
Enhancing Observability for Post-Silicon Debug with
On-Chip Communication Monitors

Yuting Cao, Hernan Palombo, Hao
Zheng

CSE, U of South Florida, Tampa, FL
{cao2, hpalombo,

haozheng}@mail.usf.edu

Sandip Ray
ECE, U of Florida

Gainesville, FL
sandip@ece.ufl.edu

ABSTRACT
Reconstructing system-level behavior from silicon traces is
critical in post-silicon debug of System-on-Chip (SoC) de-
signs. However, limited observability makes the reconstruc-
tion process complex and inaccurate, thus offering little help
for SoC debug. This paper presents an on-chip monitor-
ing infrastructure aiming to enhance observability by de-
tecting communication transactions from low level signal
events. The detected transactions are output on-the-fly for
off-chip system-level behavior reconstruction. Experiments
show that the proposed monitoring infrastructure enables
accurate observations on communication transactions over
long periods of time, thus leading to accurate reconstruc-
tion of system level behavior, with low area overhead.

1. INTRODUCTION
Post-silicon debug is a critical component of the design

validation life-cycle for modern microprocessors and system-
on-chip (SoC) designs. Unfortunately, it is also highly com-
plex, performed under aggressive schedules and accounting
for more than 50% of the overall design validation cost [1].
An SoC design is often composed of a large number of

pre-designed hardware or software IP blocks that coordi-
nate through complex protocols to implement system-level
behavior [2]. As SoCs integrate more IPs, the interactions
among the IPs are increasingly more complex. Moreover,
modern interconnects are highly concurrent, allowing mul-
tiple system-level protocols to be processed simultaneously
for scalability and performance. Many difficult errors often
involve subtle and unexpected interleavings of these proto-
cols that have a very low probability of being exercised in
simulation [3] On the other hand, observability limitations
allow only a small number of participating signals to be actu-
ally traced during silicon execution. It is non-trivial during
post-silicon debug to identify all participating protocols and
pinpoint the interleavings that result in an observed trace.
In [4], an off-chip analysis approach was proposed with an

objective to reconstruct design internal behavior wrt given
system-level flow specifications. Since when and where an
error can happen are not known a priori, in our approach
silicon traces on a small number of observable hardware sig-
nals are streamed off-chip on-the-fly in order to facilitate
more efficient debug in space and time. Once a silicon trace
is obtained, it is processed by the off-chip analysis in two
consecutive steps: (1) trace abstraction, which maps a sili-
con trace into a sequence of flow events, abstract architec-
tural constructs representing communication transactions,

Figure 1: The system flow guided post silicon trace
analysis framework for SoC debug in our previous
work. The red lines across represents raw signal
traces while the blue line represents the flow trace
after the trace abstraction step.

Figure 2: The new framework where the SoC un-
der debug is instrumented with an on-chip monitor-
ing infrastructure and the off-chip trace analysis no
longer needs the trace abstraction component.

and (2) trace interpretation, which infers possible flow ex-
ecution scenarios that are compliant with the abstracted
event sequence. That approach is shown in Figure 1. Its
main drawback is that the reconstruction process is highly
complex and inaccurate due to the insufficient information
that can be derived from the silicon traces observed on a
very small number of trace signals. The inferred results are
often ambiguous, and provide limited help for debug.

Contributions This paper addresses the above drawback
by proposing an on-chip communication monitoring infras-
tructure to enhance debug observability. It consists of trans-
action monitors attached to the communication links of a
SoC design, and a transaction output unit that manages
transporting detected transactions by the monitors on-the-
fly for off-chip analysis. The new trace analysis approach
is shown in Figure 2. Instead of streaming observed signals
off-chip every clock cycle, the monitors offload transactions
only when they happen. Since transactions typically happen
sporadically over time, it allows transactions from different
communication links to be interleaved while being outputted
for off-chip analysis. On the same limited number of trace
signals, every event now can capture much more accurate

602

2018 IEEE Computer Society Annual Symposium on VLSI

2159-3477/18/$31.00 ©2018 IEEE
DOI 10.1109/ISVLSI.2018.00115

p1

t1 : (CPU X : Cache X : wr req)

p2

t2 : (Cache X : Cache X′ : snp wr req)p3

t3 : (Cache X′ : Cache X : snp wr resp)

p4

t4 : (Cache X : Bus : wr req) p5

t5 : (Bus : Mem : rd req)p6

t6 : (Mem : Bus : rd resp) p7

t7 : (Bus : Cache X : wr resp)p8

t8 : (Cache X : CPU X : wr resp)

t9 : (Cache X : CPU X : wr resp)

t10 : (Cache X : CPU X : wr resp)

p9

Figure 3: LPN formalization of a CPU write proto-
col.

information on internal communications during system ex-
ecution, it allows the trace analysis method to reconstruct
system-level behavior more accurately and efficiently.

2. PREVIOUS WORK
This section briefly reviews our previous work on the sys-

tem flow guided post-silicon trace analysis for SoC debug [4].
In our trace analysis method, system-level protocols or

system flows are formalized using Labeled Petri-nets (LPNs).
Figure 3 shows a memory write protocol initiated from a
CPU CPU_X in LPN where X ∈ {0, 1} and X′ = 1− X. An
LPN is a tuple (P, T,E, L, s0) where P is a finite set of
places, T is a finite set of transitions, E is a finite set of
events, and L : T → E is a labeling function that maps
each transition t ∈ T to an event e ∈ E. In a system flow
specification, each LPN transition is labeled with an event
(src, dest, cmd) where cmd is a command sent from a source
component src to a destination component dest. For each
transition t ∈ T , its preset, denoted as •t ⊆ P , is the set of
places connected to t, and its postset, denoted as t• ⊆ P , is
the set of places that t is connected to. A state s ⊆ P of
a LPN is a subset of places marked with tokens. There are
two special states associated with each LPN; s0 ⊆ P which
is the set of initially marked places, also referred to as the
initial state, and the end state send which is the set of places
not going to any transitions.
A transition t can be executed in a state s if •t ⊆ s.

Executing t causes the labeled event to be emitted, and leads
to a new state s′ = (s−•t)∪t•. Therefore, executing an LPN
leads to a sequence of events. Execution of a LPN completes
if its send is reached. For example, in Figure 3, t1 can be
executed in s0 = {p1}. Event (CPU X : Cache X : wr req) is
emitted after t1 is executed, and the LPN state becomes
{p2}. The end state is send = {p9}. A flow specification
may also contain multiple branches describing different ways
a system can execute such flow. For example, the flow shown
in Figure 3 has three branches covering the cases where the
cache (snoop) operation is hit or miss.
The objective of our silicon trace analysis is to infer possi-

ble compliant flow execution scenarios from a partially ob-
served trace wrt given system-level flow specifications F. A
flow execution scenario can be viewed as a state of system
execution abstracted wrt system flows, and it is defined as

{(Fi,j , si,j , start i,j , end i,j) | Fi ∈ F}
where Fi,j is the jth instance of flow Fi, start i,j and end i,j

are two indices representing relative time when Fi,j is initi-
ated and completed. si,j is used by the trace analysis to keep
track of the current state of Fi, j when an observed trace is
interpreted. The ordering relations can be derived by com-
paring their start and end indices. For example, for two flow
instances in an execution scenario, (Fu,v, su,v, startu,v, endu,v)
and (Fx,y, sx,y, startx,y, endx,y), Fu,v is initiated before Fx,y

if startu,v < startx,y, or Fx,y is initiated after Fu,v is com-
pleted if endu,v < startx,y. The ordering relations can pro-
vide more accurate information for understanding system
execution under limited observability.
To illustrate the basic idea, consider the system flow in

Figure 3, which we call F1. Suppose that the following flow
event trace is abstracted from an observed silicon trace by
executing a design that implements F1.

1 〈(CPU 0 : Cache 0 : wr req)〉
2 〈(CPU 0 : Cache 0 : wr req), (CPU 1 : Cache 1 : wr req)〉
3 〈(Cache 0 : CPU 0 : wr resp),

(Cache 1 : Cache 0 : snp wr req)〉
. . .

The numbers on the left in the above trace represent the
relative time when the corresponding events are observed.
Possible flow execution scenarios that are derived by our
approach are shown below.

{(F0,1, {p9}, 1, 3), (F0,2, {p2}, 2,−), (F1,1, {p3}, 2,−)},
{(F0,1, {p2}, 1,−), (F0,2, {p9}, 2, 3), (F1,1, {p3}, 2,−)}

The above flow execution scenarios indicate two possible sys-
tem states defined over the execution states of flow F1 after
observing the first three steps of events as shown above.
This ambiguity is mainly due to lack of necessary informa-
tion in the observed events due to the limited observability
in post-silicon debug.
The limited observability problem leads to two unpleas-

ant consequences. The large number of execution scenar-
ios typically derived during the trace analysis would take
longer runtime and large amount of memory to process and
to store, thus making it less efficient. This is referred to
as the complexity problem of the trace analysis. After the
analysis is done, a large number of derived execution scenar-
ios make it difficult to understand the analysis results, thus
being less helpful for debugging. Obviously, a single flow
execution scenario derived at the end of the trace analysis
provides much more precise information for debug than ten
candidate flow execution scenarios. This is referred to as
the accuracy problem of the trace analysis. Those problems
are addressed in the next section that describes an on-chip
monitoring infrastructure.

3. MONITORING INFRASTRUCTURE
In order to enhance observability and facilitate the trace

analysis, this section describes a communication monitoring
infrastructure. It consists of monitors attached to commu-
nication links to detect communication transactions, and a

603

Clock

S_Read_Ready

M_Read_Val

M_Read_Req Read Req

Mon_val

Mon_Req /// Read Req ////////////////

S
oC

M
on

ito
r

Mon_val

Mon_ReqMon_Req
Mon_Val

Figure 4: An example of the AXI read transaction
on a communication link, and the output of a mon-
itor attached to that link.

transaction output component to transport detected trans-
actions off-chip for the trace analysis.

3.1 Communication Transaction Monitoring
A communication link consists of signals that can trans-

fer some transactions, one at a time. Instead of routing a
limited number of design signals to the chip interface, sig-
nals of a communication link are connected to the inputs of
its attached monitor. During system execution, a monitor
reads signal events occurring on its inputs, and outputs an
encoding if a transaction is detected. A signal event denotes
an assignment to a set of design signals, while a communica-
tion transaction is a transfer of a body of information from a
source to a destination following a communication protocol.
Flow events are an abstract construct used in flow specifi-
cations, and are typically implemented by transactions.
Figure 4 shows an example of a master and a slave commu-

nicating with the AXI read protocol [5]. The slave needs to
assert S_Read_Ready before the master asserts M_Read_Val

to initiate a transaction. A transaction of a AXI read re-
quest is detected by its monitor with a pulse on Mon_Val

when M_Read_Val is asserted. The monitor can also selec-
tively encode some information transferred as part of the
detected transaction. The basic idea of the above monitor
can be naturally extended to different protocols such as the
AXI write request and response.
The biggest benefit from those monitors is the compres-

sion of a potentially long sequence of signal events into a sin-
gle cycle communication transaction. Obviously, transport-
ing this single cycle transaction demands much less band-
width of the trace port than transporting low level signal
events implementing such transaction. Another advantage
is that these monitors can implement protocol checking ca-
pability so that low level protocol errors can be detected
timely and right on the spot.

3.2 Transaction Output
The detected transactions can be stored in the on-chip

trace buffer, and offloaded from the chip at the end of sys-
tem execution. However, the on-chip trace buffers can only
store limited transactions due to the restriction on their ca-
pacities. As explained in Section 1, when and where an
error can happen are not know a priori, therefore, these lim-
ited transactions stored in the trace buffer may offer only
limited debugability. This section describes a transaction
output design that can output transactions via trace port
on-the-fly, thus enabling system internal execution over an
much extended period to be observed for off-chip analysis.

Parallel Output The first approach is parallel where mul-

tiple links are traced simultaneously. Since the number of
available trace signals are fixed, there is a trade-off between
the number of links that can be traced simultaneously and
the amount of information encoded for detected transactions
on each link. More information encoded for transactions de-
mands more trace signals, thus reducing the number of links
that can be traced simultaneously. For example, suppose
that a total of 100 trace signals are available, and there are
20 communication links to observe. If each transaction gen-
erated by the monitors for those links is encoded with 30 bits
on average, then only 3 links can be traced simultaneously.
On the other hand, if we wish to observe more communica-
tion links simultaneously, the number of bits for encoding
transactions must be reduced, thus limiting the amount of
information represented by transactions. More discussion
on transaction encodings is given in Section 3.3.

Interleaved Output Since detected transactions by mon-
itors are distributed over time relatively sparsely as illus-
trated in the last sub-section, an alternative approach is to
interleave transactions detected on different links, and trans-
port them off-chip serially. In this approach, monitors are
connected to a transaction output unit like the one used
in ARM CoreSight [6], which is shown in Figure 5. The
transactions from monitors are routed through this output
unit, merged into a sequence, and eventually output through
the trace port. The biggest advantage of this approach is
the very high observability in terms of the larger number of
communication links to be traced and the higher amount of
detailed information that can be encoded for transactions.
On the other hand, an issue with the interleaved approach

is that the rate of transactions detected by monitors can
exceed the peak bandwidth of the trace port from time to
time. If that happens, some detected transactions cannot
be transported off-chip. It can be viewed as another form
of limited observability. Therefore, it would be desirable to
reduce the number of transactions that have to be discarded.
The above issue can be addressed by using FIFOs as shown

in Figure 5. Those FIFOs can buffer detected transactions
temporarily if they cannot be outputted right away. One
FIFO is connected to the output of each monitor. On every
cycle, the outputs of all monitors carrying detected trans-
actions are stored into the corresponding FIFOs. At the
same time, the transaction validity information of all moni-
tors is collected into Tr_Val, and stored into a special FIFO
Tr_Val_fifo. This information is used to control how to
output buffered transactions. The width of Tr_Val is equal
to the number of monitors. Tr_Val[i]=1 indicates that
transaction output from monitor Mi is valid. Otherwise,
no valid output is from Mi. All the transaction FIFOs are
connected to a N -to-1 selector where one transaction FIFO
is routed to the trace port.
The control logic generates values for sel to control the

selector based on the information stored in Tr_Val_fifo. In
the initial state, it asserts Read_Tr_Val to read the head
of Tr_Val_fifo into Tr_Status. If it contains some bits
of 1, the control unit first determines the smallest index i

such that Tr_Status[i]=1. This can be done by a priority
encoder. Next, the transaction FIFO for monitor Mi is con-
nected to the trace port, and the transaction at its head is
outputted. Then, Tr_Status[i] is reset to 0, and the con-
trol logic repeats the above step if there is a larger index i

such that Tr_Status[i]=1. Otherwise, it returns to the ini-

604

Cycle M2 M1 M0 Tr_Val Read_Tr_Val Tr_Status Sel Selector Output

1 � 101 1 000 X −
2 � � 010 0 101 0 M0

3 � � � not stored 0 100 2 M2

4 � � � not stored 1 010 1 M1

5 � � � not stored 1 000 X −

Table 1: Operations of the transaction output unit
for 3 monitors over 5 cycles.

tial state and read the next data from Tr_Val_fifo. When
Tr_Status is 0, sel is set to a special value X to disable the
selector. The control flow diagram for the control unit is at
the bottom right corner in Figure. 5.

Illustration We illustrate the operations of the transaction
output unit with a simple example. Suppose that there are
three monitors M0, M1 and M2 connected to the transaction
output unit. Their validity information is collected as a
3 bit Tr_Val and stored at the tail of Tr_Status_fifo on
each cycle. Table 1 shows how the output unit outputs the
transactions from these monitors off-chip. In the columns
underM0, M1 andM2, a means its generated transaction
is valid, while � indicates it is not valid.
In cycle 1, outputs from M0 and M2 are valid. They

and Tr_Val=101 are stored into their corresponding FIFOs,
respectively. There is nothing to output, therefore sel is set
to X. Read_Tr_Val is set to 1 to read Tr_Val_fifo. In cycle 2,
similarly, outputs of all monitors and their validity are stored
in the FIFOs. Tr_Status is used to compute sel, which is
0 in this case. Therefore, the selector is directed to output
the transaction from M0 captured in cycle 1, as indicated
in column of Selector Output. Tr_Status[0] is reset to 0
before the next cycle. Signal Read_Tr_Val is reset to 0 when
Tr_Status contains more than one bit of 1. In cycle 3, the
transaction from M2 captured in cycle 1 is outputted by the
selector, and Read_Tr_Val is asserted to read next validity
data from Tr_Val_fifo to prepare for the next cycle.
While the interleaved approach reduces the number of

trace signals needed to output detected transactions, the
transaction output unit can potentially introduce large area
overhead. The area overhead are mainly due to the use of
FIFOs to buffer transactions. Larger FIFOs can reduce the
chance of transactions to be discarded, but increases area
overhead. The optimal FIFO sizes are typically determined
by the design of the interconnect network and the rates at
which various blocks initiate system flows. However, de-
tailed discussion of this topic is beyond the scope of this
paper. In this paper, when overflow happens to any FIFOs,
new incoming transactions are discarded as a simplification.

3.3 Transaction Encoding
Transactions can be encoded with information transferred

over communication links at different levels of detail. In gen-
eral, more bits are required to encode information at higher
levels of detail. In the last section, two alternative transac-
tion output approaches are discussed. Different representa-
tions of transactions are used for different approaches.
In the parallel output approach, multiple communication

links are traced simultaneously, transactions representations
are customized with respect to the specific protocols of dif-
ferent links. The representation below shows all the fields
used in all transactions.

〈Val, Cmd, Tag, Sid, Addr〉

Transaction Funnel

Control Logic

SoC under Debug

Tr_Status
Tr_Val

Read_Tr_Val

sel

Tr_Val_fifo

Selector
Trace
 Port

M0

M1

M2

Tr_Status = 0

sel <-- X
Read_Tr_Val <-- 1

Yes

Find min i s.t
 Tr_Status[i] = '1'
sel <-- i
Tr_Status[i] <-- 0
Read_Tr_Val <-- 0

No

n

Mn-1

Figure 5: Transaction output unit.

The meanings of the message fields are defined below.

Val indicates the validity of a detected transaction.

Cmd carries operations to be performed by the target block.
For the AXI protocol, there are separate links to sup-
port read/write request and response operations, this
field is not needed.

Tag is used to identify the original sources of transactions
from different blocks that go to the same destination,
For example, in Figure 6, Tag is needed for transaction
wr_req from Bus to Memory in response to wr_req from
either CPU.

Sid is a unique number representing sequencing informa-
tion associated with transactions initiated by a compo-
nent that supports out-of-order execution.

Addr carries the memory address at the target block where
Cmd is applied. If the observability limitation does not
allow full address information to be encoded, it can be
abstracted with two bits to represent three states: same
as previous one, sequential, and others, as described in
[7].

Note that not all fields are used to represent transactions
of all links. The sizes of transactions on different links may
be different. Additionally, monitors can be configured to
include only some selected fields to meet debug needs while
satisfying observability constraints.
In the interleaved output approach, the trace port is shared

among all links. As a result, a standard format as shown be-
low is used for all different transactions.

〈Val, MasterID, SlaveID, Cmd, Tag, Sid, Addr, Step〉
(1)

where

• MasterID and SlaveID encode IDs of the sender and re-
ceiver of a transaction. The number of bits required for
these two fields are determined by the number of masters
and slaves in an SoC design.

• Cmd has a fixed number of bits for all transactions. Its
width is determined by the largest number of transactions
that any link can transfer.

605

Figure 6: A SoC prototype where each communica-
tion link is attached with a monitor.

• Val, Tag, Sid,and Addr are the same.

• Step, which is only 1-bit, indicates the ordering of a trans-
action relative to its immediate predecessor. If this field
is asserted, it indicates that the current transaction be-
ing outputted is detected after its immediate predecessor.
Otherwise, the current transaction and its immediate pre-
decessor are detected at the same time.

In the transaction output unit as shown in Figure 5, when
a transaction is pulled out of its FIFO, it is converted to the
above standard format before it enters the selector. Simi-
larly, the fields and their sizes in the above standard format
can be reduced to meet the observability constraint.

4. EXPERIMENTAL RESULTS

4.1 The Model
To evaluate the ideas and techniques presented in this pa-

per, a non-trivial SoC design that implements sophisticated
system flows is desired. However, to the best of our knowl-
edge, we cannot find an open-source design that meets the
above requirements. Therefore, we developed a multi-core
SoC prototype, as shown in Figure 6, which implements a
total of 16 system-level protocols including cache coherence,
power management, downstream read/write protocols for
CPUs, upstream read/write for the peripheral blocks, etc.
All of them are abstracted from real industrial protocols.
More details on some of those protocols can be found in [8].
This prototype is a cycle- and pin-accurate RTL model.

The above system-level protocols are supported by inter-
block communication protocols based on the ARM AXI4-
lite [5]. A total of 32 monitors are inserted into this model,
one for each link between a device and the interconnect,
Since the proposed monitoring infrastructure is to sup-

port communication centric trace analysis, the focus of this
model is the implementation of system flows for on-chip in-
terconnect. The CPUs are treated as a test environment
where software programs are simulated in VHDL to trigger
various protocols. Therefore, there is no instruction cache as
no instructions are involved when the CPUs are simulated.
The peripheral blocks, GFX, PMU, Audio, etc, are also de-
scribed as abstract models that generate events to initiate
flows or to respond incoming requests.

4.2 Experiment Setup and Result Analysis
The model is simulated where five components, includ-

ing CPUs, GFX, and three other peripheral blocks are pro-
grammed to randomly select a flow to initiate in every five

Full Parallel Interleaved SS1 SS2

Bits 870 720 36 36 36
scen

1 1 1 1 282k
(Max)
scen

1 1 1 1 -
(Final)
#flows 500 500 500 100 200

Time 1.391 1.237 1.218 0.714 600
Mem 1.068 1.017 1.028 0.608 >5GB

Table 2: Runtime Results from analyzing traces ob-
tained in different approaches. Runtime is in sec-
onds and memory usage is in MB.

clock cycles. The contents of Cmd, Addr, and Data in each
activated flow are set randomly. Additionally, CPUs can ac-
tivate power management protocols randomly in time. Each
of those five blocks activates a total of 100 flow instances dur-
ing entire simulation. After simulation traces are obtained,
the trace analysis approach in [4] is applied to extract the
flow execution scenarios.
In the experiment, simulation is run five times with dif-

ferent tracing configurations. In the first run, “Full” observ-
ability is assumed. In the second run, the monitoring infras-
tructure is configured in the “Parallel” output mode where
all links are assumed to be observable. In the third run, the
monitoring infrastructure is configured in the “Interleaved”
output mode. In this run where the transaction output unit
along with monitors are used, all fields in (1) except Addr

are used for transactions through the trace port. In our SoC
model, Val and Time are 1 bit, MasterID and SlaveID are 5
bits, and Cmd, Tag, and Sid all are 8 bits. Therefore, encod-
ing of transactions in the standard format as in (1) requires
36 bits. The depth of all FIFOs in the output unit is set to
16. The last two runs generate results from using tracing
without the communication monitors.
The results from all runs are shown in Table 2. In the

table, row 2 and 3 show the peak count of flow execution
scenarios encountered during the reconstruction process that
is used to measure the complexity and the final count of flow
execution scenarios derived at the end of the reconstruction
process that is used to measure the accuracy, respectively.
Row 5 shows the maximal number of flow instances activated
by various components and identified by the trace analysis.
The last two rows show the runtime and memory usages
by the trace analysis for different runs. The results from
analyzing the simulation traces of those five runs are shown
in column 2− 6, respectively, in Table 2.
By comparing results in columns 2 − 4 in the table, it

can be seen that using the monitoring infrastructure allows
the same analysis result about system internal execution to
be derived as that derived with the full observability. More
importantly, that is achieved by requiring significantly re-
duced number of trace signals. The trace analysis with the
monitoring infrastructure achieves the same complexity and
accuracy as those achieved with the full observability.
The last two columns show the trace analysis results with-

out using the monitoring infrastructure. We assume that 36
signals are available for tracing as in the third run. Due to
this restriction, we can select only a small number of links
where the signal events can be observed accurately. The re-

606

Cells LUTs FFs Muxs BRAM
Original 59154 24395 25962 3125 1
Parallel +1283 +8 +1251 +15 +0

Interleaved +232 +92 +126 -6 +32

Table 3: Area overhead of the monitoring infras-
tructure.

sults from this run are shown in Column 5. Even though
only one flow execution scenario is derived at the end, the
limited number of signal events selected for observation al-
low much less number of related flow instances to be derived
than what can be derived when the monitoring infrastruc-
ture is used. When we try to observe more links, we are
forced to allocate less trace signals for each event on those
links. This causes ambiguity to the interpretations of the ob-
served signal events. As a result, an excessively large number
of potential flow execution scenarios are derived as shown in
Column 6. After 10 minutes, the trace analysis has to be
terminated due to memory usage explosion. These results
show that under the limited observability the complexity
and accuracy of the trace analysis would suffer significantly
if the monitoring infrastructure is not used.

4.3 Area overhead
We measure the hardware area overhead of the monitor-

ing infrastructure by synthesizing the SoC model to the Xil-
inx Zynq FPGA xc7z020ckg484-1 using Vivado 2017.2. The
synthesis results are shown in Table 3. The area overhead
is measured by the FPGA resources used including LUTs,
FFs, block RAMs (BRAMs), etc.
The rows for Parallel and Interleaved show the additional

resources required to implement monitors with or without
transaction output unit to the resources used on the previ-
ous row. For example, the parallel approach uses additional
1283 cells to implement all 32 monitors, and the interleaved
approach requires extra 283 cells to implement the transac-
tion output unit. From the table, other than the big jump
in BRAM usage, demand on logic resource is small to imple-
ment the monitoring infrastructure. The BRAMs are used
to implement the FIFOs in Figure 5. Since the size of the
BRAMs is fixed, each FIFO only uses a small capacity of a
BRAM. In practice, SoCs are often embedded trace buffers,
which can be used for those FIFOs.

5. RELATED WORK
Ciordas and e.t. in [9] proposed the first monitoring ser-

vice to provide run-time observability of NoC behavior and
supporting system-level debugging. However, it offers no
explanation on how the detected events are outputted for
off-chip analysis. Gharehbaghi and Fujita in [7] [10] [11]
introduce an on-chip instrumentation that allows transac-
tion level message abstraction using formal specifications of
the bus communication protocols. The authors propose an
innovative encoding technique that can reduce the address
bits to two bits containing three different states to indicate
relationships between two consecutive transactions. Despite
its low area overhead, this methods suffers from inability of
detecting implementation errors that are are not observed.
Moreover, this method lacks the ability to check the overall
system communication protocols as it only focus on commu-
nication interfaces’ protocol. [12] proposes another on-chip

instrumentation BiPeD that learns communication interface’
protocol during pre-silicon stage, and reconfigure its detec-
tion hardware to check the learned protocols during the post-
silicon validation. While BiPed is effective towards detecting
and locating many hardware bugs, the circular buffer imple-
mented for each communication interface introduces large
area overhead. Another transaction monitor is proposed by
[13] where a generic template for bug and router monitors
are presented. However, it mainly targets run-stop debug
control instead of real-time tracing.

6. CONCLUSION
This paper describes an on-chip monitoring infrastructure

that detects and outputs communication transactions on-
the-fly for off-chip inferences of system-level behavior for
efficient post-silicon debug. Initial experiments show some
promising results. In the future, we plan to perform in-
depth study on using the described infrastructure on SoC
designs with diverse interconnects, and explore optimiza-
tions for the infrastructure to offer higher observability with
reduced hardware overhead.
Acknowledgement The research presented in this paper
was partially supported by a gift from the Intel Cooperation.

7. REFERENCES
[1] Priyadarsan Patra. On the cusp of a validation wall.

IEEE Des. Test, 24(2):193–196, March 2007.

[2] Harry D. Foster. Trends in functional verification: A
2014 industry study. In DAC, pages 48:1–48:6, 2015.

[3] M. Talupur, S. Ray, and J. Erickson. Transaction flows
and executable models: Formalization and analysis of
message-passing protocols. In FMCAD, 2015.

[4] Y. Cao, H. Zheng, H. Palombo, S. Ray, and J. Yang.
A post-silicon trace analysis approach for
system-on-chip protocol debug. In ICCD, 2017.

[5] Amba axi and ace protocol specification.
http://www.arm.com.

[6] ARM. Coresight architecture specification v2.0, 2013.

[7] A. M. Gharehbaghi and M. Fujita. On-chip
transaction level debug support for system-on-chips.
In ISOCC, pages 124–127, Nov 2009.

[8] Matthew Amrein. System-level trace signal selection
for post-silicon debug using linear programming.
Master’s thesis, UIUC, May 2015.

[9] Calin Ciordas, Twan Basten, Andrei Rădulescu, Kees
Goossens, and Jef Van Meerbergen. An event-based
monitoring service for networks on chip. ACM
TODAES, 10(4):702–723, October 2005.

[10] A. M. Gharehbaghi and M. Fujita. Transaction-based
debugging of system-on-chips with patterns. In
ICCD’09, pages 186–192, Oct 2009.

[11] A. M. Gharehbaghi and M. Fujita. Transaction-based
post-silicon debug of many-core system-on-chips. In
ISQED, pages 702–708, March 2012.

[12] A. DeOrio, J. Li, and V. Bertacco. Bridging pre- and
post-silicon debugging with biped. In ICCAD, 2012.

[13] B. Vermeulen and K. Goossens. A network-on-chip
monitoring infrastructure for communication-centric
debug of embedded multi-processor socs. In
VLSI-DAT’09, pages 183–186, April 2009.

607

