
ArtiFact: Architecture and CAD Flow for Efficient Formal Verification of

SoC Security Policies

Atul Prasad Deb Nath, Swarup Bhunia and Sandip Ray
Department of Electrical and Computer Engineering

University of Florida, Gainesville, Florida 32608

Email: atulprasad@ufl.edu, swarup@ece.ufl.edu, sandip@ece.ufl.edu

Abstract— Verification of security policies represents one of
the most critical, complex, and expensive steps of modern
SoC design validation. SoC security policies are typically
implemented as part of functional design flow, with a diverse
set of protection mechanisms sprinkled across various IP
blocks. An obvious upshot is that their verification requires
comprehension and analysis of the entire system, representing
a scalability bottleneck for verification tools. The scale and
complexity of industrial SoC is far beyond the analysis capacity
of state-of-the-art formal tools ; even simulation-based security
verification is severely limited in effectiveness because of the
need to exercise subtle corner-cases across the entire system.
We address this challenge by developing a novel security
architecture that accounts for verification needs from the
ground up. Our framework, ArtiFact, provides an alternative
architecture for security policy implementation that exploits
a flexible, centralized, infrastructure IP and enables scalable,
streamlined verification of these policies. With our architecture,
verification of system-level security policies reduces to analysis
of this single IP and its interfaces, enabling off-the-shelf formal
tools to successfully verify these policies. We introduce a CAD
flow that supports both formal and dynamic (simulation-based)
verification, and is built on top of such off-the-shelf tools.
Our approach reduces verification time by over 62X and bug
detection time by 34X for illustrative policies.

I. INTRODUCTION

Security assurance in System-on-Chip (SoC) designs is

a highly critical area of research. Modern SoCs contain a

variety of sensitive data (or "assets") that must be protected

from unauthorized access. Such assets include private end-

user information (e.g., location, contacts etc.), cryptographic

and DRM keys, proprietary firmware, and so on. Access

to these assets and protection/mitigation requirements for

unauthorized access attempts are governed by a collection

of diverse security policies. It is of critical importance that

the policies are implemented correctly. Indeed, a significant

component of SoC security architecture entails developing

techniques to enforce these policies ; correspondingly, a

significant component of security verification involves ensu-

ring that the design correctly executes the policies [1], [2].

Unfortunately, verification of security policies is non-

trivial in current industrial practice. The hardware logics

responsible for protection of various assets are implemented

as part of system integration in conflation with various

functional and optimization constraints, with little attention

paid to ease of verification. These logics are sprinkled across

different hardware and software blocks, collectively referred

to as “IPs”. Consequently, formal verification of these logics

requires discovery, analysis, and comprehension of system

invariants that often span across the entire SoC design.

Furthermore, even dynamic (simulation-based) verification

is hard, since scenarios exercising security policies involve

long, directed execution of corner cases in specific confi-

gurations, system execution, and environmental stimuli [3].

Validation of security policies is often left to complex pene-
tration testing by human experts, and is typically incomplete.

Unsurprisingly, security vulnerabilities are discovered in-

field, often with disastrous consequences [4], [5].

In this paper, we take the position that a security archi-

tecture that facilitates formal verification needs is a feasible

solution to the problem. To that end, we present an archi-

tecture (and a corresponding CAD flow) for security policy

enforcement that is amenable to scalable formal verification

of SoC security policies. We demonstrate via diverse realistic

policy implementations that our approach can result in over

62X speed-up (on average) in formal policy verification using

state-of-the-art commercial tools. Complex security policies

in SoCs that could not be verified at all with traditional

implementations become amenable for efficient verification

using our framework. Furthermore, our work facilitates short

counterexamples in presence of bugs in policy.

Our architecture includes a centralized security policy en-
gine, a dedicated IP for implementing SoC security policies.

Each policy is implemented within this IP as a state machine

defined through a rigorous CAD flow. Policy enforcement

entails communication of the policy engine with other IPs

in the SoC : this is performed by a standardized protocol.

Centralized policy implementations have an important cha-

racteristic to facilitate scalable formal verification : a proof of

correctness is typically confined to the policy engine and its

interfaces and is oblivious to design invariants in any other IP

blocks. Note that all other conditions remaining equal, com-

plexity of formal verification is typically proportional to the

size of the design block being analyzed [6]. Consequently,

by enabling the target of formal analysis to be confined to a

single IP, we enable significant scalability in verification of

security policies over traditional distributed implementation.

Our work builds upon and extends previous work [7]–[9]

on systematic, flexible architecture for SoC security policy

implementations. Analogous to these works, our approach

involves a centralized policy implementation framework.

However, all previous works were focused on flexibility of

implementations ; verification was not considered. We show

411

2018 IEEE Computer Society Annual Symposium on VLSI

2159-3477/18/$31.00 ©2018 IEEE
DOI 10.1109/ISVLSI.2018.00081

Fig. 1: Proposed Security Architecture : RSPE acts as a

centralized flexible security policy engine to enforce policies.

Fig. 2: Wrapper Architecture : security wrappers on indivi-

dual IPs provide standardized, frame-based communication.

how to extend such frameworks with augmented CAD flows

for effective verification methodology of security policies.

The paper makes three major contributions. First, we

propose, for the first time to our knowledge, a formal security
verification flow for security policies that directly influences

and exploits architectural support for policy enforcement.

Architectural support reduces the complex problem of for-

mally verifying policy implementations to a simpler task

of analyzing a single infrastructure IP, thereby providing

verification scalability. Second, we demonstrate the efficacy

of the framework in identifying and root-causing bugs. Our

framework reduces root-causing efforts by providing short

counterexamples enclosed to a single IP. This facilitates

streamlining the debug flow significantly compared to direc-

ted testing and fuzzing approaches used in current industrial

practice. Finally, we develop a comprehensive evaluation of

both formal and dynamic aspects of verification on a wide

diversity of realistic security policies implemented on an

illustrative SoC model. The policies we consider include IP-

specific as well as system-level security constraints.

II. BACKGROUND

A. SoC Security Policies

The goal of an SoC security policy is to map the security

requirements to design constraints to develop protection

mechanisms. Following are two representative examples :

• Example 1 : During boot, data transmitted by the

crypto engine cannot be observed by any IP in the

SoC fabric other than its intended target.

• Example 2 : A secure key container can be updated

for silicon validation but not after production.

The policies may vary depending on the state of exe-

cution (e.g., boot time, normal execution), or position in

the development life-cycle (e.g., manufacturing, production).

In addition to access control, security policies can capture

requirements from information flow, liveness, etc.

B. SoC Security Architecture

Our work builds on a centralized SoC security architecture

introduced in previous work [7]. It includes the following :

Reconfigurable Security Policy Engine (RSPE). This block

acts as the security brain of the SoC. It receives communi-

cation of relevant security events from the security wrappers

in IPs, identifies the security state, and enforces mitigatory

actions based on the implemented policies.

Smart Security Wrappers. The idea for security wrappers

is to enable IPs to communicate security-critical events

to RSPE. The wrappers are programmable, so that they

can be configured to monitor and control different sets of

signals. RSPE configures the wrappers during boot time for

monitoring signals necessary to enforce the security policies.

Interface with Design-for-Debug. RSPE is interfaced with

the on-chip Design-for-Debug (DfD) interface. This inter-

face provides access to an extensive set of observable and

controllable signals inside IPs, which can be exploited for

verification and re-purposed for realizing new policies.

III. PROBLEM ANALYSIS

A. Existing Challenges

Security policies in current practice are implemented by

starting with a baseline architecture which is iteratively

refined as follows :

• Use threat modeling to identify potential threats to the

current architecture definition.

• Refine the architecture with mitigation strategies co-

vering the threats identified.

The baseline architecture is derived from legacy SoC designs.

For each asset, the architect must identify (1) who can access

the asset, (2) what kind of access is permitted, and (3) at what

points in the system life-cycle such access requests can be

granted. The current industrial practice for verifying policies

includes functional tests, fuzzing tests, and penetration tests.

The scale of formal tools is limited to policies involving only

one or a few IPs [3].

B. The Need for Architectural Support

Despite being an integral part of system development flow,

the verification requirements of modern industrial designs

are barely met by state of the art technologies. Formal

methods provide an effective paradigm for security policy

validation since they can provide a mathematical guarantee

412

Fig. 3: An illustrative example of required verification effort

with increasing design complexity and an eventual failure of

traditional formal verification approaches.

of correctness of the policy enforcement which is unavailable

from dynamic (fuzzing, functional simulation, and directed

testing) techniques. However, it is imperative to develop

architectural support that can make formal analysis of rea-

listic security policies scalable : it is crucial for architectural

support that ensures that invariants needed can be enclosed

within a small block of logic. Our work facilitates this by

basing our CAD flow on top of a centralized framework.

Furthermore, it is important to study the role of policy

complexity on verification time. We developed a new metric

of policy complexity based on empirical analysis. Fig. 3

shows the correlation between actual verification time and

the proposed metric. The complexity metric Cm is defined as

follows :

Cm = Rc +
n

∑
i=1

Ei

2

[
Oi

Si
+

Ci

Si

]
(1)

Here, Si is the number of security critical signal(s) in-

volved in a policy, Ei is the number of security event(s)

triggered by the policy, Oi and Ci is the number of observable

signal(s) and controllable signal(s) of IPs involved in the

corresponding policy, respectively. An additional complexity

constant Rc is introduced by the RSPE in case of the

proposed architecture. The soaring verification time (Fig. 3)

with increasing complexity of policies signifies the limitation

of conventional architecture to scale with verification needs.

IV. PROPOSED FRAMEWORK

A. Architectural Support

Our architecture builds on the centralized policy engine

developed in previous work [7]. Transforming an architec-

ture primarily developed for policy implementation (without

verification concerns) to support effective formal verification

is non-trivial. Here we list some architectural modifications

that are crucial to the verification need.

Event Logging in RSPE : To facilitate the optimum event

detection via centralized architecture, we supplement RSPE

with augmented of event logging capability. The improved

event logging is enabled by incorporating configuration re-

gister and special purpose registers for storing event trigger,

transfer, and related meta data based on event type and re-

quirement. The increment in security events logged by RSPE

reduces the complexity in security policy verification process

by minimizing the reachable trace lengths for verification and

violation paths. The centralized implementation of policies

and corresponding security properties facilitates the tool to

access the required signals in a shorter period of time.

Event Repository in Local DfD : A key criteria for the

implementation and verification of arbitrary security policies

of varying complexity is the detection of large number

of security critical events in the SoC. System level secu-

rity polices of higher complexity often require user-defined

triggers and custom interrupts in inter-IP communications.

We developed an augmented repository of security critical

events by exploiting the configuration registers in local debug

instrumentations. We used on-chip local debug modules

with configuration registers and associated logic to map an

extended number of security events for system level policies.

Enhanced Interconnect Fabric : We augmented the inter-

connect fabric of our SoC model for inter-IP communication

by establishing a shared memory bus. To facilitate system le-

vel interaction between IPs, we mapped the control registers

for each IP to specific addresses of system memory range

and utilized the corresponding control signal interfaces to

respond to incoming transactions from other functional IPs.

In case of incoming interrupts and requests during active

computation mode of an IP, a disable signal is instantiated

by the policy engine for triggered events. For instance, all

request and interrupts from rest of the IPs are invalidated

when AES engine is in crypto mode. Consequently, any

unauthorized access requests during crypto mode is logged

into configuration registers as potential attempts of violation.

B. CAD Flow

We automatically synthesize policies into RSPE-based

architecture. The policies are parsed as action-predicate
tuples. The principle of pareto-optimality is employed in

the synthesis procedure for energy optimum implementation.

Fig. 4 illustrates the design flow. The flow introduces a pre-

compilation stage, where security policies are parsed and

a register-transfer level description is created for a control

state machine that implements the action-predicate tuple ;

this is integrated with an FPGA synthesis flow to create a

reconfigurable policy implementation.

Given the above flow, formal property synthesis entails

designing of a monitor state machine Cp for each policy

P. The goal of the monitor state machine is to “watch”

Cp and output 1 if p ever makes a deviation from its

expected transitions and 0 otherwise. The formal property

then reduces to the assertion that Cp never outputs 1. Note

that in addition to its use in formal verification, Cp can also

act as a runtime monitor for the assertion p : this is relevant

in case of a policy p that cannot be completely verified (e.g.,
if the correctness entails hardware/software co-execution and

cannot be established from the hardware alone). In practice,

we define Cp by augmenting the RTL design and used

primarily for formal verification. If the verification succeeds

the monitor Cp is no longer necessary, and can be safely

removed : however, if the verification fails or is inconclusive,

413

TABLE I: System Level Security Policies Implemented on the Proposed Architecture.

Policy # Predicate Tuple Action Tuple Corresponding IPs

1 : Read / Write operation of IPs within system memory

range in user mode

(Mode : User) & (Memory read/write

request by user or any other IP)

Read/write address within

specified range

Any IP with access

to system memory

2 : Read / Write operation of DLX uP to shared memory

range in shared memory range

(Mode : Supervisor) & (Memory read/

write request by user or any other IP)

Read/write address within shared

memory range & No write

Any IP with access

to system memory

3 : Interrupts (e.g. reset, immediate result, change of key

etc.) from all IPs are prohibited during active crypto mode

(Mode : Active crypto) & (Access

request by user or any other IP)

No interrupt or memory access

request from any IP is allowed

Crypto module and any other IP

with access to crypto core

4 : Read / Write access of IPs to round key registers are

prohibited during active crypto mode

(Mode : Active crypto) & (Read/write

request to round key registers by any IP)

No read/write access to round

key registers by any IP is allowed

Crypto module and any other IP

with access to crypto core

5 : Interrupts by Power management module (clock freq.

change, reset, enable, go) during active computation

(Mode : Active computation) & (Interrupt or

access request from PMC module)

No interrupt or access request

from PMC module is allowed

PMC module and any other IPs

accessible to PMC

6 : All IPs’ access to interconnect fabric is prohibited

during crypto key transfer

(Mode : key in transfer) & (Interrupt or

access request by any IP)

No interrupt or access request from

IPs to interconnect fabric is allowed

All IPs with privilege to access

interconnect fabric

7 : Interrupts from all IPs are prohibited during

μP core instruction memory update

(Mode : Supervisor) & (μP instruction

memory update) & (Access requests)

No access request from any IP

is allowed
μP core and any other IP

Fig. 4: CAD Flow for Mapping Security Policies on RSPE.

we keep the augmented RTL and connect the output of Cp
to additional routines that can perform mitigatory action if

the failure occurs runtime.

The steps for property mapping is quite straightforward :

CP can be synthesized mechanically from the state machine

of P, and is well-established in current industrial practice.

However, without centralized RSPE, there would be no sys-

tematic way for writing these assertions in a traditional SoC

design. This further outlines the critical role of architectural

support for security verification.

V. RESULTS

A. Experimental Setup

The SoC model includes a 32-bit pipelined DLX micro-

processor core (DLX), a 32 KB central system memory, a

standard memory controller IP, a 128b AES crypto core,

a 128b FFT engine, a clock controller, a Serial Peripheral

Interface (SPI) controller, and a power management unit. The

IPs were obtained from Opencores (http://opencores.
org). The security policies are mapped on an embedded

FPGA-based RSPE that act as the execution engine. For

experiments, we developed two versions of the SoC model,

a baseline design and RSPE-based design. In the baseline

SoC, each IP is augmented with standard boundary scan

based wrappers (i.e. IEEE 1500) for detection of local events.

Security policies in baseline model are implemented over the

constituent IP cores in a distributed manner. In the RSPE-

integrated model, we enhanced the IPs with smart security

wrappers, and developed interface for DfD integration.

B. Formal Verification Results

Our formal verification results use off-the-shelf tool Jas-

perGold [10]. We synthesized assertions in RSPE as discus-

sed in Section IV-B. To compare efficacy, we implemented

the same policies on a baseline SoC, paying specific attention

to traditional performance optimization to reflect the current

state of practice ; assertions were also developed for this

model. An Intel R©CoreTM i5-3427U CPU (1.8 GHz) with

8 GB memory is used to run verification on a linux server.

System-level Security Policies. We implemented 7 (P1 to

P7) system-level security policies of varying complexity

in our SoC model (cf. Table I). Table II summarizes the

verification results for the system level policies implemented

in base-line and RSPE-based design. All proven assertions

in the table are "Infinite" bound type meaning the proofs are

exhaustive and expected to hold true under all circumstances.

We chose multi-engine environment with multi-property set-

tings for optimum exploitation of the tool.

The increase in verification time with policy complexity

is evident in the results presented in Table II. For instance,

the interrupt handling policy (P#3) of AES during crypto

mode require initiation of all possible incoming transactions

coming from each of the IPs. The higher verification time,

in this case, for DLX interrupts can be attributed to an

increased number of security event association. Note that

for illustrative system level policies, our approach reduces

verification time by a maximum of 62X compared to base-

line implementation.

IP Specific Security Policies : We implemented 8 re-

presentative IP-specific policies. Table III summarizes the

verification report provided by the tool for baseline and

proposed design. The verification of IP specific policies

requires less effort in both baseline and RSPE based design

due to the ease of observing and controlling involved signals,

with corresponding low verification time.

C. Scalability Analysis

To demonstrate the scalability of our approach, we consi-

der a case study of boot integrity check policies. These

policies verify the trustworthiness of the system at power-on.

The implementation of these policies in our model mandates

checks for AES crypto engine’s data path along with sys-

tem boot processes (including power-on-self-tests, firmware

414

TABLE II: Proof of Correctness Results : System Level Security Policies

Formal Verification Results (Baseline vs RSPE)

Security Policies IP Cores Involved
Baseline RSPE

Reduction (times)
JG Engine Mode Proof Effort Bound Avg. Time (s) JG Engine Mode Proof Effort Bound Avg. Time (s)

P #1 DLX up, AES, FFT, SPI N 1-2 Infinite 27.246 Hp 1 Infinite 1.1435 23.827

P #2 AES, FFT, SPI, PMC Ht 1 Infinite 64.429 N 1 Infinite 1.387 46.452

P #3 AES, FFT, SPI, PMC Bm, Hp. I 1-13 Infinite 218.97 Ht, Hp, I 1-4 Infinite 10.824 20.23

P #4 DLX uP, PMC, FFT, SPI Bm, Hp, Ht, 1-7 Infinite 126.2 N 1-3 Infinite 2.03 62.168

P #5 DLX Up, PMC, FFT, SPI Bm, D, I,Hp 1-11 Infinite 303.3 I, U, Hp, Ht 2-7 Infinite 21.112 14.366

P #6 DLX uP, PMC, FFT, SPI Hp, Ht,N 1-3 Infinite 62.958 Ht 1 Infinite 2.7868 22.592

P #7 AES, FFT, SPI, PMC D, Bm, Hp,N 1 Infinite 142.9 N, Ht 1 Infinite 6.9305 20.619

TABLE III: Proof of Correctness Results : IP Specific Security Policies

Comparative Results for IP specific Security Policy Implementation (Baseline vs RSPE)

Security Policies for DLX Up
Baseline RSPE

JG Engine Mode Bound Time (s) JG Engine Mode Bound Time (s)

DLX core instruction memory can only be updated at supervisor mode Ht Infinite 1.589 Hp Infinite 0.695
DLX mode of operation cannot be unknown at startup N Infinite 0.615 N Infinite 0.714
DLX power (high/low) mode of operation check at startup N Infinite 0.519 Ht Infinite 0.936

External read write to DLX to only I/O mapped data memory region N Infinite 1.698 Ht Infinite 1.796

Security Policies for AES Crypto Core
Baseline RSPE

JG Engine Mode Bound Time (s) JG Engine Mode Bound Time (s)

AES key cannot be unknown at startup Hp Infinite 0.875 Hp Infinite 1.537
Key check against previous set (nonce/to prevent replay attack) Hp Infinite 1.328 N Infinite 2.914

In crypto mode, cipher text output interface is disabled Ht Infinite 1.537 Hp Infinite 1.271
AES power (high/low) mode of operation check at startup Ht Infinite 0.505 Hp Infinite 0.713

TABLE IV: Results on Scalability Analysis on Baseline and RSPE-based Design

Use Case Scenario : Comprehesive Policy Implementation

IP Cores Involved
Baseline RSPE

JG Engine Mode Result Bound Time (s) JG Engine Mode Result Bound Time (s)

Policies : Boot Integrity Check

DLX uP, Ht Undetermined 1021 31056.2 Ht Proven Infinite 12984.8
AES, SPI, D Undetermined 872 9246.8 D Proven Infinite 4298.8
FFT, PMC, I Undetermined 1543 22898.9 I Proven Infinite 15998.6

Sys memory Hp Undetermined 987 18449.7 Hp Proven Infinite 11365.3

TABLE V: Results on Bug Detection in Security Policies for Baseline and RSPE-based Design

Funtional Verification Results (Baseline vs RSPE)

Security Policies IP Cores Involved
Baseline RSPE

Reduction (times)
Detected Bugs Time (s) Detected Bugs Time (s)

P #1 - P#7 DLX Up, AES, FFT, SPI, PMC N/A >86400* N/A >86400* N/A

Footnote : *The simulation run time was greater than 24 hours i.e. >86400s. No bugs were detected within the time limit.

Formal Verification Results (Baseline vs RSPE)

Security Policies IP Cores Involved
Baseline RSPE

Reduction (times)
JG Engine Mode Proof Effort Bound Max Time (s) JG Engine Mode Proof Effort Bound Max Time (s)

P #1 DLX up, AES, FFT, SPI N 1-2 Infinite 32.675 Hp 1 Infinite 0.613 34.351

P #2 AES, FFT, SPI, PMC Ht 1 Infinite 67.145 N 1 Infinite 1.573 15.686

P #3 AES, FFT, SPI, PMC Bm, Hp. I 1-13 Infinite 345.489 Ht, Hp, I 1-4 Infinite 6.954 26.651

P #4 DLX uP, PMC, FFT, SPI Bm, Hp, Ht, 1-7 Infinite 186.228 N 1-3 Infinite 1.915 30.155

P #5 DLX Up, PMC, FFT, SPI Bm, D, I,Hp 1-11 Infinite 263.746 I, U, Hp, Ht 2-7 Infinite 13.573 14.602

P #6 DLX uP, PMC, FFT, SPI Hp, Ht,N 1-3 Infinite 80.174 Ht 1 Infinite 1.688 25.973

P #7 AES, FFT, SPI, PMC D, Bm, Hp,N 1 Infinite 185.259 N, Ht 1 Infinite 7.436 13.731

integrity check, and peripheral core integrity check). Table

IV summarizes the verification report. For the baseline

design, the verification engines of the tool failed to reach

convergence for integrity check policies with multiple engine

modes. However, the formal proof is completed in the RSPE-

based implementation where the state space explosion phe-

nomenon is avoided through the centralized implementation.

This suggests that with architectural support, it is possible to

address scalability limitations in verification and potentially

formally verify complex system-level security policies.

D. Bug Detection

To evaluate the robustness of RSPE in bug detection, we

injected a set of bugs in the system-level policies. The bugs

were inserted with close interaction with industry and are

representative of real security bugs detected in industrial

environments. Furthermore, the selection aims to cover the

spectrum of confidentiality, integrity, and availability requi-

rements of assets in modern SoCs.

Access to Memory Bug. We considered a violation scenario

where the state machine controlling the memory address

register fails to detect the address range breach in the cur-

415

Fig. 5: An illustrative example of incremental verification

effort and scalability of RSPE with design complexity.

rent/overlapping clock cycle. The bug, if goes unmitigated,

can lead to unauthorized access of a malicious attacker or

restricted IP to secure memory address range. The possible

consequences of such breach include a violation of confiden-

tiality and integrity of the assets of secure memory.

Active Crypto Mode Bug. In this violation scenario, the

status of active crypto signal remains asserted throughout the

crypto sequences and is not de-asserted once the operations

are finished. The bug can hamper the secure flow of operation

as the IPs are blocked from accessing the crypto assets

after a crypto operation. The event leads to violation of

availability property and consequent unavailability of assets.

Active Computation Mode Bug. We considered a violation

scenario where the state machine controlling mode of opera-

tion of IPs gets stuck in the current state leading to functional

failure. The bug is representative of the functional failure of

the SoC due to a loss of availability. It directly affects the

incoming transactions from power management module and

causes stagnation in the flow of execution.

Results Analysis. We tested the policies with bugs in a simu-

lation environment. The summary of functional verification
results is illustrated in Table V. We employed constrained

random testing via ModelSim for assertion based dynamic

verification. Random functional testing failed to detect any of

the bugs in reasonable time (>24 hours), which highlights

the limitation of traditional security policy verification ap-

proaches in SoC designs. Table V also shows the summary of

formal verification results for 7 system level security policies.

The trace lengths of counterexamples in baseline design are

significantly higher than the trace lengths of RSPE-based

design. With RSPE, the engines of formal tool are able to

find violation traces with minimal trace attempts leading

to reduced trace lengths of counterexamples and improved

verification time. Our approach reduces counter example

detection time up to 34X compared to base-line design.

VI. RELATED WORK

Several formal methods have been proposed for the veri-

fication of security properties [11]–[13].The focus of these

works are hardware security issues i.e. malicious hardware

Trojans, side-channel attacks, etc. Their application, howe-

ver, is limited by the failure to scale with design com-

plexity. Though novel techniques have been proposed for

improvement [14], state space explosion is still the major

limitation of proving security properties in large SoC designs.

Research efforts have been made to address SoC security

and verification issues by developing scalable architectural

frameworks. Infrastructure IPs are employed to facilitate SoC

functional verification, testing, and yield improvement [2],

[15]. However, these approaches lack scalable architectural

features like centralized or flexible infrastructure IP, standar-

dized interface with IP blocks, and systematic CAD flow.

VII. CONCLUSION

We have developed an architectural framework for effi-

cient and scalable formal verification of complex security

policies on SoC platforms. Our work, for the first time

to our knowledge, marries two highly crucial but typically

isolated components of security assurance, architecture and

validation. We show how to develop an architecture that

not only enables systematic policy implementation but also

scalable analysis and formal verification. The experimental

results on realistic SoC models and policies suggest that

the approach can reduce verification time for system-level

policies by orders of magnitude, help verification of arbitrary

policies with varying complexity, and significantly aid the

detection of bugs deeply rooted inside the design. Future

work will involve enabling the architecture on industrial SoC

models and silicon verification.

REFERENCES

[1] S. Krstic, J. Yang, D. W. Palmer, R. B. Osborne, and E. Talmor,
“Security of SoC Firmware Load Protocol,” in HOST, 2014.

[2] M. R. Sastry, I. T. Schoinas, and D. M. Cermak, “Method for enforcing
resource access control in computer system,” US Patent 20120079590
A1, 2012.

[3] S. Ray, E. Peeters, M. Tehranipoor, and S. Bhunia, “System-on-
Chip Platform Security Assurance : Architecture and Validation,”
Proceedings of the IEEE, 2018.

[4] Homebrew Development Wiki, “JTAG-Hack,” http://dev360.wikia.
com/wiki/JTAG-Hack.

[5] L. Greenemeier, “iPhone Hacks Annoy AT&T but Are Unlikely to
Bruise Apple,” Scientific American, 2007.

[6] R. Kaivola, S. Pandav, A. Slobodova, C. Taylor, V. A. Frolov, E. Ree-
ber, and A. Naik, “Replacing testing with formal verification in intel
coretm i7 processor execution engine validation,” in CAV, 2017.

[7] A. Basak, S. Bhunia, and S. Ray, “A Flexible Architecture for
Systematic Implementation of SoC Security Policies,” in ICCAD,
2015.

[8] A. P. D. Nath, S. Ray, A. Basak, and S. Bhunia, “An Architecture and
CAD Flow for Hardware Patch,” in ASPDAC, 2017.

[9] A. Basak, S. Bhunia, and S. Ray, “Exploiting Design-for-Debug for
Flexible SoC Security Architecture,” in DAC, 2016.

[10] “JasperGold : Formal Property Verification App,” 2017, www.
jasper-da.com/products.

[11] S. Drzevitzky, “Proof-carrying hardware : Runtime formal verification
for secure dynamic reconfiguration,” in FPL, 2010.

[12] Y. Jin and Y. Makris, “Proof carrying-based information flow tracking
for data secrecy protection and hardware trust,” in VTS, 2012.

[13] M. Rathmair and F. Schupfer, “Hardware trojan detection by speci-
fying malicious circuit properties,” in ICEIEC, 2013.

[14] X. Guo, R. G. Dutta, P. Mishra, and Y. Jin, “Scalable SoC Trust
Verification using integrated theorem proving and model checking,”
in HOST, 2016.

[15] Y. Zorian, “Embedded memory test and repair : Infrastructure IP for
SoC yield,” in ITC, 2002.

416

