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Abstract— Autonomous vehicle-following systems, including
Adaptive Cruise Control (ACC) and Cooperative Adaptive
Cruise Control (CACC), improve safety, efficiency, and string
stability for a vehicle (the ego vehicle) following its leading
vehicle. The ego vehicle senses or receives information, such
as the position, velocity, acceleration, or even intention, of
the leading vehicle and controls its own behavior. However,
it has been shown that sensors and wireless channels are
vulnerable to security attacks, and attackers can modify data
sensed from sensors or received from other vehicles. To address
this problem, in this paper, we design three types of stealthy
attacks on ACC or CACC inputs, where the stealthy attacks
can deceive a rule-based detection approach and impede system
properties (collision-freeness and vehicle-following distance).
We then develop two deep-learning models, a predictor-based
model and an encoder-decoder-based model to detect the
attacks, where the two models do not need attacker models for
training. The experimental results demonstrate the respective
strengths of different models and lead to a methodology for the
design of learning-based intrusion detection approaches.

I. INTRODUCTION

Intelligent vehicles have become a well-known concept
that vehicles can assist human drivers or even behave au-
tonomously with many advanced functions. Several Ad-
vanced Driver Assistance Systems (ADAS) aim to support
vehicles to be safer and more efficient. Adaptive Cruise Con-
trol (ACC) is a representative one which controls a vehicle
to maintain a safe gap to its leading vehicle. To realize the
functionality, a vehicle equipped with ACC uses radars or
other sensors to sense the relative position and velocity of its
leading vehicle and combines the information to control its
acceleration. Cooperative Adaptive Cruise Control (CACC)
is a more advanced version of ACC. A vehicle equipped
with CACC utilizes Vehicular Ad-hoc Networks (VANETs)
such as Dedicated Short-Range Communications (DSRC)
or Cellular V2X (C-V2X) and receives the information of
its leading vehicle. Because of the connectivity between
vehicles, more information, including the position, velocity,
acceleration, or even intention of the leading vehicle, can be
provided from the leading vehicle to further improve safety,
efficiency, and string stability.
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However, research has shown the feasibility of hacking
sensors such as GPS, radar, LIDAR, and camera [1], [2], [3].
The wireless channels of VANETs also have robustness and
security concerns. They provide attackers the opportunities
of intrusion and modifying data sensed from sensors or
sent from other vehicles. If an attacker modifies ACC or
CACC inputs, i.e., a spoofing attack, it will impair the safety,
efficiency, and string stability of ACC or CACC and can even
create traffic jams and collisions between vehicles. Several
existing works have analyzed the impact of attacks on
CACC [4], [5], [6], which suggest that mitigation approaches
should be provided to protect against those attacks.

One approach to protect against malicious modifications
is cryptographic authentication. However, it can only verify
the legitimacy of an identification, so it is difficult to protect
against data-level attacks. For example, the sensors of an
authenticated vehicle are compromised, or an authenticated
vehicle itself provides false information. Besides, crypto-
graphic authentication also has the concern of computational
overhead.

For data-level protection, data-level Intrusion Detection
Systems (IDS) aim to check the consistency of data in time
series and detect false data. Recent research applies Hidden
Markov Models (HMM) [6], Pearson correlation analysis [7],
and Principal Components Analysis (PCA) [8] to the protec-
tion against insiders. The general principle of these works is
to model and learn the normal behavior of vehicles and detect
intrusion by checking if the data is anomalous to the pattern
of the learned normal behavior. On the other hand, many
deep-learning-based approaches are also proposed to solve
general anomaly detection problems [9], [10], [11], [12]. Es-
pecially, deep learning is also applied to intrusion detection
in the automotive domain [13], [14]. However, most of these
deep-learning-based approaches require attacker models for
training, which limits their performance of detecting attacks
that are not seen or trained before. Therefore, we aim to
develop deep-learning-based approaches which do not need
attacker models for training.

In this paper, our main contributions include:
• We design three types of stealthy attacks on ACC or

CACC inputs, where the stealthy attacks can deceive
a rule-based detection approach and impede system
properties (collision-freeness and vehicle-following dis-
tance).

• We develop two deep-learning models, a predictor-
based model and an encoder-decoder-based model to



detect the attacks, where the two models do not need
attacker models for training.

• The experimental results demonstrate the respective
strengths of different models and lead to a methodology
for the design of learning-based intrusion detection
approaches.

The rest of this paper is organized as follows. Section II
describes our problem formulation including the attacker
models, detection goal, and detection evaluation. Section III
presents our approaches including the predictor-based model
and the encoder-decoder-based model. Section IV demon-
strates and discusses the experimental results. Section V
concludes this paper.

II. PROBLEM FORMULATION

We consider a scenario that multiple vehicles driving on
a lane from a platoon. Each vehicle follows its leading
vehicle based on a vehicle-following model and a safe target
velocity [15]. The model has at most 6 inputs including the
positions, velocities and accelerations of the ego vehicle and
its leading vehicle. Each vehicle is equipped with sensors
and communication devices so that it can sense its own
position, velocity, and acceleration and sense or receive the
position, velocity, and acceleration of its leading vehicle. The
position, velocity and acceleration of a vehicle are correlated
by physics rules as the following equations [6]:

vmin · ∆ +
1

2
amin · ∆2 − εp ≤ pnew − pold , (1)

pnew − pold ≤ vmax · ∆ +
1

2
amax · ∆2 + εp , (2)

amin · ∆ − εv ≤ vnew − vold ≤ amax · ∆ + εv , (3)

where ∆ is the time interval between two measurements,
pold, pnew, vold, vnew, aold, and anew are respectively the
old (right before a time interval) and new (right after the
time interval) positions, velocities, and accelerations of the
vehicle, vmin = min(vold, vnew), amin = min(aold, anew),
and εp and εv are respectively the acceptable error ranges.

An attacker can modify any arbitrary input of a vehicle-
following model. If the attacker only attacks one input, we
can detect it by Equations (1–3). Therefore, we consider
a stronger attacker which performs stealthy attacks and
modifies multiple inputs (position, velocity, and acceleration)
of the ego vehicle or the leading vehicle. The stealthy attacks
are worth detection as we will show that they can impede
system properties such as generating collisions and change
vehicle-following distances.

However, we do not consider an attack which modify
all inputs. This is because different attacking techniques
are needed to compromise different sensors and messages,
resulting in a higher attacking cost. Also, there is no data-
level solution if all inputs are compromised, so this is out of
the scope of this paper. In this paper, we design three stealthy
attacks and introduce them in the following sections.

A. Attack 1: Shifting Stealthy Attack
Since a vehicle-following model is based on a safe target

velocity which is usually the velocity of the leading vehicle.

We design the first two attacks by modifying the velocity of
the leading vehicle in a vehicle-following model. To make the
attacks stealthy, the position and acceleration of the leading
vehicle are also modified accordingly by physics rules so
that the attacks can deceive the rule-based detection based
on Equations (1–3). Note that the modifications are on the
(sensed or received) inputs of a vehicle-following model, so
the physical behavior of the leading vehicle is actually not
modified.

A shifting stealthy attack adds a constant to the velocity
of the leading vehicle. The false input v′(t) at time step t in
a vehicle-following model can be written as:

v′(t) =

{
γ + v(t), if (t− tstart mod T ) < U ;
v(t), otherwise,

(4)

where v(t) is the true velocity of the leading vehicle, tstart
is the time step that the attack starts, γ is the intensity of
the attack, and T and U are respectively the period and the
duration of the attack.

B. Attack 2: Scaling Stealthy Attack

A scaling stealthy attack multiplies a constant to the
velocity of the leading vehicle. The false input v′(t) at time
step t in a vehicle-following model can be written as:

v′(t) =

{
γ · v(t), if (t− tstart mod T ) < U ;
v(t), otherwise,

(5)

where v(t) is the true velocity of the leading vehicle, tstart
is the time step that the attack starts, γ is the intensity of
the attack, and T and U are respectively the period and the
duration of the attack. Similar to a shifting stealthy attack,
the position and acceleration of the leading vehicle are also
modified accordingly by physics rules to make the attacks
stealthy.

C. Attack 3: Time-Variant Stealthy Attack

A time-variant stealthy attack adds offset functions Op(t),
Ov(t), and Oa(t) to the real position, velocity, and acceler-
ation to get false position p′, velocity v′, and acceleration
a′, respectively. Therefore, when the measurements at time
t are received, the modified inputs can be written as:

p′new = pnew +Op(t) , p′old = pold +Op(t− 1) , (6)
v′new = vnew +Op(t) , v′old = vold +Op(t− 1) , (7)
a′new = anew +Op(t) , a′old = aold +Op(t− 1) . (8)

Here we assume Op(t), Ov(t), and Oa(t) as continuous
functions (use notation Op(t) instead of O(t)

p ) and use time
steps to discretize them for convenience. Without loss the
generality, we assume that the new values are larger than the
old values, i.e.,

v′min = v′old , v
′
max = v′new , a′min = a′old , a

′
max = a′new .

(9)



By plugging Equation (9) into Equations (1–3), a time-
variant stealthy attack needs to satisfy all of the following
equations:

v′old · ∆ +
1

2
a′old · ∆2 − εp ≤ p′new − p′old , (10)

p′new − p′old ≤ v′new · ∆ +
1

2
a′new · ∆2 + εp , (11)

a′old · ∆ − εv ≤ v′new − v′old ≤ a′new · ∆ + εv , (12)

to deceive the rule-based detection. Then, by plugging Equa-
tions (6–8) into Equations (10–12), a time-variant stealthy
attack needs to determine the offset functions to satisfy all
of the following equations:

(vold +Op(t− 1))∆ +
1

2
(aold +Oa(t− 1))∆2 − εp

≤ pnew +Op(t) − pold −Op(t− 1) , (13)
pnew +Op(t) − pold −Op(t− 1)

≤ (vnew +Op(t))∆ +
1

2
(anew +Oa(t))∆2 + εp , (14)

(aold +Oa(t− 1))∆ − εv

≤ vnew +Ov(t) − vold −Ov(t− 1)

≤ (anew +Oa(t))∆ + εv , (15)

to deceive the rule-based detection.
Similar to Equation (9), assuming that the new values are

larger than the old values for the CACC inputs, i.e.,

vmin = vold , vmax = vnew , amin = aold , amax = anew ,
(16)

the real inputs must satisfy all of the following equations:

vold · ∆ +
1

2
aold · ∆2 − εp ≤ pnew − pold , (17)

pnew − pold ≤ vnew · ∆ +
1

2
anew · ∆2 + εp , (18)

aold · ∆ − εv ≤ vnew − vold ≤ anew · ∆ + εv . (19)

By combining Equations (13–15) and Equations (17–19),
a time-variant stealthy attack needs to determine the offset
functions to satisfy all of the following equations:

Ov(t− 1) · ∆ +
1

2
Oa(t− 1) · ∆2 ≤ Op(t) −Op(t− 1) ,

(20)

Op(t) −Op(t− 1) ≤ Ov(t) · ∆ +
1

2
Oa(t) · ∆2 , (21)

Oa(t− 1) · ∆ ≤ Ov(t) −Ov(t− 1) ≤ Oa(t) · ∆ , (22)

to deceive the rule-based detection.
To design a time-variant stealthy attack, we set Op(0) =

Ov(0) = Oa(0) = 0, and one solution which is built to
satisfy Equations (20–22) is:

Op(t) = ∆2γ

(
1

6
t3 +

1

4
t2 +

1

12
t

)
, (23)

Ov(t) =
∆γ

2
t2 , (24)

Oa(t) = γt , (25)

where γ is the intensity of the time-variant stealthy attack.
Therefore, the modified (false) inputs can be written as:

p′(t) = p(t) +Op(t− tstart) , (26)

v′(t) = v(t) +Ov(t− tstart) , (27)

a′(t) = a(t) +Oa(t− tstart) . (28)

The time-variant stealthy attack guarantees to deceive the
rule-based detection when the actual inputs satisfy the as-
sumption in Equation (16). The assumption is a sufficient but
not necessary condition, i.e., the time-variant stealthy attack
can still deceive the rule-based detection if the assumption is
not satisfied, especially when γ is large enough. Preliminary
testing also demonstrates that the detection performance of
the rule-based detection keeps decreasing as γ increases, and
the time-variant stealthy attacker can totally deceive the rule-
based detection when γ is large enough, regardless of the
assumption.

D. Evaluation Metrics

A detector can be installed at a roadside unit or any vehicle
in or nearby the platoon. The sensed or received inputs at
time step t are written as a trajectory vector with dimension
n:

r(t) =
[
r
(t)
1 , r

(t)
2 , . . . , r(t)n

]
. (29)

Here, r(t) may consist of the following inputs: the position,
velocity, and acceleration of the ego vehicle, and the position,
velocity, and acceleration of its leading vehicle, and thus n
is at most 6. We combine trajectory vectors at different time
steps and form a time series of trajectory vectors:

R =
[
r(1), r(2), . . . , r(t)

]
. (30)

We can further split R into smaller trajectory windows with
a window size w:

w(t) =
[
r(t−w+1), r(t−w+2), . . . , r(t)

]
. (31)

The goal of intrusion detection is that, given a trajectory
window w, determine if it has false data.

We use the F1 score to evaluate the detection performance.
It is computed as follows:

Precision =
TP

TP + FP
, (32)

Recall =
TP

TP + FN
, (33)

Fβ Score = (1 + β2) · Precision · Recall
(β2 · Precision) + Recall

, (34)

where TP (true positive) is the number of time steps that
abnormal trajectory windows are correctly detected as false
data; FP (false positive) is the number of time steps that
normal trajectory windows are wrongly detected as false
data; TN (true negative) is the number of time steps that
normal trajectory windows are correctly classified as real
data; FN (false negative) is the number of time steps that
abnormal trajectory windows are wrongly classified as real
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Fig. 1. The structure of an example predictor-based model with w = 50,
ls = 40, and lp = 10.

data. We set β = 1, in which precision is considered the
same important as recall.

If there is no false data, the precision and the recall will
be meaningless, so we have the accuracy to observe the true-
negative and false-positive rates in this case. It is computed
as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
. (35)

III. PROPOSED APPROACHES

In this section, we describe two developed deep-learning
models for the intrusion detection. The deep-learning models
do not need anomaly or intrusion data for training, as they are
developed to learn the normal behavior and detect modified
data even if the attacks are not seen or trained before.

A. Model 1: Predictor-Based Model

We apply the LSTM-AD [9] to develop our predictor-
based model. The LSTM-AD utilizes the Long Short-Term
Memory (LSTM) to predict the normal behavior of a time
series. Here, we describe how we apply and modify the
LSTM-AD to develop our predictor-based model.

At each time step t in a time series of trajectory vectors
R, we define a window size w to create a window using
previous trajectory vectors:

W(t) =
[
r(t−w+1), r(t−w+2), . . . , r(t)

]
. (36)

Each window is further split into two parts, the input time
series W(t)

s with time step length ls and the target time series
W

(t)
p with time step length lp:

W(t)
s =

[
r(t−w+1), r(t−w+2), . . . , r(t−w+ls)

]
, (37)

W(t)
p =

[
r(t−lp+1), r(t−lp+2), . . . , r(t)

]
, (38)

where w = ls+lp. We use W
(t)
s as the input of our predictor-

based model to predict the target time series W
(t)
p , and the

output of the predictor-based model is:

Ŵ(t)
p =

[
r̂(t−lp+1), r̂(t−lp+2), . . . , r̂(t)

]
. (39)

The structure of an example predictor-based model with
w = 50, ls = 40, and lp = 10 is shown in Figure 1,
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Fig. 2. The structure of an example encode-decoder-based model with
w = 50.

consisting of two-layer Gated Recurrent Units (GRUs) and a
one-layer fully-connected neural network (FC in the figure).
The GRU, as a kind of Recurrent Neural Networks (RNNs),
is similar to LSTM, but it has fewer parameters than LSTM.
We also add dropout to each layer of GRU and FC to reduce
overfitting. Here, we predict the distance between the ego
vehicle and its leading vehicle instead of directly predicting
the positions of the ego vehicle and its leading vehicle.
We observe that this setting can increase the detection
performance of the predictor-based model. This is because
the distance can provide a better connection between the
position of the ego vehicle and that of the leading vehicle,
and the distance is the information that directly influences
the decision of CACC. Meanwhile, the range of distances
is usually smaller than that of positions, so the predictor-
based model is more sensitive to the distance modifications,
compared with the corresponding position modifications.

After the predictor-based model outputs Ŵ
(t)
p , for any

time step t′, where t − lp + 1 ≤ t′ ≤ t, we compute the
prediction error e(t

′) between the target trajectory vector r(t
′)

and the corresponding output r̂(t
′) as:

e(t
′) = r̂(t

′) − r(t
′). (40)

Note that e(t
′) is a vector with dimension 3 since we only

predict the distance between two vehicles and the velocities
and accelerations of the ego vehicle. We then sum up each
dimension and get the anomaly score. If the anomaly score
is higher than a predefined threshold (based on observations
from testing), we determine that the corresponding trajectory
window has false data. An alternative of the predefined
threshold is dynamic thresholding [12].

B. Model 2: Encoder-Decoder-Based Model

We apply the EncDec-AD [10] to develop our encoder-
decoder-based model. The EncDec-AD utilizes an LSTM-
based encoder-decoder to compress and reconstruct a time
series. Here, we describe how we apply and modify the
EncDec-AD to develop our encoder-decoder-based model.

For our encoder-decoder-based model, we also define a
window size w to create a window using previous trajectory
vectors. However, we do not split each window into the input
time series and the target time series. Instead, we directly use



the whole window W(t) as the input of our encoder-decoder-
based model to reconstruct the window, and the output of the
encoder-decoder-based model is:

Ŵ(t)
r =

[
r̂(t−w+1), r̂(t−w+2), . . . , r̂(t)

]
. (41)

The structure of an example encoder-decoder-based model
with w = 50 is shown in Figure 2. consisting of one-layer
GRUs for the encoder and one-layer GRUs connected with
a fully-connected neural network (FC in the figure) for the
decoder. We also add dropout to each layer of GRU and FC
to reduce overfitting. Besides, based on the observations from
testing, we add an additional dimension which is the distance
between the ego vehicle and its leading vehicle. Unlike the
predictor-based model, we observe that reconstructing the
positions of the ego vehicle and its leading vehicle can
increase the detection performance of the encoder-decoder-
based model. This is because the positions of one vehicle at
different time steps can reflect the variations of the velocity
and the acceleration, which assists the encoder-decoder-
based model to encode the trajectory vectors better. There-
fore, we reconstruct the whole window with the positions
of the ego vehicle and its leading vehicle in the encoder-
decoder-based model.

After the encoder-decoder model outputs Ŵ
(t)
r , for any

time step t′, where t − w + 1 ≤ t′ ≤ t, we compute the
reconstruction error e(t

′) between the target trajectory vector
r(t

′) and the corresponding output r̂(t
′) as:

e(t
′) = r̂(t

′) − r(t
′). (42)

Note that e(t
′) here is a vector with dimension 7 since we

reconstruct the positions, velocities, and accelerations of the
ego vehicle and its leading vehicle and their distance. We
then sum up each dimension and get the anomaly score. If the
anomaly score is higher than a predefined threshold (based
on observations from testing), we determine that the corre-
sponding trajectory window has false data. An alternative of
the predefined threshold is dynamic thresholding [12].

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

We used Simulation of Urban MObility (SUMO) [16]
to generate trajectories for training and testing data. We
built one straight lane with length 1,000 meters in SUMO
and simulated dense traffic (which triggers vehicle-following
systems). For the shifting stealthy attack in Section II-A
and the scaling attack in Section II-B, we directly modified
the velocity of the leading vehicle in the Krauss vehicle-
following model in SUMO to create false data. For the
time-variant stealthy attack in Section II-C, we first used the
CACC vehicle-following model in SUMO to generate data
and then modified the data after the SUMO simulation (note
that we cannot directly modify the position, velocity, and
acceleration at the same time in the SUMO simulation due to
its setting) to create false data. The training data and testing
data were collected in 500,000 simulation steps and 10,000
simulation steps, respectively, and the interval between each

TABLE I
EXPERIMENTAL RESULTS (ACCURACY) WITHOUT ATTACKS. D IS THE

AVERAGE DISTANCE BETWEEN VEHICLES.

D (m) PHY HMM-L HMM-M PDT EDC
31.93 1.00 0.55 0.99 0.97 0.85

simulation step is 0.1 second. The neural network structures
were implemented using PyTorch library [17]. All the ex-
periment were run on the desktop with Intel®Core i7-9700
CPU, and NVIDIA-2080Ti GPU.

We compare the predictor-based (PDT) model and the
encoder-decoder (EDC) model as follows with the rule-based
detection approach (PHY) based on physics rules [6] as well
as the Hidden Markov Model (HMM) model [6].
• For the comparative PHY detection, we check if the

inputs satisfy Equations (1–3), and set εv = 10−4 (m/s)
and εp = 10−4 (m).

• For the comparative HMM model, we build it with a
Gaussian model by hmmlearn, a toolkit separated from
scikit-learn library [18]. We use the distance, the relative
velocity, and the relative acceleration between the ego
vehicle and its leading vehicle, as the inputs of the
HMM model. The number of hidden states is 2, same
as that in [6]. To compare with the HMM model which
has better detection performance, the HMM model
is experimented with two thresholds (335 and 550),
denoted as HMM-L and HMM-H, respectively. They
are two settings performing well when there is false
data and when there is no false data, respectively.

• The window size w is set as 50 to split the time series
of trajectory vectors R into trajectory windows for the
HMM model, the PDT model, and the EDC model. Two
consecutive trajectory windows have 40 overlapping
simulation steps, i.e., the windows shift 10 simulation
steps.

• For the PDT model, the length of the input time series
ls is 40, and the length of the target time series lp is 10.
The number of the hidden states of every GRU layer is
120. We train the model with batch size 128, and the
optimizer is Adam with learning rate 10−5.

• For the ENC model, the number of the hidden states of
every GRU layer is 200. We train the model with batch
size 128, and the optimizer is Adam with learning rate
10−5.

Besides the accuracy (used if there is no false data) and the
F1 score defined in Section II-D, we also consider scenar-
ios that collisions happen and report the average distances
between vehicles to demonstrate the impacts of attacks on
vehicle-following systems.

B. Preliminary Experiment without Attacks

It is important for an approach not to have a high false-
positive rate when there is no false data, so we start from
this experiment without attacks and report the accuracy. The
experimental results are listed in Table I. When there is no
false data, the PHY detection, the HMM-M model, and the



TABLE II
EXPERIMENTAL RESULTS (F1 SCORES) WITH SHIFTING STEALTHY

ATTACKS. γ IS THE INTENSITY OF AN ATTACK, AND D IS THE AVERAGE

DISTANCE BETWEEN VEHICLES.

γ D (m) PHY HMM-L HMM-M PDT EDC
−10 40.09 <0.01 0.69 0.01 0.87 0.78
−5 32.83 <0.01 0.71 0.01 0.85 0.82
2 33.21 <0.01 0.73 0.77 0.79 0.73
5 37.38 <0.01 0.64 0.11 0.67 0.60

TABLE III
EXPERIMENTAL RESULTS (F1 SCORES) WITH SHIFTING STEALTHY

ATTACKS GENERATING COLLISIONS. γ IS THE INTENSITY OF AN

ATTACK, AND D IS THE AVERAGE DISTANCE BETWEEN VEHICLES.

γ D (m) PHY HMM-L HMM-M PDT EDC
−10 No Collision
−5 No Collision
2 21.62 <0.01 0.73 0.94 0.90 0.79
5 22.97 <0.01 0.59 0.02 0.85 0.63

PDT model achieve high accuracy. However, we will see that
the F1 scores of the PHY detection and the HMM-M model
are lower or much less stable when there is false data in the
following experiments. Also, the average execution times of
the PHY detection, the HMM models, the PDT model, and
the ENC model to check 1-second CACC inputs are 3.7 (ms),
1.3 (ms), 4.6 (ms), and 8.1 (ms), respectively. The execution
times in the following experiments also fall in this range,
showing that all of them are applicable in real time, even
on an embedded platform (the minimum requirement is to
check 1-second CACC inputs in 1 second).

C. Experiment with Shifting Stealthy Attacks

The shifting stealthy attacks are defined in section II-A.
In this experiment, we evaluate different intensities γ =
−10,−5, 2, 5 of the attacks. A positive γ means that the false
data make a vehicle overestimating the velocity of its leading
vehicle, and a negative γ means that the false data make a
vehicle underestimating the velocity of its leading vehicle.
For γ larger than 5, the experiments results are similar to
those with γ = 5.

The experimental results are listed in Table II. As the
attacks are stealthy, the PHY detection cannot detect the
attacks. The PDT model has the best detection performance,
and the HMM-L model and the EDC model have acceptable
and stable detection performance. The detection performance
of the HMM-M model is generally not good. It should be
mentioned that we do not have anomaly or intrusion data for
training, as our goal is to detect false data even if the attacks
are not seen or trained before. As a result, it is expected
that the detection performance against stealthy attacks is not
up to, for example, 90% or higher. It should also be noted
that a larger γ does not imply a shorter average distance
between vehicles. This is because it results in the ego vehicle
“oscillating” behind its leading vehicle. Also, a larger γ does
not imply a higher detection performance. This is because it
results in the ego vehicle shorting its distance to the leading

TABLE IV
EXPERIMENTAL RESULTS (F1 SCORES) WITH SCALING STEALTHY

ATTACKS. γ IS THE INTENSITY OF AN ATTACK, AND D IS THE AVERAGE

DISTANCE BETWEEN VEHICLES.

γ D (m) PHY HMM-L HMM-M PDT EDC
0.8 30.55 <0.01 0.72 0.00 0.52 0.59
1.1 32.37 <0.01 0.74 0.79 0.81 0.74
1.3 33.74 <0.01 0.72 0.76 0.79 0.72
1.5 36.95 <0.01 0.65 0.19 0.69 0.61
1.7 37.41 <0.01 0.64 0.11 0.67 0.60

TABLE V
EXPERIMENTAL RESULTS (F1 SCORES) WITH SCALING STEALTHY

ATTACKS GENERATING COLLISIONS. γ IS THE INTENSITY OF AN

ATTACK, AND D IS THE AVERAGE DISTANCE BETWEEN VEHICLES.

γ D (m) PHY HMM-L HMM-M PDT EDC
0.8 No Collision
1.1 20.26 <0.01 0.83 0.92 0.91 0.83
1.3 21.41 <0.01 0.75 0.94 0.90 0.80
1.5 22.61 <0.01 0.61 0.17 0.86 0.66
1.7 23.21 <0.01 0.59 0.02 0.84 0.63

vehicle rapidly, and thus the intrusion detection approaches
have much less trajectory windows to detect attacks.

Besides the average distance between vehicles, we are
especially interested in the scenarios that collisions happen
(the ego vehicle collides with its leading vehicle), as our first
priority is to detect attacks (or false data) generating colli-
sions. The experimental results are listed in Table III which
only includes the time series of trajectory vectors having a
collision at some time step t (after a collision happens, the
corresponding vehicles will not generate any new trajectory
vector). We can observe that the PDT model and the EDC
model have better and more stable detection performance,
compared with the HMM-L model and the HMM-H model.
Besides, the PDT model and the EDC model also have better
detection performance against shifting stealthy attacks gen-
erating collisions, compared with themselves against shifting
stealthy attacks not generating collisions. This is a good
feature as detecting attacks generating collisions is more
critical from the system perspective.

D. Experiment with Scaling Stealthy Attacks

The scaling stealthy attacks are defined in section II-B.
In this experiment, we evaluate different intensities γ =
0.8, 1.1, 1.3, 1.5, 1.7 of the attacks. A γ larger than 1 means
that the false data make a vehicle overestimating the velocity
of its leading vehicle, and a γ smaller than 1 means that the
false data make a vehicle underestimating the velocity of its
leading vehicle. For γ larger than 1.7, the experiments results
are similar to those with γ = 1.7.

The experimental results are listed in Table IV. Similar to
the shifting stealthy attacks, as the attacks are stealthy, the
PHY detection cannot detect the attacks. The PDT model
has the best detection performance, except with γ = 0.8,
and the HMM-L model has comparable and stable detection
performance. The EDC model has a little lower detection
performance, and the detection performance of the HMM-



TABLE VI
EXPERIMENTAL RESULTS (F1 SCORES) WITH TIME-VARIANT STEALTHY

ATTACKS. γ IS THE INTENSITY OF AN ATTACK, AND D IS THE AVERAGE

DISTANCE BETWEEN VEHICLES.

γ D (m) PHY HMM-L HMM-M PDT EDC
0.001 29.81 0.00 0.59 0.02 0.81 0.57
0.002 29.84 0.00 0.54 0.15 0.86 0.62
0.004 30.01 0.00 0.44 0.32 0.83 0.65
0.008 30.23 0.00 0.31 0.49 0.81 0.58
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Fig. 3. The methodology implies that a good intrusion detection approach
should have high accuracy (when there is no attack) and high F1 scores
(when there are attacks), especially for the attacks which have significant
impacts on system properties.

M model is very diverse. Similarly to the shifting stealthy
attacks, a larger γ does not imply a shorter average distance
between vehicles nor a higher detection performance.

The experimental results with collisions are listed in
Table V. Again, we can observe that the PDT model and the
EDC model have better and more stable detection perfor-
mance, compared with the HMM-L model and the HMM-H
model. Again, the PDT model and the EDC model also have
better detection performance against scaling stealthy attacks
generating collisions, compared with themselves against scal-
ing stealthy attacks not necessarily generating collisions.

E. Experiment with Time-Variant Stealthy Attacks

The scaling stealthy attacks are defined in section II-C.
In this experiment, we evaluate different intensities γ =
0.001, 0.002, 0.004, 0.008 of the attacks. The experimental
results are listed in Table VI. As the attacks are stealthy, the
PHY detection cannot detect any of the attacks. The PDT
model has the best detection performance with F1 scores
over 80%, and its advantages over the other approaches are
significant. The HMM-L model and the HMM-M model have
poor detection performance. Even if we change the threshold
to 400 (a good value based on testing), the F1 scores of the
HMM model are 0.67, 0.74, 0.80, and 0.78 for the different
γ values, still lower than the PDT model.

F. Discussion

The experimental results suggest that the PDT model has
the best and most stable detection performance. Although we
admit that the claim is only applicable to the stealthy attacks
designed in this paper, the methodology is applicable to
different attacks and different intrusion detection approaches,
as shown in Figure 3. The methodology considers accuracy
(when there is no attack), F1 scores (when there are attacks),

and system properties. A good intrusion detection approach
should (at least) have the following three features:
• High accuracy when there is no attack (97% for the

PDT model in Table I).
• High F1 scores when there are attacks (67%–86% for

the PDT model in the most scenarios in Table II,
Table IV, and Table VI).

• Higher F1 scores when the attacks have significant
impacts on system properties (84%–91% for the PDT
model against attackers generating collisions in Table III
and in Table V).

In this paper, we do not have anomaly or intrusion data
for training, as our goal is to detect false data even if
the attacks are not seen or trained before. If there is a
specific attack to be detected, the attacked data should be
included in the training data, and it is expected to have better
detection performance against the specific attack — a trade-
off between the detection performance and generality.

V. CONCLUSIONS

In this paper, we designed three types of stealthy attacks on
ACC or CACC inputs, where the stealthy attacks can deceive
a rule-based detection approach and impede system proper-
ties (collision-freeness and vehicle-following distance). We
then developed two deep-learning models, a predictor-based
model and an encoder-decoder-based model to detect the
attacks, where the two models do not need attacker mod-
els for training. The experimental results demonstrated the
respective strengths of different models and led to a method-
ology for the design of learning-based intrusion detection
approaches. Future work includes the integration of multiple
approaches, more complicated driving scenarios, and system
reaction following intrusion detection.
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