that
case, the corresponding monitors can be disabled, and the
capacities of the associated event queues can be re-allocated
to the queues for the links under observation. By increas-
ing the queue capacities for the links under observation, the
event droppings can be effectively reduced. This hypothesis
about the relation between the number of links to observe
and the event losses will be exploited and experimentally
validated in the following sections. Next section presents
metrics for evaluating importance of events, and methods
for selecting important events to observe.

4. FLOW EVENT SELECTION
As shown in the previous section, not observing less im-

portant events can help prevent important events from being
dropped. In this section, importance of events is character-
ized by a number of coverage metrics for different debug
purposes. After defining the coverage metrics, we describe
communication event selection methods driven by those cov-
erage metrics. The objective of these selection methods is
to maximize the coverage metrics under the resource con-
straints of the communication tracing infrastructure. Unlike
previous work on trace signal selection [4, 5], the methods
presented in this section target selecting flow events for ob-
servation instead of individual design signals.

4.1 Selecting Flows to Observe
An critical activity performed in post-silicon stage is to

(1) (2) (3)

𝐹(𝑖, 𝑗)

𝐹(𝑥, 𝑦)

Figure 3: Possible interleavings between two flows

validate application usage scenarios. In this activity, indi-
vidual target usage scenarios, e.g., for a smartphone, play-
ing videos or surfing the Web, while receiving a phone call,
are exercised, while possible failures e.g., hangs, crashes,
deadlocks, overflows, etc., are monitored. Usage scenario
validation forms a key part of SoC integration validation.
Each usage scenario usually involves interleaved execution
of several flows among IPs in the SoC design, e.g.., a usage
scenario that entails receiving a phone call in a smartphone
when the phone is asleep involves flows among the antenna,
power management unit, CPU, etc. Therefore, only the flow
events of the involved flows in a usage scenarios are typically
observed. As explained in the previous section, observing a
restricted subset of events can reduce incidients of events
being dropped.

4.2 Flow Execution Coverage Metrics
In this section, we consider the problem of characterizing

the important or relevance of flow events by defining cover-
age metrics for different debug purposes.

The first metric is flow instance coverage (FIC), which
is defined below.

FIC =
I

N
(1)

where I is the number of flow instances observed, and N is
the total number of flow instances executed. FIC defines a
fraction of the number of flow instances actually observed
versus the total number of flow instances executed. We say
that a flow instance is observed in a trace if any event of
that flow instance is observed in the trace. Note that the
parameter N is not essential when this metric is applied to
evaluate different observabilities as all of them are evaluated
assuming the same N .

The purpose of FIC is to offer a metric to evaluate differ-
ent observabilities to support a coarse-grained global view
of system execution. In this coarse-grained global view, we
are interested in all flow instances executed in the entire
course of a debug run, instead of detailed execution of indi-
vidual flow instances. It may provide valuable information
about anomaly behavior in system execution, e.g., an unusu-
ally high number of wakeup calls to a CPU from the power
management unit. In this case, we want to select an observ-
ability that maximize FIC. Obviously, one observability is
better than another one if its FIC derived from an observed
trace is higher.

As explained in the introduction, many errors are due
to intricate interleaved execution of flows, e.g., a firmware
execution flow executed before a firmware authenticate flow
completes, signaling a security breach. Therefore, the coarse-
grained global view obtained by only observing flow instances
is inadequate. Observed traces must capture sufficient in-
formation to allow interleaved execution of different flow in-
stances to be extracted. The interleaving relations between
two flow instances Fi,j and Fx,y are shown in Figure 3. In
this figure, the length of arrows shows the duration of a flow
instance execution, while the arrows at both ends indicate

Authorized licensed use limited to: University of Florida. Downloaded on January 23,2021 at 05:04:31 UTC from IEEE Xplore. Restrictions apply.

the time when a flow instance is initiated and when it com-
pletes. Figure 3 shows three possible interleavings: (1) Fi,j

starts before Fx,y starts, and it completes after Fx,y com-
pletes; (2) the initiation and completion of Fi,j occur earlier
that the initiation and completion of Fx,y; (3) Fi,j completes
before Fx,y starts. An observability needs to be selected in
order to support such interleavings to be captured on the
observed traces. To evaluate different observabilities, we de-
fine the complete execution coverage (CEC) metric as
below.

CEC =
C

N
(2)

where C is the number of complete flow instances extracted
from an observed trace, and similarly N is the total num-
ber of flow instances executed. A complete flow instance is
observed if both its start and end events are found in the
observed trace.

4.3 Coverage Driven Event Selection
This section presents observability selection methods driven

by coverage metrics described in the previous section. The
inputs to a selection method are a set of flows to observe
and a coverage metric, and the output is a subset of flow
events for observability that maximize the coverage metric.

To select an observability targeting coverage metric FIC,
it is necessary to select a subset of flow events that cover all
flows under observation such that an event in an observed
trace can uniquely identify a flow instance. In practice, most
SoC designs include architectural support for tagging, which
allows uniquely identifying different flow instances from ob-
serving properly tagged events. Because of the unique cor-
respondence between flow instances and observed events, all
flow events are FIC-equivalent. Therefore, we aim to select
a subset of events that maximizes the FIC.

Given a set of flows to observe, there can be many dif-
ferent selections of events of those flows. In order for the
observed traces on the selected events to have high FIC,
the losses of the selected events must be low. Recall the
hypothesis presented in the previous section indicating that
the losses of events can be reduced if the number of links
under observation is reduced. By this hypothesis, for two
sets of selected events, if the number of links to observe for
one set of selected events is smaller than that of another set,
then the former is preferred.

Next, we consider observability selection targeting the
coverage metric CEC. In order for observed traces to have
high CEC, the start and end events of all flow instances
should be observable. Therefore, the start and end events
of all flows to observe must be selected.

To facilitate more effective debug, it is necessary to know
additional information beyond the initiation and completion
of each flow instance. More specifically, it would be useful
to know which path in the flow is followed when an instance
of that flow is executed. Consider the flow in Figure 1 fpr an
example. It has three possible execution paths. Observing
only the start and end events (labelings of t1 and t10) is not
sufficient to tell which execution path is actually followed.
Given an observed trace shown below,

(CPU_x:Cache_x:wr_req), (Cache_x:CPU_x:wr_resp),
. . .

we are not able to confirm whether it is a result of execut-
ing that flow following the rightmost path (p1, t1, p2, t10,

Core

I$

Core

I$

In
te
rc
o
n
n
ec
t

Coherence
Manager

AXI

MEMORY

GFX

UART

USB

C
T
M

Trace
Port

Cache coherence
data

IP communication
data

Monitor data

Figure 4: A SoC prototype where each communication link
is attached with a monitor. There can be multiple links
between a pair of components.

p9) or one of the other two paths with all the intermediate
events not observed. To obtain the information on paths
following by a flow execution, some unique event from each
path needs to be selected. Consider the same flow exam-
ple. Either one of {t2, t3} needs to be selected in order to
identify the leftmost or middle path. Moreover, one event
from {t4, t5, t6, t7} needs to be selected to identify the mid-
dle path. As the above illustration shows, there are different
ways to select additional events to observe for detailed exe-
cutions of a set of flows. Similarly, these different selections
are evaluated based on the number of links that need to be
observed for the selected events.

5. EXPERIMENTS

5.1 The Model
To evaluate the presented framework, a non-trivial SoC

design meeting the following requirements is desired.

• It implements sophisticated system flows.

• Flows are well documented.

• On-chip communication fabric is concurrent, and can sup-
port multiple active flow executions in parallel.

However, to the best of our knowledge, we cannot find an
open-source design that meets the above requirements. There-
fore, we developed a multi-core SoC prototype, as shown in
Figure 4, to evaluate the proposed methods. Even though
this model is simple compared to real SoC designs, it is much
more sophisticated than the gate-level benchmark suites typ-
ically considered as targets for post-silicon debug research.
In particular, while simplified, the system is representative
of industrial complexity. All the flows are abstracted from
real industrial protocols. Note that a typical industrial sub-
system includes between 8 and 32 flows [3]. We implement
a total of 16 system-level flows, including cache coherence,
power management, downstream read/write protocols for
CPUs, upstream read/write for the peripheral blocks, etc.
A different paper [6] details some of the flows.

We implemented this SoC as a cycle- and pin-accurate
RTL model written in VHDL. The above system-level pro-
tocols are supported by block-level protocols based on the
ARM AXI4-lite [7]. A total of 32 monitors are inserted into
this model guided by the implemented flows. Since the pro-
posed framework is to support communication-centric de-
bug, the focus of this model is the implementation of system

Authorized licensed use limited to: University of Florida. Downloaded on January 23,2021 at 05:04:31 UTC from IEEE Xplore. Restrictions apply.

Scope FIC CEC
All 470/500 (0.94) 101/500 (0.202)

CPU 192/200 (0.96) 103/200 (0.515)
CPU0 100/100 (1) 100/100 (1)

Table 1: Results with different flows under observation. The
capacity of all the queues is 8.

FIFO SIZE FIC CEC
8 470/500 (0.94) 101/500 (0.202)
16 490/500 (0.98) 178/500 (0.356)
32 499/500 (0.998) 307/500 (0.614)

Table 2: Impacts of different capacities of event queues.

flows for on-chip interconnect. The interconnect is a switch-
based network, that allows multiple flow instances in-flight
simultanenously. The CPUs are treated as test generators
where software programs are simulated in VHDL. Therefore,
there is no instruction cache. Blocks GFX, PMU, Audio, etc,
are also described as abstract models that generate events
to initiate flows or to respond incoming requests.

5.2 Experimental Results
The prototype is simulated in a random test environ-

ment where CPUs and three other peripheral blocks are pro-
grammed to randomly select a flow to initiate with a delay
between 1 to 10 cycles. Each of these blocks activates 100
flow instances, and a total of 500 flow instances are activated
during the entire simulation.

Table 1 shows the experimental results when different
flows are observed. Under the columns FIC and CEC, the
numbers A/B represent the ratios as defined in Section 4.
The equivalent fractional numbers for A/B are enclosed in
parentheses. The second row shows the results when all 500
flow instances are observed. The third row shows the results
from observing only flows initiated by CPU0 or CPU1. The
last row shows the results from observing only the flows ini-
tiated by CPU0. From the table, it can be seen that as the
number of flows under observation decreases, the number of
events that need to be observed for FIC and CEC decreases.
This leads to reduced losses of events, which is reflected in
the higher FIC and CEC values from row two to row four.
Particularly, in the last row, all executed instances of the
flows under observation can be precisely inferred.

In the second experiment, the impacts of different queue
capacities are evaluated. All flows and all flow events are ob-
served. Event dropping happens only when a queue becomes
full. In this experiments, the capacities of event queues are
increased gradually. This increase in queue capacity can
simulate the situation where the number of links to observe
is reduced and the queues of the non-observable links are
re-allocated to the queues of links under observation. The
results are shown in Table 2. It is noticeable that an increase
in the size of queues leads to a significant improvement in
FIC and CEC values of observed traces. These results vali-
date the hypothesis described in Section 3.2.

Table 3 compares the result of the proposed flow event
selection algorithm with another system level flow guided
selection approach proposed in [6]. We generate two sets
of selections guided by FIC and CEC individually (SEL1
and SEL2) and compare their results with selection SEL3
generated by [6]. And the results are evaluated by the previ-
ously mentioned two metrics and the numbers of links used.

Selection method # Links FIC CEC
NO-SELECTION 32(total) 470/500 (0.94) 101/500 (0.202)
SEL1 (FIC) 8 500/500 (1) 0/500 (0)
SEL2 (CEC) 16 441/500 (0.882) 200/500 (0.4)
SEL3 [6] 16 466/500 (0.932) 0/500 (0)

Table 3: Comparisons of different event selection methods

The second row NO-SELECTION represents the analy-
sis result when no selection method is applied, and all flow
events on the 32 links are observed.

The SEL1 on the third row is generated by our method
that is primarily guided by the FIC. In the beginning, sev-
eral sets of flow events with the optimal FIC effects (cover-
ing all flows) are generated, and within them we select the
set with the minimal numbers of links required, that is 8 in
this situation. The result shows that the FIC is improved
to its maximum value 1. While on the other hand CEC
is reduced to 0. This is expected as CEC is not consid-
ered for this selection. Then for the second selection SEL2,
we considers the CEC only and its result is shown in the
fourth row. It first selects all 32 initiating and terminating
events of all flows to enhance CEC. Because several flow
events are transferred on the same link (for example, both
(CPU_0:Cache_0:wr_req) and (CPU_0:Cache_0:rd_req) are
transferred on the same link), these events takes 12 links in
total. Moreover, SEL2 selects four flow events including
t2 and t4 that indicates the path of a flow, as discussed
in Section 4.3, occupying 4 links. Compared to the NO-
SELECTION , The result of SEL2 takes only 16 links,
and it shows significant improvement on the CEC (almost
double) as more start and end events are observed. Conse-
quently, more details regarding the interleaving relationship
of fired flow instances are revealed in SEL2. This improve-
ment comes in the cost of less flow instances being observed,
shown by the decrease in FIC value.

The fifth row SEL3 shows the result of using flow selec-
tion method from [6]. [6] proposes to rank each flow event by
their Frequency Coverage (FC) value in descending order,
and apply greedy algorithm to select the optimal set of flow
events. The FC considers the fact that some flow events
are shared by multiple flows thus are always preferred. The
concept of FC is very similar with FIC as it enforces the
maximum number of flows being covered for a set of flow
events. However, the FC in [6] is different in two aspects:
(1) it does not consider the number of links used for such
selection. Consequently, the capacity improvement may not
be as significant as our method where we always select the
set with the minimal number of links; (2) Because FC con-
siders each flow event individually, it is possible the selected
combination of events achieves high coverage only on cer-
tain flows. While our method ensures that the selected flow
event set covers all flows.

We applied the algorithm in [6] and selected top 16 (half of
the total link number) flow events with the highest FC. The
result of SEL3, however, does not show any improvement
compared to NO-SELECTION , the FIC actually reduced
from 470 to 466 due to the two factors mentioned above. It
is also to be noted for SEL3, each of the selected flow oc-
cupies one link individually, taking 16 links in total, that is
double of SEL1. As a result, the FIC of SEL3 is compara-
bly worse than both SEL1 and NO-SELECTION . On the
other hand, none of the initiation and termination events are

Authorized licensed use limited to: University of Florida. Downloaded on January 23,2021 at 05:04:31 UTC from IEEE Xplore. Restrictions apply.

selected due to their uniqueness to their belonging flows (not
shared by any other flows), leading to 0 CEC. This is ex-
pected as this algorithm does not consider special meanings
of such critical events.

Area overhead. The SoC model is synthesized to the Xil-
inx Zynq FPGA xc7z020ckg484-1. The area overhead of the
debug infrastructure is measured by the additional FPGA
resources including LUTs, FFs, block RAMs (BRAMs), etc.
From the obtained result, the demand on logic resources is
small to implement the monitoring infrastructure; On tops
of the original design area, this new implementation requires
additional 315 LUTs, 119 FFs, and 822 Muxs, that are 0.6%,
0.6% and 3% of the original design area.

6. RELATED WORK
Gharehbaghi and Fujita [8, 9, 10] describe transaction-

level debug with an on-chip instrumentation that allows
transaction level message abstraction using formal specifica-
tions of the bus communication protocols. Their approach
does not check system-level protocols as it only focus on
communication protocols among component interfaces. [11]
presents another on-chip instrumentation BiPeD that learns
communication interface’ protocol during pre-silicon stage,
and reconfigure its detection hardware to check the learned
protocols during the post-silicon validation. Similar to [8, 9,
10], interpreting the observed traces are not done at the sys-
tem level. [12] presents a processor verification framework
on an acceleration platform. Although both [12] and this pa-
per consider interpretation of low level behavior on hardware
signals at a higher level, [12] considers verification of individ-
ual processors, while this work targets post-silicon debug of
SoC designs where processors are just some IP blocks. Since
the work in [12] is developed for an acceleration platform, its
monitoring infrastructure does not consider area restriction
of the monitors. On the other hand, area overhead is a top
restriction in our monitor design. Furthermore, the design
under verification can be slowed down to match the speed
of the monitors to make sure that all observed events can be
outputted [12]. However, on-chip debug infrastructure can-
not interfere with normal chip operations in the post-silicon
environment where this work is positioned.

Previous work on trace signal selection such as [4] is typi-
cally applied to gate level design models, and the quality of
the results is evaluated by the commonly used state restora-
tion ratio. However, it is difficult to scale those methods to
large and complex SoC designs. More importantly, signals
selected at the gate level are often irrelevant to system-level
functionalities. There is an attempt to raise the abstrac-
tion level for trace signal selection to the register transfer
level (RTL) guided by assertions [5], however that work does
not consider system level functionalities either. On the other
hand, our framework considers selection of communication
events guided by system-level protocols, instead of raw hard-
ware signals. [13] proposed an similar concept where signal
selection is conducted on system-level communication pro-
tocols. While [13] shows significant improvement compared
to other low level based signal selection algorithms, its ef-
fect is mitigated by the resource limitation of the on-chip
debug infrastructure. The selecting scheme proposed in [13]
is guided by a metric that treat every communication pro-
tocol event equally. It failed to consider special events that
are critical for an comprehensive interpretation of the sys-

tem behavior. Furthermore, the algorithm in [13] requires
the interleaving graph of all flow instances to generate a set
of selection. Obtaining such interleaving graph requires the
type and number of instances of each flow. Such require-
ment is impractical as itself is one of the critical information
needed to be extracted during post silicon validation.

7. CONCLUSION
This paper describes several communication event selec-

tion methods aiming to boost flow execution coverages under
limited observability. The observed traces on the selected
communication events capture more comprehensive infor-
mation to allow better understanding of the communications
of components during system execution, thus facilitating de-
bug. In the future, we plan to perform in-depth studies of
the proposed methods on more complex SoC designs with
diverse interconnects such as the RocketChip SoC design.

Acknowledgment The work presented in this paper is
partially supported by a gift from the Intel Corporation.

8. REFERENCES
[1] S Yerramilli. Addressing post-silicon validation

challenge: Leverage validation and test synergy. In
Keynote, Intl. Test Conf, 2006.

[2] Priyadarsan Patra. On the cusp of a validation wall.
IEEE Des. Test, 24(2):193–196, March 2007.

[3] M. Talupur, S. Ray, and J. Erickson. Transaction
flows and executable models: Formalization and
analysis of message-passing protocols. In FMCAD,
pages 168–175, Austin, TX, 2015.

[4] Kanad Basu and Prabhat Mishra. Efficient trace
signal selection for post silicon validation and debug.
In VLSI Design, pages 352–357. IEEE, 2011.

[5] Sai Ma, Debjit Pal, Rui Jiang, Sandip Ray, and
Shobha Vasudevan. Can’t see the forest for the trees:
State restoration’s limitations in post-silicon trace
signal selection. ICCAD ’15, pages 1–8, 2015.

[6] Matthew Curtis Amrein. System-level trace signal
selection for post-silicon debug using linear
programming. Master’s thesis, 2015.

[7] Amba axi and ace protocol specification.
http://www.arm.com.

[8] A. M. Gharehbaghi and M. Fujita. On-chip
transaction level debug support for system-on-chips.
In ISOCC, pages 124–127, Nov 2009.

[9] A. M. Gharehbaghi and M. Fujita. Transaction-based
debugging of system-on-chips with patterns. In
ICCD’09, pages 186–192, Oct 2009.

[10] A. M. Gharehbaghi and M. Fujita. Transaction-based
post-silicon debug of many-core system-on-chips. In
ISQED, pages 702–708, March 2012.

[11] A. DeOrio, J. Li, and V. Bertacco. Bridging pre- and
post-silicon debugging with biped. In ICCAD’12,
pages 95–100, Nov 2012.

[12] D. Chatterjee, A. Koyfman, R. Morad, A. Ziv, and
V. Bertacco. Checking architectural outputs
instruction-by-instruction on acceleration platforms.
In DAC’12, pages 955–961. ACM, 2012.

[13] D. Pal, A. Sharma, S. Ray, F. M de Paula, and
S. Vasudevan. Application level hardware tracing for
scaling post-silicon debug. In DAC’18, 2018.

Authorized licensed use limited to: University of Florida. Downloaded on January 23,2021 at 05:04:31 UTC from IEEE Xplore. Restrictions apply.

