
Mechanical Certification of Loop Pipelining
Transformations: A Preview

Disha Puri1, Sandip Ray2, Kecheng Hao1, and Fei Xie1

1 Department of Computer Science, Portland State University, Portland, OR 97207.
2 Strategic CAD Labs, Intel Corporation, Hillsboro, OR 97124.

Abstract. We describe our ongoing effort using theorem proving to cer-
tify loop pipelining, a critical and complex transformation employed by
behavioral synthesis. Our approach is mechanized in the ACL2 theorem
prover. We discuss some formalization and proof challenges and our early
attempts at addressing them.

Keywords: Behavioral Synthesis, Theorem proving, Electronic System Level
Design, Equivalence Checking

1 Introduction

Behavioral synthesis is the process of compiling an Electronic System Level
(ESL) specification of a hardware design into RTL. ESL facilitates fast turnaround
time in production of hardware designs by rasing design abstraction; the designer
only specifies the design functionality in a high-level language (e.g., SystemC, C,
C++, etc.), from which RTL is automatically synthesized. However, its adoption
critically depends on our ability to certify that the synthesized design indeed im-
plements the ESL specification. Given the abstraction difference between ESL
and RTL, this certification is non-trivial.

Loop pipelining is a critical transformation implemented in most behavioral
synthesis tools. Unfortunately, it is also one of the most complex transforma-
tions [1]. Furthermore, sequential equivalence checking (SEC) techniques are not
directly applicable for certification of synthesized loop pipelines. In this paper,
we describe how we are using interactive theorem proving (ACL2) to facilitate
this certification. We discuss our early efforts with the proof, some of the chal-
lenges and complexities, and the approaches we are exploring to address them.

This work is a part of a project to develop a scalable certification framework
for behavioral synthesis. The project has been ongoing for some time, with sev-
eral mature components; however, the focus of previous work was on automated
SEC. The work described here is its first serious “foray” in theorem proving.

2 Background and Context

Behavioral Synthesis and an SEC Framework: Behavioral synthesis trans-
formations are classified into three categories: (1) compiler transformations,

2 Disha Puri, Sandip Ray, Kecheng Hao, and Fei Xie

(2) scheduling (mapping each operation to a clock cycle), and (3) Resource allo-
cation and control synthesis (allocating registers to variables, and generating an
FSM to implement the schedule). Loop pipelining is a part of scheduling. Given
the abstraction gap between ESL and RTL, there are no obvious mappings be-
tween internal variables, rendering SEC ineffective. Applying theorem proving
is also challenging: (1) verifying each synthesized design requires prohibitive hu-
man effort; (2) verifying a synthesis tool is infeasible since tool implementations
are proprietary (and closely guarded), in addition to being highly complex.

Previous work [2–4] resulted in the following observations. (1) SEC can com-
pare RTL with the intermediate representations (IRs) after compiler and schedul-
ing operations; correspondence between internal variables is preserved, and iden-
tified from resource mappings. (2) While transformation implementations are
proprietary, IRs after successive transformations are available from reports gen-
erated during synthesis. (3) IRs are structurally similar across synthesis tools
viz., graphs of operations with explicit control/data flow and schedule. Conse-
quently, a formalization called Clocked Control Data Flow Graph (CCDFG) was
developed for IRs, together with two SEC algorithms, respectively to compare
(1) a CCDFG with RTL, and (2) two CCDFGs corresponding to IRs after each
successive transformation. However, the latter is effective only if the difference
between IRs is small. Loop pipelining substantially changes control/data flow
and introduces controls (e.g., to eliminate hazards), making SEC infeasible.

Certifying Loop Pipelining: Our key observation is that it is not necessary to
verify the implementation of any synthesis tool. Instead, we can (1) develop a ref-
erence algorithm A that takes a sequential CCDFG C and generates a pipelined
CCDFG P, (2) use SEC to compare P with the synthesized RTL R, and (3) prove
the correctness of A. The algorithm A can be much simpler than that of any syn-
thesis tool, since it can use the synthesis tool’s report to determine the values of
the key parameters (e.g., pipeline interval, number of iterations pipelined, etc.).
Viability of this flow was justified previously [5] by developing such an algorithm
and using it to compare several synthesized pipelines. However, the algorithm
was not verified (indeed, not formalized), rendering the “certification” flow un-
sound; in fact, we already found errors in that algorithm merely by attempting
formalization. Furthermore, since it was not written with reasoning in mind, it
is a non-trivial target for mechanical proof. Our current work is a deconstruction
of that algorithm, developed from ground up to account for necessary invariants.
Note that we are free to choose any verifiable implementation without losing the
ability to certify designs synthesized by commercial tools.3

3 Pipelinable loop and Correctness Formalization

Pipelinable Loop: A pipelinable loop [5] is a loop with (1) no nested structures,
(2) one Entry and one Exit block; and (3) no branching between scheduling

3 One caveat is that we must synthesize pipelines using the parameters reported by the
synthesis tool; otherwise we may fail to certify correct designs. We have not found
this to be a problem in practice.

Mechanical Certification of Loop Pipelining 3

Entry: ...

bb1:

%i_1 := phi i32 [%i, bb]

[0, Entry]

%q := icmp eq i32 %i,3

%i := add i32 %i_1,1

%x := add i32 %i,3

br i1 %q, label bb2,

label bb

bb:

%c := add i32 %a,%b

%d := add i32 %c,%x

br label bb1

bb2: ...

(bb_0 (|%c| (add |%a| |%b|)

(bb_1 (|%d| (add |%c| |%x|)

(bb1_0 (|%i_1| (ϕ (|%i| bb)
(0 Entry))))

(bb1_1 (|%q| (eq |%i| 3)))
(bb1_2 (|%i| (add |%i_1| 1)))
(bb1_3 (|%x| (add |%i| 3)))
(bb1_4 (br |%q| bb2 bb

S1

S2

Entry

bb2: Exit Loop

bb:

S0

bb1:

S1

(bb_1 (|%d| (add |%c| |%x|)

(bb1_0 (|%i_1| (0)))
(bb1_1 (|%q| (eq |%i| 3)))
(bb1_2 (|%i| (add |%i_1| 1)))
(bb1_3 (|%x| (add|%i| 3))
(bb1_4 (br |%q| bb2 bb))

S0′

S1

S2

(bb1_0 (|%i_1| (|%i|)))
(bb1_1 (|%q| (eq |%i| 3)))
(bb1_2 (|%i| (add |%i_1| 1)))
(bb1_3 (|%x| (add|%i| 3))
(bb1_4 (br |%q| bb2 bb))

S0
″

Entry

bb2

S2

(a) (b) (c)

Fig. 1. (a) Loop in LLVM Assembly (b) Fragment of CCDFG corresponding to loop.
Scheduling step S0 has a φ-statement (c) φ-elimination operation. %i 1 is assigned 0

in S′
0 and %i in S′′

0 .

steps. These restrictions are not for simplifying reasoning, but reflect the kind
of loops that are actually pipelined, e.g., synthesis tools unroll inner loops (by
a compiler transformation) before applying pipelining to the outer loop.

Correctness Statement : Let L be a loop in CCDFG C, and let Lα be the
pipelined implementation generated by our algorithm using pipeline parameters
α. Let V be the set of variables mentioned in L, and U be the set of all variables
in C. Suppose we execute L and Lα from CCDFG states s and s′ respectively,
such that for each variable v ∈ V , the value of v in s is the same as that in
s′, and suppose that the state on termination are f and f ′ respectively. Then
(1) for any v ∈ V , the value of v in f is the same as that in f ′, and (2) for any
v ∈ (U\V), the value of v in f ′ is the same as that in s′.

Remark: Condition (2) is the frame rule which ensures that variables in C that
are not part of the loop are not affected by Lα. The algorithm introduces addi-
tional variables, eg, shadow variables (cf. Section 4). The values of these variables
in f ′ are irrelevant since they are not accessed subsequently.

CCDFG : Formalizing the correctness statement entails defining the semantics
of CCDFG. A CCDFG is a control/data flow graph with a schedule. Control
flow is broken into basic blocks. Instructions in a basic block are grouped into
microsteps that are executed concurrently. A schedule is a grouping of microsteps
which can be completed within one clock cycle. The instruction language we sup-
port is a subset of LLVM [6] which is a front-end for many behavioral synthesis
tools [7, 8]; we support assignment, load, store, bounded arithmetic, bit vectors,
arrays, and pointer manipulations. As is common with ACL2, we use a state-
based operational semantics [9, 10]. Assigning meanings to most instructions is
standard; one exception is the φ-statement “v := phi [σ bb1] [τ bb2]”. If

4 Disha Puri, Sandip Ray, Kecheng Hao, and Fei Xie

reached from basic block bb1, it is the same as the assignment statement v :=

σ; if reached from bb2, it is the same as v := τ ; the meaning is undefined oth-
erwise. Reasoning about φ-statement is complex since after its execution from
state s, the state reached depends not only on s but previous basic block in the
history. We need to handle it since it is used extensively to implement loop tests.
A key step in loop pipelining is φ-elimination, viz., unrolling the loop once and
replacing the φ-statement with assignment statements (cf. Fig. 1).

4 Algorithm and Proof

Our algorithm includes (1) φ-elimination mentioned above, (2) shadow registers,
and (3) superstep construction. Fig. 2 illustrates steps 2 and 3.

Shadow Registers: Consider the CCDFG in Fig. 1. Here %x is written in step
S0 but read in S2. If the loop is pipelined such that a new iteration is initiated
every cycle, then we must ensure that the write from the S0 step of a subsequent
iteration does not overwrite %x before it is read by the S2 step of the current
iteration. This is achieved by introducing a shadow register %x reg that preserves
a copy of the “old value of %x” and replacing reads of %x to use %x reg.

Superstep Construction: We combine scheduling steps of successive iterations
into “supersteps” which are scheduling steps for the pipeline. Supersteps ac-
count for hazards, viz., if a variable is written in scheduling step S and read
subsequently in S′ then S′ cannot be in a superstep that precedes S. S and S′

can be in a single superstep since we implement data forwarding.

S1

(bb_1 (|%d| (add |%c|
|%x_reg|)))

S0
″

S2′

S0′
(bb1_5 (|%x_reg| (|%x|)))

S1

S2

S1

(bb_1 (|%d| (add
|%c|

|%x_reg|)))

S0′
(bb1_5 (|%x_reg|

(|%x|)))

S1

S0
″

(writes |%x|)

S2
(reads |%x|)

Entry

Exit

Pipeline
prologue

Pipeline
full

Pipeline
epilogue

(a) (b) (c)

Fig. 2. (a) CCDFG of Fig. 1 after inserting shadow register %x reg for %x. (b) Su-
perstep construction. Horizontal arrows represent data forwarding. (c) Pipelined loop.

Correspondence Relation: Our planned proof involves defining a “correspon-
dence relation” between loops of the sequential and pipelined CCDFGs and
proving that it is preserved across loop iterations. The relation is informally
paraphrased as follows. “Let S be a sequential loop and G be the pipelined loop

Mechanical Certification of Loop Pipelining 5

generated from our algorithm, constituting prologue Gp, full stage Gl, and epi-
logue Ge (cf. Fig 2(c)). Let sl be any state of G poised to execute Gl, and let
k be any number such that the loop of G is not exited in k iterations from sl.
Then executing k iterations of Gl from sl is equivalent to executing k iterations
of S together with a collection of “partially completed” iterations of S.4

Proof Sketch: The invariant, albeit non-trivial, admits a direct proof of the cor-
rectness statement in Section 3. Equivalence of CCDFG states after completing
execution of G and S follows from the fact that the epilogue Ge constitutes the
incomplete scheduling steps of S. To prove that the relation is invariant across
pipeline iterations, note that each new iteration of Gl initiates a new (incom-
plete) iteration of S, and advances incomplete iterations by one scheduling step;
the result follows by rearranging the incomplete iterations, since rearrangement
of scheduling steps produces the same computation in the absence of hazards.
Thus we need to show that our algorithm generates hazard-free pipelines, which
reduces to structural properties of the three components of the algorithm.

5 Current State and Conclusion

As of this writing, we have formalized the correspondence relation, and finished
the proof of key lemmas for φ-elimination and shadow register. We have also
proven an implication chain from the correspondence relation to the correctness
statement. Our current ACL2 script has 156 definitions and 300 lemmas, in-
cluding many lemmas about structural properties of CCDFGs. We admit that
the correspondence relation and the proof sketch above, while rather natural on
hindsight, are outcomes of lessons learned from several false starts.

Microprocessor pipeline verification is a mature research area [11–13]. Our
work, albeit analogous, is different, e.g., we verify an algorithm to generate
pipelines instead of a specific implementation. Also, recent work on translation
validation for software pipelines [1] has parallels to our work. However, their
correctness statement is contingent upon the equivalence of a certain symbolic
simulation of the two designs, and they do not statically identify data hazards.

Use of theorem proving on industrial flows typically involves either compli-
cated reasoning about (optimized) implementations, or abstracting them signifi-
cantly to facilitate proof. In contrast, we apply theorem proving on an algorithm
that generates reference designs for SEC. This permits adjusting the algorithm
(within limits) to suit mechanical reasoning while affording comparison with
actual synthesized artifacts. We have made liberal use of this “luxury”, e.g.,
the three components of our algorithm were conceived from a reflection of our
invariant and proof sketch. Indeed, we are currently refining the definition of su-
perstep construction to facilitate proof of certain structural lemmas. We believe
a similar approach is applicable in other contexts and may provide effective use
of theorem proving without exposing confidential intellectual property.

4 The formalization actually characterizes each incomplete iteration, e.g., if the
pipeline includes d iterations and successive iterations are introduced in consecu-
tive clock cycles, then the i-th iteration has i− 1 incomplete scheduling steps.

6 Disha Puri, Sandip Ray, Kecheng Hao, and Fei Xie

References

1. Tristan, J.B., Leroy, X.: A Simple, Verified Validator for Software Pipelining.
In Hermenegildo, M.V., Palsberg, J., eds.: Proceedings of the 37th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL
2010), Madrid, Spain, ACM (2010) 83–92

2. Ray, S., Hao, K., Xie, F., Yang, J.: Formal Verification for High-Assurance Behav-
ioral Synthesis. In Liu, Z., Ravn, A.P., eds.: Proceedings of the 7th International
Symposium on Automated Technology for Verification and Analysis (ATVA 2009).
Volume 5799 of LNCS., Macao SAR, China, Springer (2009) 337–351

3. Hao, K., Xie, F., Ray, S., Yang, J.: Optimizing Equivalence Checking for Behavioral
Synthesis. In: Design, Automation and Test in Europe, Dresden, Germany, IEEE
(2010) 1500–1505

4. Yang, Z., Hao, K., Cong, K., Ray, S., Xie, F.: Equivalence Checking for Com-
piler Transformations in Behavioral Synthesis. In Byrd, G., Schenider, K., Chang,
N., Ozev, S., eds.: Proceedings of the 31st International Conference on Computer
Design (ICCD 2013), Asheville, NC, USA, IEEE (2013) 491–494

5. Hao, K., Ray, S., Xie, F.: Equivalence Checking for Behaviorally Synthesized
Pipelines. In Groeneveld, G., Sciuto, D., Hassoun, S., eds.: Proceedings of the 49th
International ACM/EDAC/IEEE Design Automation Conference (DAC 2012), San
Francisco, CA, USA, ACM (2012) 344–349

6. Lattner, C., Adve, V.S.: LLVM: A Compilation Framework for Lifelong Program
Analysis & Transformation. In: 2nd ACM/IEEE International Symposium on
Code Generation and Optimization: Feedback-directed and Runtime Optimization
(CGO 2004), San Jose, CA, USA, IEEE Computer Society (2004) 75–88

7. Cong, J., Liu, B., Neuendorffer, S., Noguera, J., Vissers, K., Zhang, Z.: High-Level
Synthesis for FPGAs: From Prototyping to Deployment. IEEE Transactions on
CAD of Integrated Circuits and Systems 30 (2011) 473–491

8. Canis, A., Choi, J., Aldham, M., Zhang, V., Kammoona, A., Anderson, J.H.,
Brown, S., Czajkowski, T.: LegUp: High-level Synthesis for FPGA-based Pro-
cessor/Accelerator Systems. In Wawrzynek, J., Compton, K., eds.: Proceedings
of the 19th ACM/SIGDA International Symposium on Field Programmable Gate
Arrays (FPGA 2011), Monterey, CA, USA, ACM (2011) 33–36

9. Liu, H., Moore, J.S.: Executable JVM Model for Analytical Reasoning: A study.
Science of Computer Programming 57 (2005) 253–274

10. Boyer, R.S., Moore, J.S.: Mechanized Formal Reasoning about Programs and Com-
puting Machines. In Veroff, R., ed.: Automated Reasoning and Its Applications:
Essays in Honor of Larry Wos, MIT Press (1996) 141–176

11. Burch, J.R., Dill, D.L.: Automatic Verification of Pipelined Microprocessor Con-
trol. In: Proceedings of the 6th International Conference on Computer Aided
Verification (CAV 1994). Volume 818 of LNCS., CA, USA, Springer-Verlag (1994)
68–80

12. Manolios, P.: Correctness of Pipelined Machines. In Hunt, Jr., W.A., Johnson,
S.D., eds.: Proceedings of the 3rd International Conference on Formal Methods
in Computer-Aided Design (FMCAD 2000). Volume 1954 of LNCS., Austin, TX,
Springer-Verlag (2000) 161–178

13. Sawada, J., Hunt, Jr., W.A.: Verification of FM9801: An Out-of-Order Micro-
processor Model with Speculative Execution, Exceptions, and Program-Modifying
Capability. Formal Methods in Systems Design 20 (2002) 187–222

